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Abstract

One of the most relevant risk factors for hepatocellular carcinoma (HCC) development is chronic hepatitis B virus (HBV)
infection, but only a fraction of chronic HBV carriers develop HCC, indicating that complex interactions among viral,
environmental and genetic factors lead to HCC in HBV-infected patients. So far, host genetic factors have incompletely been
characterized. Therefore, we performed a genome-wide association (GWA) study in a Southern Chinese cohort consisting of
95 HBV-infected HCC patients (cases) and 97 HBV-infected patients without HCC (controls) using the Illumina Human610-
Quad BeadChips. The top single nucleotide polymorphisms (SNPs) were then validated in an independent cohort of 500
cases and 728 controls. 4 SNPs (rs12682266, rs7821974, rs2275959, rs1573266) at chromosome 8p12 showed consistent
association in both the GWA and replication phases (ORcombined = 1.31–1.39; pcombined = 2.7161025–5.1961024;
PARcombined = 26–31%). We found a 2.3-kb expressed sequence tag (EST) in the region using in-silico data mining and
verified the existence of the full-length EST experimentally. The expression level of the EST was significantly reduced in
human HCC tumors in comparison to the corresponding non-tumorous liver tissues (P,0.001). Results from sequence
analysis and in-vitro protein translation study suggest that the transcript might function as a long non-coding RNA. In
summary, our study suggests that variations at chromosome 8p12 may promote HCC in patients with HBV. Further
functional studies of this region may help understand HBV-associated hepatocarcinogenesis.
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Introduction

Approximately 400 million persons worldwide are chronically

infected with hepatitis B virus (HBV) [1,2]. Carriers of HBV are at

an increased risk of developing cirrhosis, hepatic decompensation,

and hepatocellular carcinoma (HCC) development, especially in

the endemic areas of Southeast Asia, China, and Sub-Saharan

Africa. The virus is one of the most relevant risk factors for HCC.

However, only a fraction (incidence rate between 33.5 and 2,632

per 100,000 person-years for men in different populations) of

chronic HBV carriers develops HCC. This indicates that complex

interactions among viral, environmental and genetic factors lead to

HCC in HBV-infected patients. So far, host genetic factors have

incompletely been characterized and only a few studies identified

genes potentially conferring genetic susceptibility to HBV-

associated HCC [3–9].

Genome-wide association (GWA) study has greatly contributed

to the identification of common genetic variants related to

common diseases [10]. This hypothesis-free approach allows the

discovery of novel genetic loci previously not thought to be

associated with the disease. A recent GWA study has reported

a susceptibility locus for HBV-related HCC at 1p36.22; it has

shown that genes situated at the proximal region were aberrantly

expressed in HCC tumors [11]. Since population substructure

exists among Chinese living in different geographical regions [12],

the use of a more homogeneous population may improve power

to detect new risk loci. Therefore, we performed a GWA study

in a Southern Chinese cohort consisting of 95 HBV-infected

HCC patients (cases) and 97 HBV-infected patients without

HCC (controls) using the Illumina Human610-Quad BeadChips.

The top single nucleotide polymorphisms (SNPs) were then

validated in an independent cohort of 500 cases and 728 controls.

Four SNPs (rs12682266, rs7821974, rs2275959, rs1573266) at

chromosome 8p12 showed consistent association in both the

GWA and replication phases (ORcombined=1.31–1.39; pcombined=

2.7161025–5.1961024; population attributable risk (PAR)combined

=26–31%). Using in-silico data mining, we found no gene but a

2.3 kb expressed sequence tag (EST) in the 8p12 region.
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Expression analysis of the EST in HCC and adjacent non-

tumorous liver tissues was performed and in-vitro transcription

and translation analysis of the EST were also done to examine the

EST’s involvement in HCC development.

Materials and Methods

Patient Selection and Materials
All cases and controls were recruited at Queen Mary Hospital,

University of Hong Kong, and were ethnically Southern Chinese.

All cases were positive for the hepatitis B surface antigen (HBsAg)

and were examined physically for symptoms and signs of HCC

and cirrhosis. Progressed carriers with HCC were defined as

HBsAg carriers with a serum alpha-fetoprotein level above

400 ng/mL and typical computed tomography findings. Histo-

logical examinations using fine-needle aspiration performed under

ultrasonographic guidance were also used to define HCC tumors.

Informed signed consent was obtained from the study subjects

prior to peripheral blood collection. Ethical approval was obtained

from the Institutional Review Board.

