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Background: Most of the patients with Pancreatic Ductal Adenocarcinoma (PDA) are

not eligible for a curative surgical resection. For this reason there is an urgent need

for personalized therapies. PDA is the result of complex interactions between tumor

molecular profile and metabolites produced by its microenvironment. Despite recent

studies identified PDA molecular subtypes, its metabolic classification is still lacking.

Methods: We applied an integrative analysis on transcriptomic and genomic data

of glycolytic genes in PDA. Data were collected from public datasets and molecular

glycolytic subtypes were defined using hierarchical clustering. The grade of purity of

the cancer samples was assessed estimating the different amount of stromal and

immunological infiltrate among the identified PDA subtypes. Analyses of metabolomic

data from a subset of PDA cell lines allowed us to identify the different metabolites

produced by the metabolic subtypes. Sera of a cohort of 31 PDA patients were analyzed

using Q-TOFmass spectrometer to measure the amount of metabolic circulating proteins

present before and after chemotherapy.

Results: Our integrative analysis of glycolytic genes identified two glycolytic and two

non-glycolytic metabolic PDA subtypes. Glycolytic patients develop disease earlier,

have poor prognosis, low immune-infiltrated tumors, and are characterized by a gain

in chr12p13 genomic region. This gain results in the over-expression of GAPDH,

TPI1, and FOXM1. PDA cell lines with the gain of chr12p13 are characterized by an

higher lipid uptake and sensitivity to drug targeting the fatty acid metabolism. Our

sera proteomic analysis confirms that TPI1 serum levels increase in poor prognosis

gemcitabine-treated patients.
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Conclusions: We identify four metabolic PDA subtypes with different prognosis

outcomes which may have pivotal role in setting personalized treatments. Moreover, our

data suggest TPI1 as putative prognostic PDA biomarker.

Keywords: pancreatic cancer, metabolism, cancer subtypes, transcriptomic data, glycolysis

1. INTRODUCTION

Pancreatic Ductal Adenocarcinoma (PDA) is one of the deadliest
cancer with patients presenting advanced metastatic disease at
diagnosis (1). The reasons of PDA mortality can be attributed
to the lack of early symptoms and the absence of diagnostic and
prognostic biomarkers (2). Indeed, PDA develops over decades
without clinical relevant symptoms and it accumulates mutations
in oncogenic drivers (i.e., KRAS) and Copy Number Variations
(CNVs). These genomic alterations will reflect in several changes
at genes expression level (1, 3).

A hallmark of PDA is the presence of a dense desmoplastic
reaction increasing the aggressiveness of this tumor. Indeed,
PDA microenvironment is dominated by presence of stromal
and inflammatory cells (4). Activated non-neoplastic stromal

cells produce extracellular matrix proteins which generate
intense interstitial pressure and hypoperfusion which limits
oxygen and nutrient availability. The hypoxic regions of
PDA tumors have an increased expression level of the

lactate exporter monocarboxylate transporter 4 (MCT4). The
lactate secreted is used by cancer cells grown in normoxic

conditions to proliferate. Moreover, lactate has also effects
in the polarization of immunosuppressive macrophages (5–7).

Indeed, PDA rewires the neoplastic stromal cell metabolism to
maintain its viability and stromal/immune cells interact with
cancer cells to metabolically support them. PDA hypovascular
nature leads to an increased demand of glucose and aberrant

KRAS pathway promote the glucose avidity stimulating the up-
regulation of glucose transporter GLUT1, and several other

glycolytic enzymes (8–14). Furthermore, an active anaerobic
glycolysis characterizes more aggressive and mesenchymal-like

tumor PDA subtypes (15, 16).
The PDAmolecular classifications have provided new insights

in the prediction of the optimal therapy, disease recurrence and
in the study of oncogenic genes that lead to metastasis. The

advent of omics techniques give the opportunity to explore a

huge volume of data by inspecting different layers of information
ranging from molecular profiles to metabolomic measurements.

The majority of classifications uses one layer of data at a time, i.e.,

gene expression profiles (17–19) or genomic alteration signatures

(20), or metabolic data (21). The consideration of data obtained
from a single technique is limited, otherwise the integrative use
of different omics data would be a good method to establish a
clinically relevant taxonomy in PDA (22).

Currently, a detailed transcriptomic and genomic analysis of
glycolytic subtypes is still missing. A glycolytic addiction of PDA
cells was suggested by different authors (23, 24) which observed a
strict dependence of the PDA cells proliferation to the glycolytic
enzymes overexpression (25, 26). Despite the clear association

between aerobic glycolysis and PDA progression, a classification
of PDA primary tumors in metabolic subtypes is missing and the
molecular drivers of the distinct PDA metabolic subtypes is not
sufficiently known.

To tackle this issue, first we integrated transcriptomic and
genomic data of The Cancer Genome Atlas (TCGA-PAAD),
and International Cancer Genome Consortium (ICGC) patient
cohorts. Second, we analyzed transcriptomic and genomic data
from PDA cell lines [Cancer Cell Line Encyclopedia, CCLE;
(27)], third, we integrated information of metabolomic profiles
of PDA cell lines (21). Finally, we performed a pilot proteomic
experiment on sera from a cohort of 31 PDA patients to
investigate candidate circulating diagnostic biormakers.

