
rsbl.royalsocietypublishing.org
Research
Cite this article: Herrera M, Nanninga GB,

Planes S, Jones GP, Thorrold SR, Saenz-

Agudelo P, Almany GR, Berumen ML. 2016

Seascape and life-history traits do not predict

self-recruitment in a coral reef fish. Biol. Lett.

12: 20160309.

http://dx.doi.org/10.1098/rsbl.2016.0309
Received: 13 April 2016

Accepted: 20 July 2016
Subject Areas:
ecology

Keywords:
larval dispersal, connectivity, parentage,

sibship, Kimbe Bay, metapopulation
Author for correspondence:
Marcela Herrera

e-mail: marcela.herrerasarrias@kaust.edu.sa
†These authors contributed equally to this

study.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsbl.2016.0309 or

via http://rsbl.royalsocietypublishing.org.

& 2016 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Marine biology

Seascape and life-history traits do not
predict self-recruitment in a coral reef fish

Marcela Herrera1,†, Gerrit B. Nanninga1,2,†, Serge Planes2, Geoffrey P. Jones3,
Simon R. Thorrold4, Pablo Saenz-Agudelo1,5, Glenn R. Almany2

and Michael L. Berumen1

1Red Sea Research Center, Division of Biological and Environmental Science and Engineering,
King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
2USR 3278 CNRS EPHE, Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE),
BP1013 Papetoai, Moorea, French Polynesia
3ARC Centre of Excellence for Coral Reef Studies, James Cook University, 4811 Townsville, Queensland, Australia
4Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
5Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, 5090000 Valdivia, Chile

MH, 0000-0001-6021-3989

The persistence and resilience of many coral reef species are dependent on

rates of connectivity among sub-populations. However, despite increasing

research efforts, the spatial scale of larval dispersal remains unpredictable

for most marine metapopulations. Here, we assess patterns of larval dispersal

in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using

parentage and sibling reconstruction analyses based on 23 microsatellite

DNA loci. We found that, contrary to previous findings in this system, self-

recruitment (SR) was virtually absent at both the reef (0.4–0.5% at 0.15 km2)

and the lagoon scale (0.6–0.8% at approx. 700 km2). While approximately

25% of the collected juveniles were identified as potential siblings, the majority

of sibling pairs were sampled from separate reefs. Integrating our findings

with earlier research from the same system suggests that geographical setting

and life-history traits alone are not suitable predictors of SR and that high

levels of localized recruitment are not universal in coral reef fishes.
1. Introduction
Connectivity in marine metapopulations is predominantly driven by the exchange

of pelagic larvae among relatively sedentary adult populations. Recently, the

relative importance of dispersal versus local retention of larvae has received con-

siderable attention (e.g. [1,2]), owing to the importance of these processes for gene

flow, local demographics and the spatial management of fisheries [3].

To date, numerous studies have produced estimates of self-recruitment (SR;

the proportion of all sampled recruits at a given location that had been locally pro-

duced) from different systems in a variety of coral reef fishes (figure 1). These

studies have shown that levels of SR can be highly variable temporally both

within a species [4,5] and among closely related species with similar life-history

traits. Within anemonefishes of the genus Amphiprion alone, estimates of SR

range from 0% [6] to 65% [7]. On the other hand, SR rates may also be remarkably

consistent over time within species [8,9] and even among species with very

different life-history characteristics [10].

The reef systems around Kimbe Island in Kimbe Bay, Papua New Guinea,

have thus far produced remarkably consistent estimates of high SR for coral

reef fishes. In this system, two species, albeit with different dispersal potential

(Amphiprion percula: benthic brooder, pelagic larval duration (PLD) �12 days,
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Figure 1. Self-recruitment (SR) estimates in coral reef fishes with different spawning modes (shown are the highest SR values (%) reported in each publication). Bar
colours indicate the method used; symbols show the average pelagic larval duration (PLD) for each corresponding family. Labels on the x-axis correspond to the
source (according to the reference list in the electronic supplementary material) and study regions: IP, Indo-Pacific; MBR, Mesoamerican Barrier Reef; MS,
Mediterranean Sea; RS, Red Sea; GBR, Great Barrier Reef and CARIB, Caribbean.
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high-site fidelity; butterflyfish Chaetodon vagabundus: pelagic

spawner, PLD �38 days, large home range), were shown to

exhibit high, consistent and remarkably similar SR levels over

time [8,10,11], warranting the question whether Kimbe Island

might be a hotspot for localized recruitment.

Here, we investigated patterns of local dispersal in Kimbe

Bay in a third species of coral reef fish, the bicolor angelfish

Centropyge bicolor (Pomacentridae), with similar life-history

characteristics as C. vagabundus (pelagic spawner, PLD ¼

29–34 days [12]). We thus aimed to investigate the relative

importance of seascape (defined here as the geographical set-

ting of the habitat matrix) and specific life-history traits as

determinants of SR in coral reef fishes.
2. Material and methods
Tissue samples of adult and recently settled C. bicolor were collected

in April 2013 from nine different reef sites in Kimbe Bay (electronic

supplementary material, figure S1 and table S1). In total, 255 poten-

tial parents and 426 juveniles were sampled. All 681 individuals

were genotyped at 23 variable microsatellite loci (following [13]).