Ninety-five cases and 97 age- and sex-matched controls were

recruited for genome-wide genotyping in 2007. Each control was 5

years older than the age of onset of his/her matched case to ensure

that he/she was not developing HCC in the past 5 years. The

mean 6 SD onset age of cases, defined as the age at first diagnosis

of HCC, was 50.667.3 years, while the mean 6 SD age of

controls was 55.667.3 years. Further recruitment of cases and

controls was performed in 2008–2010, resulting in a total of 500

cases and 728 controls for independent validation. The mean 6

SD onset age of these cases was 52.869.0 years and the mean 6

SD age of the controls was 57.6610.5 years. The male to female

ratio in both cases and controls were about 4:1. In the genome-

wide genotyping cohort, 13 (13.7%) of the cases and 3 (3.1%) of

the controls had cirrhosis; only one case and none of the controls

had HBV/HCV co-infection; 11 (11.6%) of the cases and one of

the controls had alcohol consumption more than 60 g per day;

none of the cases and 16 (16.5%) of the controls had antiviral

treatment (Lamivudine, Adefovir and both).

DNA Extraction
Peripheral blood samples collected in EDTA blood tubes were

processed for DNA extraction on the day of collection. QIAmp

Blood DNA Midi and Mini kits (Qiagen, Valencia, CA, USA)

were used as described in the manufacturer’s protocol. DNA was

verified by gel electrophoresis; DNA purity was assessed by OD

260/280 ratio; DNA concentration was determined by the Quant-

iTTM PicoGreenH dsDNA reagent (Life Tech., Carlsbad, CA,

USA).

Genotyping and Statistical Analysis
Genome-wide genotyping was carried out at deCODE Genetics

(Reykjavik, Iceland) using the Illumina Human610-Quad Bead-

Chips. We excluded related samples by allele sharing analysis

using PLINK v1.05 [13], outlier samples by principal component

analysis using EIGENSOFT v2.0 [14] and poor quality samples

having call rates ,95%. We also excluded SNPs with minor allele

frequency (MAF) ,0.01 in both cases and controls, having call

rates ,95% in both cases and controls, and having Hardy-

Weinberg equilibrium P-value ,0.001 in controls. After quality

control, 192 samples (95 cases and 97 controls) and 485,072 SNPs

remained for the subsequent association analyses.

Phenotype-genotype association for each SNP was assessed

using logistic regression analysis adjusted for age and gender in

PLINK. Population-attributable risk (PAR) was calculated as

PAR = 12{1/[(12p)2+2p(12p)OR+p2OR2]}, where p is the risk

allele frequency, assuming a multiplicative model. The most

significant SNPs were genotyped in an independent sample of 500

cases and 728 controls using Sequenom (Sequenom Inc., San

Diego, CA, USA) and were analyzed for association by chi-

squared test. Association results from the GWA and replication

studies were combined using inverse variance-weighted fixed

effects meta-analysis. Since a previously reported susceptibility

locus [11], rs17401966, was not present in the genotyping array,

genotyping of this SNP was determined separately by TaqMan

allelic discrimination assay (Life Tech) in the same cohort (357

cases and 354 controls) and was also analyzed for association by

chi-squared test.

59 and 39RACE
59 and 39RACE were performed according to the manufactur-

er’s instruction in the 59/39 RACE Kit 2nd Generation (Roche

Diagnostics, Mannheim, Germany). Total RNA was extracted

from HepG2 cell lines using the Trizol reagent (Life Tech.). The

extracted total RNA was subjected to DNase I treatment using the

TURBO DNA-free kit (Applied Biosystems). For 59RACE, the

DNase I treated RNA was used as a template for first-strand cDNA

synthesis with SP1 primer 59-GAG GTG AAG ATC CTG TCA

AAG GT-39. The resulting products were then polyadenylated

using dATP and were subsequently amplified using the Oligo(dT)

primer and the SP2 primer 59-GAA CGC ACC AGA TAA GAT

CTG AG-39. Similar to 59RACE, the first-strand cDNA synthesis

in 39RACE was performed using the Oligo(dT)-anchor primer

(provided in the kit). The subsequent PCR amplification was

carried out using a PCR anchor primer (provided in the kit) and

the SP5 primer 59-AAT AGC TTA ACC CTT TCA TTT ACC

A-39. The resulting products from 59 and 39RACE were cloned

into a pGEM-T Easy Vector (Promega, Madison, WI, USA) and

verified using DNA sequencing.