We define distinct PDA glycolytic subtypes with different
clinical outcomes, Transcription Factors (TFs) expression and
sets of recurrent CNVs. We report a recurrent functional gain
of chromosome 12 p arm, band 1 sub band 3 (chr12p13)
that correlates with glycolytic genes over-expression. By the
analysis of transcriptional, metabolic and proteomic data we
investigate the effect of this genomic alteration in PDA cell
lines and tumors, and we argue that chr12p13 functional gain
is a driving genomic alteration of an aggressive PDA metabolic
subtype. The clinical role of genes located on chr12p13 as clinical
prognostic biomarkers is investigated from our proteomic data.
Through this analysis, we identify the glycolytic enzyme TPI1
as a glycolytic biomarker in PDA as its increased level positively
correlates with a poor response to chemotherapy (CT).

2. METHODS

2.1. Definition and Characterization of PDA
Glycolytic Subtypes
The PDA glycolytic subtypes were defined by RNA-Seq
expression analysis of 38 genes coding for glycolytic enzymes.
The Z-score-transformed RNA-Seq data from 176 and 99
PDA samples from TCGA PAAD and from ICGC PACA-AU
cohorts were analyzed separately. The set of 38 glycolytic genes
was defined using Gene Ontology by selecting the GO Term
“Glycolytic process” (GO:0006096). Seventy-one genes annotated
to this ontological term were isolated using BioMart tool of
Ensembl release 86. Among the genes coding for glycolytic
enzymes, a subset of 39 genes was selected. Since our study is not
focused on glycolysis in sex-specific tissues the genes expressed in
testis tissue (GAPDHS, PGK2) were excluded from the analysis.
Furthermore, since our study includes the catabolism of lactate,
which is not included in the glycolytic process, the LDHB
gene coding for isoform H of LDH was included in our list.
The clustering algorithm identifies two PDA clusters defined
as Glycolytic (Gly) and Non-Glycolytic (Non-Gly) subtypes.
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Hierarchical clustering was used to define High Glycolytic (HG),
VeryHighGlycolytic (VHG), LowGlycolytic (LG), andVery Low
Glycolytic (VLG) subtypes.

Differential analysis of glycolytic genes expression among
PDA glycolytic subtypes was performed using Wilcoxon Rank-
Sum test, while differential mutation and CNV status analysis was
performed using Chi-square test. The p-values were corrected
using Benjamini-Hochberg (BH) method.

Statistical analysis of clinical data was performed using R
(V.3.3.0) and Graph Pad Prism 6. For both TCGA and ICGC,
only covariates measured for at least half of patients were
considered. p-values were computed using Wilcoxon Rank-Sum
test for continuous data and Chi-square test for categorical data.

Estimates of the cumulative survival distributions were
computed by the Kaplan-Meier method, and the differences
among groups were compared using the log-rank test. The
median survival of VLG group cannot be computed because
survival exceeded 50% at the longest time point. We reported the
median survival as “NaN”. The significance of clinical data was
also evaluated using the multivariate Cox proportional hazard
regression model implemented in the Coxph function of survival
R package. The function was applied with default parameters.
Only covariates with at most one NA value were considered.

2.2. Evaluation of the Immunological and
Stromal Infiltrate
The amount of the immunological and stromal infiltrate among
PDA subtypes in TCGA study was evaluated using ESTIMATE
(28), by downloading the Stromal and Immunological
Scores pre-computed for TCGA-PAAD cohort (PAncreatic
ADenocarcinoma, PAAD). The population of tumor-infiltrating
immune cells were inferred using TIMER tool at https://
cistrome.shinyapps.io/timer. Data of the TCGA-PAAD study
were downloaded from the Estimation module (29). Statistical
differences among the four subtypes were computed using
Wilcoxon Rank-Sum test. TIMER data were used also to
evaluate the influence of same samples purity on glycolytic
genes expression by retrieving the purity-corrected partial
Spearman’s correlation and statistical significance provided
by the Gene module. The level of immune infiltrate of the
TCGA PDAs was evaluated by analyzing the data from Saltz
et al. (30). Specifically, considering the data associated with the
publication, the percentage of tumor-infiltrating lymphocytes
(“til_percentage” parameter) was retrieved for 160 TCGA PDAs
out of the 176 samples analyzed in this study.

2.3. Differential Genes Expression and
Functional Enrichment Analysis
Differentially Expressed (DE) genes among the Gly and Non-
Gly and VHG and HG subtypes were identified using DESeq2
R package (31). Genes associated with an adjusted p < 1E−05

were considered as significantly DE. Functional enrichment
analysis was performed using Enrichr (32). Only the top 20
terms associated with adjusted p < 0.001 were considered.
TF analysis was performed using Enrichr by considering
the ChEA and ENCODE and ChEA Consensus TFs from

ChIP-X gene set libraries reporting gene set annotated with
validated TF-promoter binding. Identification of genes correlated
in expression with FOXM1 was performed using Pearson
method. Only genes associated with BH adjusted p < 0.001
were considered.

2.4. Metabolomic Data Analysis
Metabolomics data of 44 pancreatic cancer cell lines were
retrieved from Supplementary Material of (21). Cell lines
used in this study were classified as Gained/Amplified or
Diploid/Deleted on the basis of their CNV status of TPI1,
GAPDH, ENO2, and FOXM1. Expression and CNV data
of these cell lines were retrieved from CCLE. Analysis of
metabolic differences among cell line groups was performed by
Wilcoxon Rank-Sum test. Analysis of metabolite abundances
was performed by considering data from Broad Profiling and
Energy platforms.

