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Pyroptosis is a proinflammatory form of cell death, mediated by membrane pore-forming
proteins called gasdermins. Gasdermin pores allow the release of the pro-inflammatory
cytokines IL-1b and IL-18 and cause cell swelling and cell lysis leading to release of other
intracellular proteins that act as alarmins to perpetuate inflammation. The best
characterized, gasdermin D, forms pores via its N-terminal domain, generated after the
cleavage of full length gasdermin D by caspase-1 or -11 (caspase-4/5 in humans) typically
upon sensing of intracellular pathogens. Thus, gasdermins were originally thought to
largely contribute to pathogen-induced inflammation. We now know that gasdermin family
members can also be cleaved by other proteases, such as caspase-3, caspase-8 and
granzymes, and that they contribute to sterile inflammation as well as inflammation in
autoinflammatory diseases or during cancer immunotherapy. Here we briefly review how
and when gasdermin pores are formed, and then focus on emerging endogenous
mechanisms and therapeutic approaches that could be used to control pore formation,
pyroptosis and downstream inflammation.

Keywords: pyroptosis, gasdermins, cell death, post-translational modifications, therapeutics,
phosphorylation, inflammation
INTRODUCTION: GASDERMIN-MEDIATED CELL DEATH AS A
DRIVER OF INFLAMMATION

Apoptosis is traditionally viewed as a non-inflammatory form of caspase-dependent programmed
cell death (1). During apoptosis, caspase-mediated inactivation of innate immune signaling
molecules and the preservation of membrane integrity ensures that apoptotic cells remain
immunologically silent (albeit in some cases, cells can transition from apoptosis to other, more
inflammatory forms of cell death) (2). Pyroptosis and necroptosis are inflammatory types of
programmed cell death, driven by dedicated membrane pore-forming proteins, gasdermins
(pyroptosis) or MLKL (necroptosis), respectively. During pyroptosis and necroptosis, the cell
loses plasma membrane integrity, ruptures and uncontrollably releases the cytosolic content
including cytosolic alarmins that drive inflammation (3).

Pyroptosis can drive both microbe-induced and sterile inflammation and can be beneficial or
pathological. For example, during infection, gasdermin D (GSDMD) is cleaved by caspase-1,
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caspase-8 and caspase-11 (caspase 4/5 in humans), to release its
membrane pore-forming fragment and induce pyroptotic
death of infected cells (4–10). This is beneficial, as pyroptosis
releases alarmins and destroys the cellular niche for pathogen
replication (11, 12). But if excessive, pyroptosis can cause
immunopathology, and in fact, caspase-1/11, caspase-11 and
GSDMD-deficient mice are protected from mouse models of
lethal LPS- and TNF-induced shock and polymicrobial sepsis (4,
13–20). Gasdermins can also drive sterile inflammation, which
can also be beneficial or pathological. For example, gasdermin B
(GSMDB) and gasdermin E (GSDME) are cleaved into their
membrane pore-forming fragments by the enzymes granzyme A
and B, respectively, when granzymes are delivered directly into
the tumor cell during the attack by cytotoxic T cells. Once
cleaved, GSDMB and GSMDE induce the death of tumor cells
by pyroptosis, resulting in low-grade local inflammation that is
essential for successful clearance of tumors by myeloid cells (21,
22). If however GSDME-mediated pyroptosis of tumor cells is
excessive, as seen in response to chimeric antigen receptor (CAR)
T cell therapy, dying cells release alarmins, activate caspase-1/
GSDMD pathway in recruited macrophages, and cause systemic
cytokine release syndrome, a common complication of CAR T
cell therapy (23). Similarly, several chemotherapy drugs that
were designed to induce non-inflammatory apoptosis of tumors,
end up causing systemic pathology, by activating the apoptotic
caspase-3, which can cleave GSDME into its pore-forming
fragment. These systemic drugs thus induce pyroptosis not
only in GSDME-positive tumors, but also in other GSDME-
expressing healthy cells, leading to wide-spread inflammation,
tissue damage and weight loss (24). Select chemotherapeutic
agents have also been described to activate caspase-8-dependent
GSDMC activation in tumor cells (25), or GSDMD activation in
myeloid cells (10), however, whether myeloid GSDMD activation
promotes or dampens tumor growth in vivo remains unclear.
Finally, GSDMD deletion is protective in several mouse models
of inherited and acquired sterile inflammatory diseases, such as
Familial Mediterranean Fever, Neonatal-Onset Multisystem
Inflammatory Disease , Exper imenta l Auto immune
Encephalomyelitis, or liver damage (26–31). Therefore,
understanding how and where gasdermins are activated and
how pyroptosis can be regulated, will provide new opportunities
for the control of inflammation.