Quantitative PCR (qPCR) and Quantitative Expression
Analysis

The expression level of the EST transcript was examined in 40

pairs of HCC tumors and adjacent non-tumorous tissues using

relative qPCR with transcript specific primers as shown below.

Total RNA was extracted from the tissues using Trizol reagent

(Life Tech.). Complementary DNA was synthesized from 1 mg of

total RNAs using MultiScribeTM Reverse Transcriptase and

Oligo(dT) (Life Tech.) in which total RNA was treated with

TURBO DNA-free to remove possible DNA contamination. Each

qPCR reaction consisted of a 16FastStart SYBR Green I reaction

mixture (Roche Diagnostics), 500 nM of each forward (CTC AGA

TCT TAT CTG GTG CGT TC) and reverse (GAG GTG AAG

ATC CTG TCA AAG GT) primer, and 1 mL of synthesized

cDNA. The expression of a housekeeping gene of GAPDH was

examined and used for normalizing the expression of the EST

wild-type transcript. The expression level of the EST between the

HCC tumors and corresponding non-tumorous liver tissues was

examined using a non-parametric paired t-test, in which P,0.05

was considered significant.

Translation of FLAG-tagged EST Open Reading Fframe
(ORF)

The predicted largest ORF (encoding 94 amino acids) of the

EST transcript was amplified using the following sets of primers:

for N-terminal FLAG-tagged EST ORF, forward 59- CGC GAA

TTC ATG GAC TAC AAA GAC GAT GAC GAC AAG CTT

ATG AAA TAT AAT CAA GCA ATT AAC-39 and reverse 59-

GWAS Analysis of HBV Associated HCC Patients
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CGC GGA TCC GAG AGA GGT GAA GAT CCT GTC AAA

G-39; for C-terminal FLAG-tagged EST ORF, forward 59- CGC

GAA TTC ATG AAA TAT AAT CAA GCA ATT AAC-39 and

reverse 59- CGC GGA TCC TCA AAG CTT GTC GTC ATC

GTC TTT GTA GTC GAG AGA GGT GAA GAT CCT GTC

AAA G-39. The respective resulting amplicons were cloned into a

lentiviral expression vector, pCDH-CMV-EF1-GFP-Puro (SBI

System Biosciences, Mountain View, CA, USA) at the cloning sites

of EcoRI and BamHI. The N- and C-terminal FLAG-tagged

lentiviral expression plasmids were packaged into the lentiviruses

which were then transduced to the HepG2 cell line as described

previously [15]. Mock transduction using the empty vector was

run in parallel. The transduced HepG2 cells were lysed in NET

Buffer. The lysates were then resolved via 12% SDS-PAGE gel

electrophoresis and blotted onto nitrocellulose membrane. The

membrane was incubated with mouse anti-FLAG primary

antibody, followed by incubation with anti-mouse immunoglob-

ulin G (GE Healthcare, Buckinghamshire, UK), and was then

detected using ECL plus Western blotting detection system (GE

Healthcare) according to the manufacturer’s protocol. Detection

of endogenous b-actin was performed as for protein loading

control.

Results

GWA and replication studies suggest that the 8p12
region contains susceptibility locus for HBV-related HCC

In the GWA study, there was no SNP reaching genome wide

significance (p = 561028). As shown in Figure 1, the strongest

association signal was seen in the intergenic region at chromosome

8 (8p12; p = 6.3561026) driven by rs2275959. The association

signal from this SNP was supported by associations from nearby

SNPs (rs12682266, rs7821974, rs1573266) in linkage disequilibri-

um (LD) (Table 1), indicating that the signal was likely to be real.

In contrast, the next strongest signal located on chromosome

11p13 (rs2611145, p = 9.3161026) had no other SNP in the

region which show similar levels of association, indicating that it

was likely to be a false positive result. We then genotyped the 4

SNPs in the 8p12 region in an independent sample (500 cases and

728 controls). The risk alleles of these SNPs were the same as in

the GWA study (Table 1), but the combined analysis of the GWA

study and replication samples revealed only suggestive associations

at these 4 SNPs (ORcombined = 1.31–1.39; pcombined = 2.7161025–

5.1961024; PARcombined = 26–31%).