2.5. Study Population of PDA Patients
Mass Spectrometry (MS) analysis was performed on serum
samples of 31 patients with PDA not subjected to surgery and
treated with gemcitabine-based CT (gemcitabine with oxaliplatin
or alone).

The 31 PDA patients were divided in four groups based on
their survival and their response to CT. Specifically, the groups
1 and 2 have a median survival >9.86 months while the groups
3 and 4 have a median survival lower than 9.86 months. In the
first group patients have disease regression after CT. The second
group has stable disease after CT. The third and the fourth groups
have progressed disease after CT.

2.6. Mass Spectrometry (MS)-Based
Proteomic Analyses
Serum samples were isolated from venous blood before CT
and at each observation after cycles of CT and stored at
–80◦C until use. Sera of patients within each group were
pooled and 300 µl of serum from each pool were used for
MS analysis. Finally, free circulating proteins were isolated
after serum depletion of IgG-, IgM-, IgA-bound proteins
and HLA-I and -II complexes. Each sample was immuno-
depleted, reduced with TCEP, tagged with iodoacetyl tandem
mass tag reagents (Thermo), 2D-HPLC fractionated and
digested with trypsin as previously described (33). MS analysis
was performed by Q-TOF micro (Micromass, Manchester,
United Kingdom).

Detailed Materials and Methods are reported in the
supplementary text of the manuscript.

3. RESULTS

3.1. Analysis of Pancreatic Cancer
Expression Data Reveals an Aggressive
Glycolytic Subtype
To identify the candidate PDA glycolysis subtypes, we performed
an integrative analysis of expression and CNVs of 38 glycolytic
genes using RNA-Seq and whole genome sequencing data
from 176 TCGA PDA samples. Clustering analysis of glycolytic
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FIGURE 1 | Identification of PDA glycolytic subtypes. (A) Heat maps show the normalized level of gene expression (left) and the CNV status (right) of 38 genes coding

for glycolytic enzymes in 176 PDA samples from TCGA. At top the expression and the CNV status of five genes involved in PDA tumorigenesis are reported. Green

(low score) to brown (high score) colors indicate the ESTIMATE score proportional to the estimated stromal/immune component of each tumor sample. At bottom the

main patient clusters are highlighted. Gly, Glycolytic; Non-Gly, Non-Glycolytic, HG, High Glycolytic; VHG, Very High Glycolytic; LG, Low Glycolytic; VLG, Very Low

Glycolytic. (B) Heat maps reporting the -log10 BH adjusted p-value computed between expression level and CNV status of Gly and Non-Gly tumors. (C) Dot plot

reporting the normalized expression level of five genes involved in PDA tumorigenesis separately for Gly (orange) and Non-Gly (green) PDA patients. P-value from

Wilcoxon Rank-Sum test. (D) Bar plot shows the distribution of CNV events of five genes involved in PDA tumorigenesis separately for Gly and Non-Gly PDA patients.

p-value from Chi-square test. (E) Histogram showing the mutation counts in Gly and Non-Gly PDA patients. P-value from Wilcoxon Rank-Sum test. (F) Box plot

showing the age distribution of Gly and Non-Gly PDA patients. p-value from Wilcoxon Rank-Sum test. (G) Kaplan Meier curve showing the cumulative survival

probability of patients from the four glycolytic subtypes. *p < 0.05; **p < 0.01; ***p < 0.001.

genes expression data (Supplementary Table 1), resolved two
main patient clusters corresponding to distinct PDA glycolytic
subtypes (Figure 1A). On the basis of the gene expression
differences between these clusters we named these two main
PDA subtypes as Glycolytic (Gly, n = 58) and Non-Glycolytic
(Non-Gly, n = 118). The Gly subtype was characterized by an

over-expression of genes like TPI1, GAPDH, ENO1, LDHA, and
PGK1 (Figure 1B).

Basing on this clustering analysis, Gly tumors can be further
subdivided into two subtypes defined as High Glycolytic (HG,
n = 32) and Very High Glycolytic (VHG, n = 26). Similarly,
the Non-Gly tumors can be subdivided into Low Glycolytic (LG,
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n = 104) and Very Low Glycolytic (VLG, n = 14) subtypes.
VHG patients were characterized by the highest glycolytic genes
expression while VLG patients were characterized by the lowest
glycolytic genes expression (Supplementary Table 1).

Since an extensive stromal component is a hallmark of PDA
(4), we predicted the stromal and the immune infiltrate of our
set of PDA samples using ESTIMATE tool (28). Interestingly,
the Non-Gly subtype was characterized by a higher predicted
stromal/immunological component compared to the Gly subtype
(p = 3.20 ·10−4) (Figure 1A). ESTIMATE analysis of the four
subtypes confirmed that LG tumors were associated with highest
stromal and immune infiltrate (p<0.001), which decreases in
HG, VHG, and VLG tumors (Supplementary Figure 1A).

To verify whether glycolytic genes expression levels were
biased by the sample purity, we retrieved the p-value of the
correlation between tumor purity and gene expression computed
by TIMER tool (29). The data showed that the expression
of only four out of 38 genes (HK3, FBP1, PKLR, GCK) was
significantly affected by tumor purity (p<0.01) but none of
them was significantly differentially expressed between Gly and
Non-Gly subtypes (Supplementary Table 1).