Many excellent reviews have discussed in detail events leading
to gasdermin activation (32, 33). Here we will focus briefly on
how and when gasdermin pores are formed, and then focus on
emerging endogenous posttranslational mechanisms and
therapeutic approaches that could be used to control gasdermin
pore formation, pyroptosis and downstream inflammation.
GASDERMINS: EXPRESSION, FUNCTION
AND LOCALIZATION

Gasdermins are a family of newly described proteins that are
emerging as key players in inflammation. Humans express six
gasdermin family proteins: GSDMA, GSDMB, GSDMC, GSDMD,
Frontiers in Immunology | www.frontiersin.org 2
GSDME (formerly called DFNA5) and PJVK. In contrast, mice
and rats do not express Gsdmb, but instead, have three GSDMA
homologs (Gsdma1–Gsdma3) and four GSDMC homologs
(Gsdmc1–Gsdmc4) (34). Gasdermin family proteins are
differentially expressed in various tissues and we are only
beginning to understand the biological functions of these
proteins (33). Of which, the pore-forming properties of
GSDMD and GSDME in myeloid cells and tumors have gained
considerable attention recently and will be the focus of
this review.

Gasdermins contain a cytotoxic N-terminal domain (GSDM-
NT) and an autoinhibitory C-terminal domain (GSDM-CT),
connected by a linker region that harbors a protease cleavage site
(33). Microbial infection or cellular stress promotes the assembly
of a cytosolic multiprotein inflammasome complex, which serves
as a platform to activate inflammatory caspases, caspase-1 and
-11 (caspase-4/5 in humans). These activated caspases as well as
the proteases neutrophil elastase and cathepsin G cleave GSDMD
within its linker region and liberate the cytotoxic GSDMD-NT to
trigger plasma membrane damage and cell lysis by pyroptosis
(Figure 1A) (4–6, 35, 36). Interestingly, the apoptotic
executioner caspases-3 and-7 can cleave gasdermin D outside
of the linker region at Asp87 leading to its inactivation and
thereby negative regulation of pyroptosis (37). More recently,
blockade of NF-kB and MAPK signaling, or perturbation in
RIPK1 post-translational modifications by bacterial effectors or
chemotherapeutic drugs were also demonstrated to promote
GSDMD cleavage (8–10). Surprisingly, GSDMD cleavage
under such circumstances occurred largely independently of
inflammatory caspase-1/11, but instead, is mediated via
apoptotic caspase-8. While new and exciting functions of
GSDMD are mainly characterized in myeloid cells, the role of
GSDME in host defense remains poorly characterized and is
mainly characterized in tumor cells, where cleavage of GSDME
by apoptotic caspase-3 and -7 or granzyme B switches tumor cell
apoptosis to pyroptosis (7, 22, 24).
GASDERMIN PORE FORMATION, REPAIR
AND CELL LYSIS ARE DISTINCT AND
REGULATED EVENTS

A caspase-1-dependent cell death was initially described during
Salmonella Typhimurium infection. Infected cells displayed cell
death hallmarks such as release of the intracellular enzyme LDH,
uptake of ce l l - impermeable dyes and exposure of
phosphatidylserine from the inner to the outer leaflet of the
plasma membrane (3, 38). The discovery of GSDMD as the cell
death executioner explained all these features, owing to its ability
to form pores in the plasma membrane leading to activation of
several intracellular processes and resulting in cell swelling and
death (4–6). However, the exact steps leading to pore formation
and death, and the mechanisms in place to control these steps,
remained poorly understood. Recent literature suggests that
pyroptosis is a highly chronological and fine-tuned process
that can be separated into sequential, highly regulated events.
April 2021 | Volume 12 | Article 661162
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The main events in the process are GSDMD pore formation, ion
fluxes, cellular death, and cell rupture. The following section
dissects pyroptosis into these steps.