We performed two types of kinship analyses: parentage and sib-

ship. A maximum-likelihood approach was used to determine

parent–offspring assignments as implemented in the software plat-

form FAMOZ [14]. Sibling groups within the juvenile sample pool

were identified using COLONY [15]. Full sibship was accepted

upon a posterior probability exceeding 0.75. If localized recruitment

was common in our study system, we would expect to find high

numbers of siblings within short distances of each other (recruiting

together) and the opposite if dispersal rates were high [16]. A x2 test

was implemented to assess differences in the proportions of sibling

pairs and the entire juvenile sample at different distance classes.

Spatial autocorrelation performed in GENALEX [17] was used

to test the hypothesis of a random spatial distribution of the

sampled juveniles by assessing the pairwise genetic similarity

of individuals at different geographical distance classes. Samples

were binned into 5 km distance class sizes, roughly resembling
the real distances between islands. We ran 10 000 permutations

to determine the 95% confidence intervals (CIs) around the

null hypothesis of no spatial autocorrelation and 1000 bootstraps

to estimate the 95% CIs of the autocorrelation index r for each

distance class. Detailed descriptions of the methods are

provided in the electronic supplementary material.
3. Results
Both COLONY and FAMOZ analyses yielded only two

parent–offspring assignments (both single parents). One juven-

ile collected at Tuare Island was assigned to a parent sampled

from the same location. At the reef scale of Tuare Island

(ca 0.15 km2), this is equivalent to approximately 0.4–0.5% SR

(considering that we had sampled 60–80% of the adult popu-

lation). The other assigned juvenile travelled approximately

10 km northwest from a parent on South Bay Reef to also

settle at Tuare Island. At the lagoon scale of all our sampling

sites (approx. 700 km2), this equates to 0.5–0.8% SR (or 0.06%

total if we consider SR at each reef individually).

Sibship analysis performed in COLONY confidently ident-

ified three pairs as full siblings; a further 42 pairs and one

triplet had similar likelihoods of being full or half siblings.

Of these potential sibling pairs, 53% recruited to separate

reefs. The proportions of sibling pairs across distance classes

closely matched that of all sampled juveniles ( p ¼ 0.99;

figure 2a). Autocorrelation coefficients for all distance classes

were close to zero and non-significant (figure 2b), suggesting

that the genotype distribution of juveniles was spatially

random across the study system.
4. Discussion
In contrast to virtually all previous studies on larval dispersal in

Kimbe Bay, reporting consistently high levels of SR in different
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Figure 2. (a) Proportion of sibling pairs (black bars) and the entire juvenile sample (white) at 5 km distance classes. (b) Correlogram of the autocorrelation index r
(black line) as a function of geographical distance for 426 juveniles in Kimbe Bay. The dashed lines represent the 95% CIs of the null hypothesis of a random
distribution. Error bars represent the 95% CI determined by bootstrapping.
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species of coral reef fishes [8,10,11], we found a near lack of SR

and no apparent spatial structure in recruitment. Our results

indicate that SR and local scale genetic connectivity patterns

in coral reef fishes cannot readily be predicted from the local

seascape or dispersal potential, commonly estimated from life-

history traits such as reproductive mode and PLD. Instead, our

findings suggest that other biological characteristics may deserve

more attention, including larval and adult behaviour and mating

and settlement strategies [18]. Local currents may be highly vari-

able around coral reefs, leading to large temporal variability in

settlement patterns of reef fishes [4,5,19]. While sampling did

take place during the same season (spring) as in previous studies

conducted in the region, we cannot rule out that annual variabil-

ity in local oceanography may have led to differential settlement

patterns in this study. A direct comparison of genetic data col-

lected simultaneously on an anemonefish, A. percula, in the

same reef system will give interesting insights in this regard

(data not available yet). Either way, our findings highlight the

unpredictable nature of connectivity and the need for further

temporally replicated inter-species comparisons.

Recent research has focused mostly on seascape as a predic-

tor of SR in coral reef fishes [9,20,21]. In theory, more isolated

habitats would receive relatively higher levels of SR because

of a lack of recruits from external sources [22]. This study,

however, adds to the emerging notion that high levels of SR

are not a universal phenomenon and that, regardless of the

spatial setting of the habitat matrix, it cannot be assumed that

populations will be able to be sustained by local production

alone [7,16,20]. Consistent with the lack of local recruitment,

C. bicolor seems to exhibit high levels of gene flow across the

study area with no significant genetic structure among sites

(electronic supplementary material, figure S2) and a seemingly

random spatial distribution of recruitment (figure 2b).

The proportion of sibling pairs found in the juvenile sample

was unusually high (approx. 25%). While we cannot make direct

inferences about the origin of these individuals, the high pro-

portion suggests that relatively few parents are responsible for

successful juvenile recruitment. While the spatial distribution

of sibling pairs seems to indicate local scale recruitment patterns
(figure 2a) [16], it is important to note that more than 43% of

these sibling pairs had equal probabilities of being half-siblings

only. Moreover, the distribution of the proportion of sibling

pairs at different distance classes closely resembled that of the

entire juvenile sample, suggesting that the observed patterns

simply reflected the spatial arrangement of juveniles in the

study area. Overall, we urge caution when interpreting spatial

sibling distribution in terms of dispersal scales.

By showing diametrically different patterns of local recruit-

ment in a seemingly high SR system, we show that similar

life-history traits (PLD and spawning mode) and/or the spatial

structure of the habitat matrix cannot be assumed to serve as

predictors for levels of SR in coral reef fishes. Understanding

the physical and biological mechanisms underlying differences

in SR is critical for the conservation of marine biodiversity

through the design of networks of marine reserves. We there-

fore urge caution when using life history and/or seascape as

predictors for SR in management decisions.
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