The number of CNVs was also significantly different between
the Gly and the Non-Gly subtypes with Gly tumors characterized
by an higher number of both CNV gain amplification
(p = 3.20 ·10−4) and loss/deletion (p = 1.63 ·10−10) (Figure 1A).
Interestingly, we observed a significant correlation between
the expression level and the CNV status of GAPDH, ADPGK,
TPI1, PKM, PGK1, ENO1, GPI, and PGAM5 (adj. p < 0.001)
(Supplementary Figure 1B).

The analysis of CDKN2A, KRAS, MYC, SMAD4, TP53 genes,
whose alterations are known to contribute to PDA development
(34, 35) showed a significantly higher expression ofCDKN2A and
KRAS and a lower expression of SMAD4 and TP53 (Figure 1C).
CNV events in CDKN2A, KRAS, MYC, SMAD4, and TP53
genes were also significantly different between the two subtypes
(Figure 1D). Furthermore, KRAS and TP53 are slightly more
mutated in the Gly subtype (Supplementary Figure 1C). CNVs
and expression levels of these genes were also analyzed in
the four subtypes confirming the differences in expression
levels and CNV of glycolytic and non-glycolytic tumors
(Supplementary Figures 1D,E).

To test the hypothesis that different glycolytic PDA subtypes
correspond to patients with different clinical characteristics
and tumor aggressiveness, we performed statistical analysis
on patients clinical features (Supplementary Table 2A).
Coherently with the loss of TP53 expression, the Gly subtype
was characterized by a significantly higher mutational
counts compared to the Non-Gly subtype (Figure 1E and
Supplementary Table 2B). Noteworthy, patients with Gly
subtype develop tumor at lower age (Figure 1F) and the tumor
size at resection is significantly larger than the non-glycolytic
tumors (Supplementary Figure 1F). These patients are also
characterized by a worse prognosis that leads to a significantly
higher fraction of patients deceased or with recurred/progressed
disease (Supplementary Figures 1G,H).

The analysis of clinical features of patients belonging to
the four subtypes revealed that VHG tumors are slightly

more mutated compared to the HG subtype (p = 0.048)
(Supplementary Table 2B). VLG and VHG were significantly
different in terms of months of patient survival and overall
survival status (p = 0.011), months of disease freedom
(p = 0.033), and initial tumor sample weight (p = 0.012).
Coherently with these results, patients with Gly tumors were
characterized by a lower survival (median = 17.02 months)
time compared with Non-Gly PDA patients (median = 22.70
months) (p = 0.019) (Supplementary Figure 1I). Among the
four subtypes identified, LG patients were characterized by
higher survival time (median = 20.6 month) compared to
the other subtypes (from 15.11 to 17.9 months) (p = 0.009)
(Figure 1G and Supplementary Figure 1J). We investigated the
impact of clinical features on survival time using multivariate
Cox regression analysis (Supplementary Table 2C). From
this analysis we observed that the lymph node positive
status (N1) is a negative factor for survival (HR = 1.86,
p = 0.023) and we confirmed that belonging to the
Non-Glycolytic subtype is a positive factor for survival
(HR = 0.19, p = 0.018).

To verify that the observed differences among PDA samples
were not specific of the TCGA dataset, we performed an analysis
of RNA-Seq data from an independent cohort of 99 PDA
samples from ICGC. The analysis confirmed the presence of
distinct glycolytic subtypes (Gly n = 29, Non-Gly n = 62)
(Supplementary Figure 1K) as observed for the TCGA cohort,
but also revealed significant differences in terms of survival
between the two groups (p = 0.034) (Supplementary Figure 1L).

Taken together, these results suggest that Gly subtype is
more aggressive than Non-Gly subtype due to an extended
transcriptomic alteration of key glycolytic genes.

3.2. Immuno-Transcriptomic Analysis
Revealed That Glycolytic PDA Subtypes
Are Depleted in Infiltrating CD4+ T Cells
To identify the transcriptional differences among the glycolytic
PDA subtypes, we performed a differential expression analysis
of the tumors. Between the Non-Gly and the Gly subtypes,
we identified 763 highly significant Differentially Expressed
(DE) genes (Adj. p < 1E-05), 296 of which over-expressed in
Gly subtype and 466 over-expressed in the Non-Gly tumors
(Figure 2A and Supplementary Table 3). As expected, among
the 20 most significant DE genes in the Gly subtype we
observed many glycolytic genes, including PGK1, ALDOA,
HK2, ENO1, TPI1, PFKP, and GAPDH (Figure 2A and
Supplementary Table 3). Furthermore, the gene coding
for the glucose transporter member (SLC2A1) and many
genes not involved in the glycolytic pathway, like P4HA1,
ERO1A, ADM, and EGLN3 were up-regulated in the Gly
subtype. DE analysis, performed between VHG and HG
subtypes, revealed glycolytic genes such as PFKFB4, FBP1,
ENO1, LDHA, TPI1, GAPDH, to be up-regulated in VHG
(Supplementary Table 3).