Gasdermin Pore Formation
After cleavage of GSDMD at Asp275 (human) or Asp276
(mouse) by caspases, the N-terminal fragment (GSDMD-NT)
localizes to the plasma membrane where it can bind to
phospholipids, such as phosphatidylinositol phosphates or
phosphatidyl serine on the inner leaflet of the plasma
membrane (39, 40). Once at the membrane, the N-terminal
fragments oligomerize, in a process dependent on a cysteine
Frontiers in Immunology | www.frontiersin.org 3
residue at position 192 in humans (Cys191 in mice), to form a
functional pore (39). An elegant genetic screen by Evavold et al.
(41), designed to identify regulators of pyroptosis downstream of
GSDMD cleavage, showed that the GSDMD oligomerization is
not a passive event but is regulated downstream of the Ragulator-
Rag complex, typically known for its metabolic control of
mTORC1 pathway. The components of the Ragulator-Rag
complex, such as RagA or RagC, were dispensable for GSDMD
trafficking to the cell membrane, but were essential for GSDMD-
NT oligomerization and pore formation. During pyroptosis,
GSDMD pore formation is typically followed by the loss of
mitochondrial function (42), cell ballooning (42) and finally cell
A B

C

D

FIGURE 1 | Gasdermins can be cleaved by various proteases in their linker region. Activity of gasdermins is regulated by cleavage and by post-translational
modifications. (A) Gasdermin A can form membrane pores after cleavage of the linker domain, but the cleaving protease remains unknown. In tumor cells,
Gasdermin B can be cleaved by granzyme A from cytotoxic T cells at Lys229 and Lys244 into the pore forming fragment. In several cell types including most
myeloid cells, gasdermin D can be cleaved by multiple proteases at Asp275 (mouse Asp276) leading to its activation, but it can additionally be cleaved at Asp87
(mouse Asp88) by caspase-3 and -7 inactivating it during apoptosis. In neutrophils, gasdermin D can also be cleaved by neutrophil elastase and cathepsin D. In
response to some chemotherapy drugs, gasdermin C can be cleaved by caspase-6 (at unknown site) and caspase-8 (at Asp365) into the pore forming fragment.
Gasdermin E can be cleaved by granzyme B or caspase-3 at Asp270 leading to activation. Activity of gasdermins is also regulated by several post-translational
modifications. (B) Gasdermin A can be phosphorylated (P) by an unknown kinase at Thr8, supporting its pore-forming capacity. (C) Gasdermin D is oxidized (Ox) at
multiple residues (Cys38, Cys56, Cys268 and Cys467) by reactive oxygen species from the mitochondria promoting its activation. Prolonged LPS exposure of
macrophages results in binding of itaconate at Cys77 preventing gasdermin D cleavage. Gasdermin D can also be succinated (Su) at Cys191 by the metabolic
product fumarate or by covalent binding of the cysteine-reactive drugs necrosulfonamide (NSA) or disulfiram, which prevents its oligomerization. (D) Similar to
gasdermin A, gasdermin E is phosphorylated at Thr6 promoting its pore formation. Gasdermin E is inhibited by succination at Cys45. During the activation, the
palmitoyltransferases ZDHHC2, -7, -11 and -15 palmitoylate (Pa) gasdermin E at Cys407 and Cys408 promoting the dissociation of the GSDME-NT from GSDME-CT.
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rupture (all discussed below). GSDMD-NT translocated to the
plasma membrane in RagA-deficient cells but maintained
membrane permeability (measured by propidium iodide (PI)
uptake), mitochondrial function, and cell morphology,
suggesting a role of the Ragulator-Rag complex in GSDMD
pore formation itself and not in other, downstream events
leading to cell death (41). It remains to be investigated whether
any component of the Ragulator-Rag-mTORC1 pathway directly
binds to GSDMD-NT to support oligomerization or if an
intermediate interaction partner exists that exerts this action.
LPS priming has been shown so activate mTORC1; hence, we
speculate that the inflammasome priming step already puts the
cell in a state in which it is prepared to commit cell death if
needed (43).