Functional enrichment analysis confirmed that the glycolytic
process was enriched by genes up-regulated in the Gly subtype,
while the immune response-related terms were enriched by

Frontiers in Oncology | www.frontiersin.org 5 February 2019 | Volume 9 | Article 115

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Follia et al. Metabolic Subtyping of Pancreatic Cancer

FIGURE 2 | Transcriptional and immunological differences among PDA metabolic subtypes. (A) Volcano plot shows the expression fold change and the adjusted

p-value of genes Differentially Expressed (DE) between the Gly and Non-Gly PDA subtypes. (B) Bar plot reporting the adjusted p-value of Gene Ontology biological

processes enriched in genes up-regulated in the Gly (top) and Non-Gly (bottom) PDA subtype. (C) Dot plot reporting the levels of infiltrating immune cells computed

with TIMER in the Gly and Non-Gly tumor subtypes. (D) Heat map reporting the log2FC of expression of transcription factors DE between the Gly and Non-Gly PDA

subtypes. FOXM1 (highlighted in bold) was also predicted as upstream regulators by the Enrichr analysis. (E) Dot plot reporting the level of FOXM1 expression in the

Gly and Non-Gly tumor subtypes. p-value by Wilcox Rank-Sum test. (F) Dot plot reporting the level of FOXM1 expression in the four glycolytic PDA subtypes. P-value

was computed using Wilcoxon Rank-Sum test. ***p < 0.001.

genes up-regulated in the Non-Gly subtype (Figure 2B and
Supplementary Table 4A). This result is coherent with the
higher ESTIMATE score characterizing the Non-Gly tumors
and it supports the evidence of an increased stromal/immune
infiltrate in these samples.

To further explore the immunological infiltrate estimated
for our PDA samples, we analyzed results from TIMER
(29) reporting the infiltration level of six immunological

cell populations predicted on the same data. Noteworthy,
Gly subtypes were characterized by less dispersed infiltrate
for most of the populations with a significant depletion
in CD4+ T cell infiltrate (p = 7.565e-06) (Figure 2C).

Immunological infiltrate estimated with TIMER in the four

subtypes confirmed that LG tumors were characterized by

a general higher infiltrate, particularly of infiltrating CD4+
T cells (Supplementary Figure 2).

Finally, we compared the DE genes with gene sets annotated

as healthy or pathological phenotypes. Result of the comparison
was that almost all normal pancreatic tissue-related terms
were enriched in the Non-Gly subtype up-regulated genes.
Furthermore, these genes were enriched in genes down-regulated

in PDA (Supplementary Tables 4B,C). Conversely, genes up-
regulated in the Gly subtype were enriched in genes up-

regulated in esophagus samples and in different cancer types

including PDA.

3.3. Identification of Upstream Regulators
Characterizing the PDA Glycolytic
Subtypes
Subsequently, we performed an analysis of transcriptional
regulatory drivers of the glycolytic PDA subtypes. Among DE
genes between Gly and Non-Gly subtypes, 46 genes code for a
TF, including Forkhead-box protein L1 (FOXL1) and Peroxisome
Proliferator-Activated Receptor gamma (PPARG) which were
the most up-regulated TFs in the Gly subtype (Figure 2D and
Supplementary Table 5A). Conversely, Recombining Binding
Protein suppressor of hairless-like protein (RBPJL) and Class
A basic helix-loop-helix protein 15 (BHLHA15) were the most
up-regulated TFs in the Non-Gly subtype.

Using public gene-sets of validated TF-promoter interactions
we observed that, coherently with the enriched biological
processes, Hypoxia-Induced Factor 1-alpha (HIF1α) was
predicted as upstream regulator of genes up-regulated in Gly
subtype together with SMAD proteins (SMAD2, SMAD3,
SMAD4), and FOXM1 (Supplementary Table 5B). Instead,
genes up-regulated in the Non-Gly subtype were enriched in
Polycomb protein SUZ12 and Transcription regulator protein
BACH1 promoter binding.

Noteworthy, FoxM1 was also significantly up-regulated
in the Gly subtype and its expression was significantly
higher in VHG compared to HG PDAs (Figures 2E,F). Since
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FoxM1 was previously identified as regulator of glycolytic
genes in pancreatic cancer (36), we further investigated the
correlation between FOXM1 and glycolytic genes expression.
Many glycolytic genes were positively correlated with FOXM1
expression (adjusted p < 0.001), including GAPDH (r = 0.72),
TPI1 (r = 0.71), HK1 (r = 0.458), ENO1 (r = 0.372), and
LDHA (r = 0.332) (Supplementary Table 5C), further supporting
FOXM1 as a candidate up-stream regulator of glycolytic
genes expression.

3.4. Frequent Gain of chr12p Band 1
Genomic Region in Glycolytic Tumors
As reported above, the PDA Gly subtype was characterized by
bad prognosis, lower survival rate, lower stromal contamination,
low CD4+ T cells infiltrate and high FOXM1 expression. To
further identify genomic drivers as recurrent genomic alterations
of the glycolytic genes in Gly tumors, we performed a hierarchical
clustering analysis of CNV data of HG and VHG PDAs (n = 58)
(Figure 3A). The analysis highlighted a cluster of Gly tumors
characterized by a co-gain/co-amplification of TPI1, GAPDH,
ENO2, LDHB genomic regions and, it predominantly involved
VHG tumors (p = 0.024).

Noteworthy, the co-gained/co-amplified genes are located at
chr12 p arm band 1 (chr12p1) and in this genomic region are
annotated also the KRAS, GAPDH, ENO2, and TPI1, SLC2A3
(coding for the glucose transporter 3, GLUT3), the TP53-
inducible glycolysis and apoptosis regulator (TIGAR) and the
aforementioned FOXM1 gene.

Interestingly, genes expression-CNV correlation
analysis revealed that chr12p13 was the region harboring
genes characterized by the highest positive correlation
between CNV status and gene over-expression (r > 0.6)
(Supplementary Tables 6A,B). GAPDH, TPI1, FOXM1, and
TIGAR, all mapped on chr12p13, were associated with significant
positive correlation between their CNV status and their
expression, as shown in Figure 3B. Conversely, the expression
of LDHB and KRAS which are located in chr12p band 1 sub-
band 2 (chr12p12) did not correlate with their CNV status
(Supplementary Figure 3A). This result suggests that chr12p13
is a specific regulatory genomic hub for the glycolytic pathway.

To verify that the co-gain/co-amplification was not specific
of the PDA TCGA dataset, we performed the clustering analysis
of CNV data on an independent cohort of 109 PDA patients
(37) (Supplementary Figure 3B). The analysis confirmed that
the chr12p13 genomic region is frequently associated with co-
gain / co-amplification or co-deletion events involving TPI1,
GAPDH, and ENO2 genes.

Given the availability of public results from a metabolomic
analysis of PDA cell lines (21), we investigated whether chr12p13
gain was related to metabolic changes.

To define two main cell line groups on the basis of
their chr12p13 status, we analyzed gene expression and
CNV data from 44 PDA cell lines from Cancer Cell Line
Encyclopedia (CCLE) (27) (Supplementary Figure 3C and
Supplementary Table 7A). Accordingly to the results observed
in primary tumors and in PDA cell lines the gain/amplification

positively correlated with GAPDH, TPI1, and FOXM1
over-expression (Figure 3C). The analysis of the metabolomic
data revealed that cell lines with a gain/amplification of chr12p13
were characterized by a lower oxygen consumption (p< 0.05),
a higher lipid uptake (p < 0.05), and a lower incorporation of
13C glucose in α-ketoglutarate (p < 0.05) compared to diploid
or chr12p13-deleted cell lines (Figure 3D). Incorporation
of 13C glucose in malate and citrate was also higher in the
Gly subtype albeit not statistically significant (p > 0.05)
(Supplementary Figure 3D). A subset of ch12p13-amplified cell
lines were also responsive to an inhibitor of Stearoyl-Coenzyme
A Desaturase 1 (SCD-1) (p< 0.05, an enzyme involved in fatty
acid elongation process.

These results suggest that transcriptionally active gain in
chr12p13 leads to different metabolites consumption and
production in pancreatic cancer cell lines.

3.5. TPI1 Is Abundant in Serum From
Drug-Resistant PDA Patients
To better delineate the role of the genes located on chr12p13 as
clinical prognostic biomarkers, we conducted a pilot proteomic
analysis of free circulating proteins in sera from a cohort
of 31 PDA patients (Supplementary Table 8A). Since the
majority of PDA patients are treated with gemcitabine-based
CT, we also studied the effect of CT on circulating proteins
codified by chr12p13 genes. The 31 patients were divided
in four groups based on survival and response to CT (for
detailed information see the Supplementary Methods section
of the manuscript). In each group, sera were pooled and
the pools protein content was analyzed using Q-TOF mass
spectrometer (Figure 4A).

Mass Spectrometry (MS) data analysis revealed 886 protein
isoforms detectable in sera, corresponding to 309 unique
proteins. The most abundant circulating proteins were CD48
Before CT (BCT) and Glutathione Peroxidase 3 After CT (ACT),
respectively. Cystatin C was abundant both BCT and ACT
(Supplementary Table 8B).

By verifying the effect of CT on the proteins level,
we observed a significant modulation of two proteins: the
protein C receptor and the Dipeptidase 2 (Figure 4B and
Supplementary Table 8C). Considering BCT and ACT proteins
levels separately, respectively 73 and 28 proteins showed a
significant trend across samples (Supplementary Table 8D).

Among the glycolytic enzymes, Triose Phosphate Isomerase
(TPI1) was the unique glycolytic protein detectable in sera. Of
note, TPI1 concentration increases after CT (Figure 4B) and, it
was one of the most significant protein (BCT p = 0.0136), with
a positive trend increasing from good to bad prognosis patients,
both BCT and ACT (Figure 4C).

To validate MS results, we performed a TPI1 ELISA
analysis on 23 sera belonging to the same patients cohort.
The results shown in Figure 4D confirmed the positive trend
of TPI concentration from good to bad prognosis patients in
BCT and ACT.

These preliminary results suggest that sera TPI1 levels could
be a marker of bad prognosis in advanced PDA patients.

Frontiers in Oncology | www.frontiersin.org 7 February 2019 | Volume 9 | Article 115

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Follia et al. Metabolic Subtyping of Pancreatic Cancer

FIGURE 3 | Characterization of chr12p13-amplified PDAs and cell lines. (A) Heat map showing the CNV status (right) and the normalized level of expression (left) of

39 genes coding for glycolytic enzymes in glycolytic patients. At top the expression and the CNV status of six genes involved in PDA tumorigenesis are reported.

Green to brown colors indicate the ESTIMATE score proportional to the predicted stromal/immune component of each tumor sample. At bottom the two main

glycolytic clusters are highlighted; HG, High Glycolytic; VHG, Very High Glycolytic. (B) Dot plots report the normalized expression level of four genes mapped at

chr12p13 genomic region. The PDA datasets were subdivided on the basis of the CNV status of the same genomic region as reported by the Gistic score. P-value

were computed using Pearson correlation analysis. (C) Heat map reporting the CNV status and expression level of the four genes mapped on chr12p13. Data were

measured in PDA cell lines characterized by a gain/amplification (red) or a diploid/deletion (blue) of this region. (D) Dot plot reporting the level of metabolic and drug

response features which are significantly different between the two groups of PDA cell lines characterized by the gain/amplification (Amp/Gain) or diploid/deletion

(Dipl/Del) of chr12p13 genomic region.