Ion Fluxes and Membrane Repair
Assembled GSDMD pores can measure up to 20 nm in diameter
depending on the study and on the cellular system used (39, 44–
47). These pores allow secretion of smaller intracellular proteins
such as IL-1b (17 kDa) but do not permit the secretion of larger
proteins such as a LDH (140 kDa) or the inflammation mediator
HMGB1 (tetramer of 150 kDa), which were previously thought
to be released via the gasdermin pores (44, 48, 49). These bigger
mediators are instead released after cell lysis and the cellular
content released (50). GSDMD pores not only function as
protein secretion channels but also allow trafficking of
nucleotides and act as non-selective ion channels. Shortly after
pore assembly, extracellular Ca2+-ions enter the cell through the
pore (42, 48, 51, 52). This ion influx triggers several processes in
the cell. First, it activates the Endosomal Sorting Complexes
Required for Transport (ESCRT) proteins I and III, which
assemble at the plasma membrane to remove gasdermin pores
by encapsulating them into vesicles. When successful, membrane
integrity is restored, and cell lysis and IL-1b secretion are
prevented (51). Intriguingly, recent analyses of ESCRT-
produced vesicles during necroptosis revealed that they contain
the pore-forming MLKL, active caspases and both full length and
cleaved IL-1b, among other proteins (53, 54). This suggests that a
similar repair mechanism and subsequent vesicle release might
exist during Gasdermin-mediated pore formation in order to
release these pro-inflammatory mediators, but this remains to
be tested.

Contrary to the membrane repair and rescue role, Ca2+-ion
influx through GSDMD pores can also have a pathologic
consequence for the cell and the organism. For example, Ca2+-ion
influx through GSDMD pores activates the Ca2+-dependent
transmembrane protein 16F (TMEM16F), a membrane
phospholipid scramblase, which enhances the presence of
phosphatidylserine (PS) in the outer leaflet of the plasma
membrane (52, 55). Once exposed, PS activates the initiator of
coagulation called tissue factor, leading to life-threatening
disseminated intravascular coagulation often seen in bacterial
endotoxemia (52, 56). TMEM16F activation also causes a change
in the cellular ion currents, at least in part due to the efflux of Cl- ions
(55), further contributing to the loss of ion homeostasis and cell
death. Ca2+-ion influx during bacterial endotoxemia also activates
STING (TMEM173) on the ER membrane. Activated STING then
Frontiers in Immunology | www.frontiersin.org 4
binds to and activates the calcium channel ITPR1 to trigger further
Ca2+-release from ER stores. Elevated Ca2+ contributes to the
activation of inflammatory caspases-1/11 or -8 (depending on the
pathogen), leading to further GSMDM cleavage, activation of tissue
factor, and lethal coagulation in bacterial sepsis (57). Finally, elevated
Ca2+-levels trigger lipid peroxidation of cytoplasmic membrane
lipids, by the enzyme PLCg1, contributing to progression to
pyroptosis and inflammation in polymicrobial sepsis (20, 52).
While Ca2+-ions are taken up, nucleotides like ATP are released
through the pore (48). Next to having an impact on the cellular
energetic status, it was suggested that ATP release activates
the ion channel P2X7 leading to increased uptake of Ca2+ and
further progression to pyroptosis (58). Interestingly, both Ca2+-
and ATP-mediated pyroptosis appeared to be blocked by
extracellular Mg2+-ions, which are known to chelate ATP and
prevent increased Ca2+ influx and pyroptosis. Consistent with this
notion, treatment of mice with solutions containing high levels of
Mg2+ was sufficient to protect mice from LPS-induced septic shock,
the exact mechanism, however, still remains unexplored (58).