4. DISCUSSION

PDA is the result of a complex cross-talk between the
tumor molecular profile and the metabolites produced by

its microenvironment. Recently, many studies have identified
PDA molecular subtypes using omic data. However, the
identification of PDA metabolic subtypes is still missing.
Metabolic classification could provide insights in the definition
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FIGURE 4 | Proteomic analysis of PDA patients sera (A) Scheme of the experimental design of the free-circulating proteins proteomic analysis using pulled sera from

PDA patients collected before and after chemotherapy (CT). Samples were divided in pools based on the months of disease-free survival. (B) Bar plot reporting the

Peptide-Spectrum Matches (PSMs) of five circulating proteins associated with the highest log2 fold change between BCT and ACT samples. P-values were computed

using Wilcoxon Rank-Sum test. *p < 0.05. (C) Line plot reporting the normalized TPI1 protein level measured in different pools of PDA patient sera collected before

(left panel) or after CT (right panel). P-values were computed using Pearson correlation method. (D) Line plot reporting the normalized TPI1 protein level measured by

ELISA assay applied on different pools of PDA patient sera collected before (left panel) or after CT (right panel).

of metabolic targetable pathways and in the definition of
new biomarkers.

Here, we presented a classification of PDAs based on the
integration of the genomic and transcriptomic profiles of
the glycolytic genes. Our classification groups tumors based
on different aggressiveness, metabolic profiles and molecular
characteristics. Our novel PDA classification suggests that might
be a correlation between the chr12p13 gain and the increased
levels of TPI1 in sera of patients with a bad prognosis.

In this paper, we clearly identified a glycolytic subtype of
PDA characterized by a larger size at resection, higher rate
of genomic alteration, an aberrant transcriptional profile with
enrichment of FoxM1 expression, and a reduced predicted
infiltration of CD4+T cells. Genomic analysis of this PDA
subtype highlighted the gain of chr12p13 as a recurrent driver
of glycolytic gene regulation. We observed the functional gain of
chr12p13 in PDA cell line models and we identified a significant
difference in the production of metabolites between cells with
and without the functional gain. Clinically relevant, proteomic
analysis of circulating proteins from PDA patients sera reveals
that the level of TPI1 protein, coded from TPI1 gene mapped
at chr12p13, is increased in poor outcome patients before and
after chemotherapy.

PDA can be classified in distinct molecular subtypes: the
exocrine-like/ADEX subtype with expression of exocrine
genes, the quasi-mesenchymal/basal/squamous subtype with
mesenchymal gene expression associated with worse clinical
outcome, and the classical/luminal subtype characterized by
epithelial gene expression. Moreover, the classical/luminal
subtype was recently grouped into Progenitor and Immunogenic
subtypes based on the expression of early pancreas development

and immune genes, respectively (17–19). By overlapping
these PDA classifications with our glycolytic subtypes we
confirmed that the glycolytic subtypes were enriched in
the quasi-mesenchymal/basal/squamous tumors, while non-
glycolytic subtypes were enriched in exocrine-like/ADEX
and classical tumors (Supplementary Figure 3E and
Supplementary Table 9).

It is worthwhile to note that the purity of PDA samples is
an important aspect in PDA classification. Indeed, immunogenic
or ADEX subtypes and the exocrine-like or quasimesenchymal
subtypes could be erroneously derived considering the non-
tumor cells gene expression in impure samples as recently
demonstrated in Raphael et al. (34). In our study, glycolytic
tumors were depleted in immune/stromal infiltrate while the
non-glycolytic tumors are enriched in non neoplastic cells.
This result was confirmed also by the analysis of a machine
learning-based evaluation of the tumor infiltrates performed
on TCGA histological data (30). The analysis of these data
confirmed that VHG and HG tumors were characterized by
a lower immune-infiltrate compared to the LG subtype (p
< 0.05 and < 0.01, respectively) (Supplementary Figure 4A

and Supplementary Table 11). Coherently with the higher
immune-infiltrate, LG PDAs were characterized by a lower
tumor cellularity compared to VHG and HG tumors (p <

0.01 and < 0.001, respectively) (Supplementary Figure 4B).
However, the TIMER results show that the grade of purity
have no effect on the genes expression in our samples with
no statistically significant correlation between glycolytic genes
expression and the tumor cellularity. Finally, the depleted
immune/stromal infiltrate in the glycolytic subtype could be
the result of the increased lactate production of these tumors.
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Indeed, high level of lactate can be secreted by cells and can
induce an immunosuppressive microenvironment at the same
time decreasing CD4+ T cells, as proved in Baek et al. (38),
Hutcheson et al. (6), and Halbrook and Lyssiotis (7). Coherently
with this hypothesis, we observed that the gene coding for
the lactate/pyruvate transporter MCT-4 (SLC16A3) and LDHA
coding for Lactate Dehydrogenase A enzyme are significantly
up-regulated in the glycolytic subtype. These proteins are key
promoters of the increment of lactate in the extracellular
space (38, 39).

Metabolic and glycolytic enzymes, including
Phosphoglycerate Kinase 1 (PGK1) Triose Phosphate Isomerase
1 (TPI1), Glucose-6-phosphate dehydrogenase (G6PD),
Isocitrate dehydrogenase (IDHC), and Enolase 1 (ENO1) are
highly expressed in PDA and they induce autoantibody and/or
T cell responses in PDA (40–44). Furthermore, an aberrant
glycolytic pathway plays a critical role in the modulation of
tumor angiogenesis by altering drugs delivery and conferring a
PDA phenotype which is resistant to CT (45, 46).

With the aim of identifying the molecular drivers of the
glycolytic genes over-expression in PDA, we observed that
chr12p13 gain clearly emerges as a recurrent alteration in VHG
tumors and in PDA cell lines. This result is corroborated by
results of Graham and colleagues (47) that included chr12p13
in their genomic CNV signature of glycolytic breast, ovarian,
uterine, and lung tumors. The authors report that tumors
associated with this signature is characterized by chromosomal
instability and highly recurrent CNVs driving the metabolic
adaptation to oxidative stress and the metabolic demand of
highly proliferating cells. As already demonstrated by (48)
the deletion of SMAD4 tumor suppressor gene loci leads to
a loss of neighboring genes in PDA (i.e., malic enzyme 2
ME2). In our study, we propose that the chr12p13 gain leads
to the over-expression of genes annotated in this genomic
region (i.e., GAPDH, TPI1, FOXM1) creating cancer-specific
metabolic addiction.

Analysis of TFs expression level in glycolytic PDAs showed
that chr12p13 regions harbor also the FOXM1 gene, whose
expression level positively correlates with the chr12p13 CNV
status. FOXM1 is highly expressed in aggressive tumors including
PDA (49, 50) regulating tumor growth proliferation, migration,
and angiogenesis (51). Moreover, FOXM1 is a hypoxia-induced
gene (52) and its transcriptional activity on LDHA and PGK1
was reported in PDA cell line (53). We provided the evidence
that in PDA primary tumors FOXM1 can be co-amplified
with genes coding for critical glycolytic enzymes adding further
insights on the role of this TF in the regulation of the
PDA metabolism.

The chr12p13 signature is present both in patients and
cell lines. By analysis of PDA cell lines metabolic data, we
added further evidence on the function effect of chr12p13
gain on cell metabolism. The chr12p13-gained cells were
characterized by a higher lipid uptake and sensitivity to inhibitor
of SCD-1, an enzyme catalyzing the rate-limiting step of
mono-unsaturated fatty acids synthesis. Analysis of metabolite
produced by these cells showed a lower amount of lipids and a
higher amount of spermine, glutamine, and glutathione disulfide

(Supplementary Table 7B). We did not observed significant
overlap between our classification and the one proposed in
Daemen et al. (21) for PDA cell lines (chi-square p > 0.05).
However, metabolic data obtained from cell lines should be
compared carefully with the one from primary tumors since the
interaction with the tumor microenvironment is not completely
taken into consideration in cell lines models. This is especially
true in PDA, where the presence of stromal and immune cells
extensively influences the tumor cell metabolism. Nevertheless,
the above result show us that the chr12p13 signature is a
genomic characteristic of primary tumor cells that excludes
a contamination of stroma. We hypothesize that the over-
expression of GAPDH, TPI, and TIGAR in chr12p13-gained cells
leads to a metabolic flow deviation of glycolysis toward other
metabolic pathways like the Pentose Phosphate Pathway (PPP),
the fatty acid elongation, and the glutathione production. Of
note, functional enrichment analysis of genes over-expressed
in the Gly subtype highlighted that some genes belong to the
PPP and the TriCarboxylic Acid (TCA) cycle. DE analysis of
these genes revealed that six genes coding for PPP enzymes
were significantly over-expressed in Gly tumors while four
TCA cycle genes showed an altered expression in these tumors
(Supplementary Table 10). These results suggest that the Gly
tumors phenotypes relies most in an altered glycolysis and PPP
while TCA cycle is only partially perturbed as compared to
the Non-Gly subtype. However, a more extensive metabolomic
analysis is needed to better understand the extension of the
metabolic rewiring in these tumors.

Our proteomic analysis of sera from an independent cohort
of pancreatic cancer patients showed TPI1 as one of the most
abundant protein in low survival patients before and after CT.
Our analysis shows that TPI1, involved in the identification of
the aggressive PDA types, is associated with an increased level
of its protein in the serum. Therefore, we suggest that TPI1
could be further investigated as a prognostic marker, since its
level is gradually increased as prognosis worsens. The observed
trends are not changed by CT treatment, that is only able to
further increase the level of TPI1. The confirmation of this
hypothesis will be provided by analyzing a paired genomic and
sera proteomic data from a larger cohort of PDA patients before
and after CT.

5. CONCLUSIONS

Emerging strategies to treat PDA include the characterization
of the key complex molecular interactions that lead to
carcinogenesis. These complex molecular and metabolic
interactions may represent tumor vulnerabilities.

Our results identified four PDA subtypes with the presence
of at least two cancer metabolic vulnerabilities linked to
glycolytic pathway: one related to the dependency of specific
transcriptional regulators like FoxM1, the other one related to the
metabolic flow redirection toward fatty acid elongation instead
of oxidative phosphorylation. Since many drugs targeting TFs
or metabolic enzymes are emerging, our results suggest that
an efficient combination of them can be used with common
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chemotherapy to properly treat PDA progression and the onset
of drug-resistant disease.
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