The above described STING (TMEM173)-dependent Ca2+-flux
during bacterial endotoxemia occurred independently of the
canonical cGAS pathway (57.) The canonical, dsDNA-activated
cGAS-STING pathway, can induce NLRP3-Caspase-1
inflammasome activation as well, as a result of STING mediated
lysosomal damage and K+ efflux (59). However this activation route
is dependent on signal strength and cell type. It is functional in
primary human monocytes, but not in macrophages and mouse
embryonic fibroblasts, most likely as a way to limit large amount of
pro-inflammatory cell death during antiviral responses (59).

Cellular Death
The next step of pyroptosis is the cell committing to die. Pore
formation is correlated with a loss of mitochondrial membrane
potential (MMP), which is not due to cellular rupture as the loss
of MMP still occurs in cells where lysis is prevented with the
osmoprotectant glycine. This process is dependent on GSDMD
pores as GSDMD knock-out cells do not lose mitochondrial
viability (42, 60). The loss in viability is likely caused by ion
influx or a general loss of membrane potential rather than
proteins leaving or entering the cell, as Vasconcelos et al. (42)
described in a time-resolved single-cell analysis of pyroptotic
cells that loss of MMP and Ca2+-influx occurred much earlier
than uptake of small molecules like PI (670 Da). In their study,
loss of mitochondrial viability was quickly followed by cellular
swelling, a loss of lysosome stability and finally loss of nuclear
integrity seen as nuclear rounding and condensation (42). Hence,
cells undergoing pyroptosis are already dead before rupturing.

Membrane Rupture
Cellular swelling is one of the features observed during
pyroptosis, and hypertonic solutions have been described to
rescue GSDMD-dependent cell death (61). This supports a
model, in which a cell is losing its integrity and is passively
rupturing due to osmotic pressure, resulting in the release of
proteins such as LDH or the alarmins HMGB1 and galectin-1
(50, 62). Intriguingly, a study by Kayagaki et al. found that in
reality, cell lysis is a process regulated by dedicated proteins (63).
April 2021 | Volume 12 | Article 661162
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Cells deficient in the cell adhesion protein Ninjurin 1 (NINJ1)
did not rupture even after mitochondrial death, despite
formation of GSDMD pores, release of IL-1b, and display of
the typical balloon morphology. NINJ1 is not an exclusive
regulator of pyroptosis as LDH release by apoptotic triggers is
also impaired in NINJ1-deficient cells, implicating NINJ1 as a
key cell lysis regulator in several cell death pathways. NINJ1
expression was recently shown to be stimulated by oxidative
stress, making loss of mitochondrial viability and mitochondrial
ROS production potential triggers of its activation (64). How
exactly NINJ1 mediates cell rupture and whether NINJ1 is
activated downstream of all gasdermins need further study.
Interestingly, membrane rupture is not only important for the
release of inflammatory mediators but also for the clearance of
intracellular bacteria. Of note, pyroptotic cells trap viable
bacteria within ruptured cellular debris, and these structures
are termed pore-induced cellular traps (PITs) (65). Subsequently,
PITs are removed by recruited phagocytes resulting in the
clearance of the dead cell as well as the contained bacteria (66).

One open question remains, how some cells maintain IL-1b
secretion without undergoing pyroptosis (67). For example,
dendritic cells activated with certain oxidized lipids generated
during tissue injury, can maintain IL-1b secretion for several
days without cellular rupture (68). Neutrophils can also maintain
IL-1b secretion without undergoing pyroptosis (69). It will be
interesting to see in future studies whether this cellular integrity
is maintained by increased ESCRT-mediated membrane repair,
prevention of mitochondrial damage or other processes.
POSTTRANSLATIONAL MODIFICATIONS
REGULATE GASDERMIN ACTIVITY

Phosphorylation of Gasdermins
Pyroptosis is a highly inflammatory and extremely rapid process
and, hence, gasdermins need to be tightly regulated in their
activity. One effective means of regulating fast cellular processes
is by post-translational modifications (PTM), which have been
shown to also regulate other, upstream steps of inflammasome
activation (70). Phosphorylation is the best studied PTM. It
could theoretically control the activity of gasdermins directly by
modifying them or indirectly by modifying their interacting
partners. An unbiased proteomic screen showed that
phosphorylation of substrates can alter their cleavage by
caspases-3, -7 and -8, which are all enzymes that can also
cleave GSDMD and GSMDE (71–73). Evidence so far for
phosphorylation exists only for Thr8 and Thr6 of human
GSDMA and GSDME, respectively (Figures 1B, D). Both
phosphorylation sites block gasdermin oligomerization and
pore formation (74). Mechanistically, they likely block
interaction between gasdermin monomers, via changing the
charge of the first alpha-helix of the N-terminal domain that is
critical for oligomerization (40). The serine-threonine kinase
Polo-like kinase 1 (PLK1) mediates GSDMA phosphorylation,
but whether it phosphorylates Thr6 in GSDME remains
unexplored (74, 75). Whether the functions of other
Frontiers in Immunology | www.frontiersin.org 5
gasdermins are regulated via direct phosphorylation is
unknown although all contain at least one serine or threonine
residue in the first alpha-helix. Additionally, a phosphorylation
site prediction tool has pointed to several potential
phosphorylation sites for gasdermin D and E located in their
linker regions. Future studies will ascertain whether the predicted
sites are indeed phosphorylated and how these PTMs influence
the nearby cleavage sites. The necroptosis-associated pore-
forming protein MLKL shows a similar dependency on
phosphorylation via RIPK3-dependent signaling before pore
formation and subsequent necroptosis. Hence, phosphorylation
of pore-forming proteins could be a common mechanism by
which cells regulate pore formation via of death effector
proteins (76).

Phosphorylation of gasdermin-interacting partners also may
play an important, additional role as a means to regulate
gasdermin activity. Phosphorylation of the apoptosis-associated
caspases-3, -7 and -8 has been shown in several reports to
regulate their activation and/or substrate recognition (77–80).
Interestingly, the only known phosphorylation site on caspase-1
at Ser376 is also needed for its activation; whether caspase-4, -5
or -11 are phosphorylated is unknown (81). This raises the
question whether the threshold of activation for caspase-4, -5
or -11 is set low, or the phosphorylation of these pyroptosis-
associated caspases remains unexplored in sufficient detail. The
N-terminal domain of gasdermins inserts into membranes via
binding to lipids such as phosphatidylinositol phosphate on the
inner membrane leaflet or cardiolipin present on the inner
mitochondrial membrane or plasma membrane in mammalian
and bacterial cells respectively (39, 40). Interestingly, GSDMD-
NT as well as GSDMA-NT and GSDMA3-NT are only capable of
binding to membrane lipids when phosphorylated, identifying
membrane lipid composition and phospho-modifications as
another control mechanism in the process of pyroptosis (45).

Other Posttranslational Modifications of
Gasdermins
Macrophages and dendritic cells stimulated with inflammatory
stimuli such as LPS are known to switch their metabolic profile
from oxidative phosphorylation to aerobic glycolysis (82). A
study by Humphries et al. (83) recently discovered that one
metabolic intermediate of this pathway, fumarate, can
irreversibly bind to GSDMD at Cys191 (human)/Cys192
(mouse) and GSDME at Cys45 (mouse) in a process termed
succination (Figures 1C, D). GSDMD Cys191 is located next to
Leu192, which is the contact point for the C-terminal GSDMD
domain responsible for autoinhibition (45). As mutation of
Leu192 blocks binding of GSDMD-NT to membrane lipids,
succination at Cys191 likely confers a similar effect on
GSDMD. This prediction was confirmed by cysteine-modifying
drugs, which blocked pyroptosis and death in an animal model of
lethal endotoxemia (13, 83). Although speculative, a model
emerges whereby the metabolic switch—i.e., oxidative
phosphorylation to aerobic glycolysis—specifically blocks
gasdermin pore formation by succination. Quite likely, this is
only a part of a much broader effect caused by the reactive nature
April 2021 | Volume 12 | Article 661162
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of fumarate, as multiple cysteine residues are modified in both
GSDMD and GSDME (83). A model that metabolic switch
influences gasdermin-mediated death was also supported by a
recent study in which prolonged LPS stimulation of
macrophages lead to an accumulation of the cell metabolite
itaconate. Mass spectrometry analysis revealed, that itaconate
directly bound to GSDMD at Cys77. This modification blocked
caspase-1-dependent GSDMD cleavage and conferred tolerance
to extended periods of LPS exposure (84). Another study
observed that chemotherapy modified human GSDME
by palmitoyla t ion at Cys407 and Cys408 v ia the
palmitoyltransferases ZDHHC2, 7, 11 and 15 (Figure 1D)
(85). These modifications led to a decreased interaction of
GSDME-NT with GSDME-CT after GSMDE cleavage by
caspase-3, which facilitated the release of cleaved GSDME-NT
and, thereby, pore formation (85). Inflammasome stimuli are
known inducers of mitochondrial ROS, and ROS production is
required for pyroptosis (86). One recently described mechanism
suggested regulation of GSDMD by ROS via direct oxidation of
human GSDMD at Cys38, Cys56, Cys268 and Cys467 (Figure
1C) (87). Indeed, mutation of these residues reduced GSDMD
cleavage by caspase-1 and pore formation, supporting the idea
that GSDMD oxidation is an important regulator of its function.

Only a few PTMs are currently described to influence
ga sd e rm in ac t i v i t y , a l t hough a h i gh amoun t o f
phosphorylations and ubiquitylations are predicted. The
necroptosis-associated protein MLKL, its upstream activators
RIPK1 and RIPK3 as well as multiple inflammasome
components are known to be ubiquitylated (88, 89). This, in
combination with a wide range of predicted ubiquitylation sites,
makes it likely that future studies will uncover gasdermin
regulation via ubiquitin by influencing either its activation or
degradation. Currently, the PTM landscape of gasdermins is
sparsely described, with only few interaction partners and
locations known. An increasing amount of research on PTMs
will hopefully help to answer which upstream processes lead to
these modifications, which enzymes catalyze the addition or
removal of modifications, and how these modifications are
hierarchically ordered to inhibit or activate gasdermin-
mediated pore formation.
THERAPEUTIC STRATEGIES TO BLOCK
GASDERMIN-MEDIATED CELL DEATH

Current therapies against aberrant inflammasome activation use
IL-1-targeting drugs, such as the IL-1 receptor antagonist
Anakinra (90), or direct inhibition of NLRP3 by specific
inhibitors, such as MCC950 (91), and several others (92). As
additional pro-inflammatory alarmins are released via the
gasdermin pores and multiple inflammasomes can lead to
gasdermin activation, gasdermin-specific drugs are highly
desirable therapeutics. The extracellular addition of the amino
acid glycine can inhibit gasdermin-mediated cell rupture, but it
cannot prevent intracellular processes leading to cell death or
IL-1b secretion (Figure 2) (38, 49, 60). The protective effect of
Frontiers in Immunology | www.frontiersin.org 6
glycine is dependent on its carboxyl group but is relatively
unspecific, as glycine acts as an osmoprotectant and not as a
specific inhibitor of gasdermin pore formation (93). Other
described inhibitors such as lanthanides, Mg2+-ions and
hypertonic solutions likely act via similar unspecific mechanisms,
although Mg2+ ions block gasdermin oligomerization by blocking
Ca2+-influx needed for pore formation (48, 58, 61). It is
noteworthy, that the inhibitory concentration of magnesium
needed to inhibit pyroptosis in macrophages exceeds the
physiological extracellular concentration of magnesium by 10-
fold, and that inhibitory effects were seen with nearly all divalent
cations (58). Rathkey et al. (94) reported that the cysteine-
modifying drug necrosulfonamide (NSA) blocked pyroptosis in
human and mouse cells by binding to Cys191 (human)/Cys192
(mouse) of GSDMD and, thereby, blocked its oligomerization.
NSA inhibition is not selective to gasdermins, as NSA blocks
necroptosis by a similar mechanism: NSA binds to Cys86
of the pore-forming protein MLKL in humans to prevent
oligomerization (95). Other groups found that cysteine-reactive
drugs such as NSA and Bay 11-7082 rather inhibit pyroptosis by
modifying upstream caspase-1 cleavage and not GSDMD itself,
and that NSA can block IL-1b secretion even further upstream by
inhibiting LPS-mediated priming (13, 96). Hu and colleagues (13)
discovered in their compound screening that another cysteine-
reactive drug, disulfiram (used in people to treat alcohol abuse),
potently blocked GSDMD-mediated pyroptosis by the same
mechanism as NSA, with no activity on other gasdermins or
MLKL-mediated cell death (13). Disulfiram was described much
earlier to oxidize thiols present in caspases and, thereby, blocked
their substrate cleavage activity (97). And in a more recent
study, Wang et al. (98) showed that disulfiram’s inhibitory
effect is not restricted to GSDMD only, but can also inhibit
GSDME. Although disulfiram is an attractive anti-pyroptotic
drug, particularly because it is widely used in humans, the exact
targets of disulfiram need to be better defined owing to its highly
cysteine-reactive nature. Regardless, both NSA and disulfiram
block GSDMD oligomerization via modifying Cys191, making
either this site or the first alpha-helix (needed for pore formation)
an attractive target for designing a more specific drug in
the future.

While most drugs focus on blocking detrimental pyroptosis
mediated by GSDMD, in some cases, boosting pyroptosis can be
beneficial. For example, induced activation of GSDME has
beneficial effect in treating various cancers because it promotes
a more inflammatory tumor milieu (24). In a synthetic approach,
Wang et al. (99) showed that tumor cells treated with engineered
nanoparticle-GSDMA3 conjugates led to increased cell death
and a significant reduction in tumor burden upon release of
GSDMA3 from the nanoparticle. Chemotherapeutic drugs such
as Cisplatin or Paclitaxel can induce activation of the initiator
caspases-8 and -9, resulting in caspase-3 activation. Caspase-3
activation drives GSDME cleavage and pyroptosis, and makes
this pathway an attractive target for tumor treatments (24, 85,
100). These are systemic drugs and should be used with caution,
as systemic GSDME activation can have detrimental effects. For
example, cytokine-release syndrome in patients treated with
April 2021 | Volume 12 | Article 661162
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CAR T cells was GSDME-dependent. Granzymes released from
these cells led to caspase-3 and -7 activation, and ultimately
GSDME cleavage (23). As granzyme A and B directly cleave
GSDMB and E, respectively, targeted delivery of these
enzymes poses an interesting therapeutic option to treat
Frontiers in Immunology | www.frontiersin.org 7
immunosuppressive tumors, yet their administration will have
to be tightly titrated or targeted to avoid detrimental side effects
(21, 22). In conclusion, gasdermins are newly emerging targets
for therapeutic targeting for positive and negative modulation of
cell death and the resulting immune responses.
FIGURE 2 | Gasdermin pore formation and cell lysis require multiple steps and can be targeted by therapeutics. Gasdermins are activated by enzymatic cleavage by
proteases such as caspases or neutrophil elastase. This liberates the pore-forming N-terminal fragment (GSDM-NT). The GSDM-NT binds to phospholipids on the
inner membrane leaflet. GSDM-NT then oligomerizes to form a membrane pore allowing the efflux of small proteins and ions across the membrane. Gasdermin pores
eventually lead to cell death and membrane rupture. Some drugs promote gasdermin-mediated cell death. For example, chemotherapeutic drugs, such as Cisplatin,
Paclitaxel or Navitoclax can initiate gasdermin E cleavage. They activate the initiator caspases, which, in turn, lead to gasdermin E cleavage by activating the
executioner caspase-3. Other drugs or small molecules can block gasdermin-mediated cell death. For example, the membrane binding and the oligomerization step
of gasdermin D can be blocked by Mg2+-ions by an unknown mechanism. Fumarate, Necrosulfonamide and Disulfiram can block oligomerization of gasdermin D by
modifying Cys191. Finally, membrane rupture can be blocked by the osmoprotectant glycine, hypertonic solutions or the lanthanide ions La3+ and Gd3+.
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