The SNP rs17401996 was not associated with HBV-related
HCC susceptibility

To test whether a previously reported susceptibility locus [11],

rs17401996, was associated with HBV-related HCC susceptibility

in our samples, we also genotyped the SNP in 357 HBV-positive

HCC cases and 354 HBV-positive non-HCC controls using

TaqMan allelic discrimination assay. We found no significant

difference (p = 0.91) in allele frequencies between cases and

controls (71.1% in cases versus 71.4% in controls).

In Silico Data Mining Identified EST at 8p12
Results of in silico data mining (Figure S1) showed that there are

no genes in the 8p12 region; however, an EST was identified

within the studied haplotype block and encompasses the

rs2275959 and rs2298321 SNPs, which were located in the

HCC risk-associated haplotype block found in GWA. More

notably, this EST was expressed in the HepG2 hepatoma cell line,

and it was also detected in other human tissue types, such as

prostate, intestine, placenta, and testis, according to the Stanford

SOURCE database. The results of an ENCODE Histone

Modification ChIP-Seq study on a panel of human cell lines

(Figure S1) revealed that the chromatin region harboring the EST,

particularly in the HepG2 cell line, had a remarkably high level of

histone 3 lysine-4 methylation and acetylation as compared to the

other examined cell lines. This result indicates that the EST may

be actively expressed in this cell line. In fact, the expression of this

transcript was detected by RT-PCR in various HCC cell lines,

including HepG2, HLE, Huh7, BEL-7402, and PLC/PRF/5

(data not shown).

Figure 1. Manhattan plot of GWA study results of testing for association with HBV-related HCC susceptibility. The dotted line indicates
the p-value threshold of 161025. The circled SNPs are those passing the threshold (Table 1).
doi:10.1371/journal.pone.0028798.g001
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Sequence and Expression Analysis of the EST at 8p12
We confirmed the full-length sequence of the EST transcript

(2.3 kb) and demonstrated that the 39 end of the transcript was

polyadenylated by 59/39RACE. The 2.3 kb transcript is intronless

as reported (GenBank:AK025743). Primers designed to specifically

detect the transcript were used to quantify the relative expression

level of this transcript and revealed that its expression level was

significantly reduced in HBV-associated HCC tumors, as compared

to the corresponding non-tumorous liver tissues (P,0.001,

Figure 2A). Based on the possibility that the transcript could encode

a protein, we performed a sequence analysis of the hypothetical

protein product of the transcript, LOC157860, using InterProScan,

which indicates that the protein sequence possesses a signal-peptide

sequence and a transmembrane region in the N-terminal half of the

sequence. Despite the 2.3 kb length of the transcript, only very short

open reading frames (ORF) were predicted. The largest ORF

encodes only 94 amino acids while the three other predicted ORFs

encode 54, 55, and 67 amino acids, respectively. We then stably

transduced HepG2 cells with expression plasmids containing either

N-terminal or C-terminal FLAG-tagged ORF (encoding 94 amino

acids) (Figure 2B). The C-terminal FLAG-tagged EST ORF was

detected by anti-FLAG immunoblotting in the transduced HepG2

cell lysate and had the expected size in the immunoblotting results,

but the N-terminal FLAG-tagged one was not translated in its

corresponding cell lysate (Figure 2B). We therefore propose that the

transcript might act as a large intervening ncRNA, but further

investigation is needed.

Discussion

In this study, we identified a new candidate susceptibility locus

on chromosome 8p12 for HBV-associated HCC in Southern

Chinese using GWA study. In-silico data mining showed that an

EST and its transcript isoforms are situated in this region. The full

length of the transcript was verified by 59and 39RACE and DNA

sequencing. The region contained high levels of chromatin

activation marks (UCSC Browser), which was additionally

observed in the hepatoma cell line HepG2, indicating transcrip-

tional activation. A comparative genomic analysis indicates that

the transcript region is evolutionarily conserved in mammals

(Figure S2) and suggests that this region may be of some functional

importance.

Previous reports investigating the loss of heterozygosity and

comparative genomic hybridization have shown that region 8p

was one of the most frequently deleted regions in HCCs, as

demonstrated by our previous study [16] and other studies [17].

Notably, the well-known liver cancer suppressor gene, Deleted in

Liver Cancer 1 (DLC1),[18] is also situated on chromosome arm

8p. It spans over the region of p21.3–22 and is about 24 Mb

upstream of the four 8p12 SNPs. We speculate that risk-associated

8p12 SNPs or haplotypes might have an interacting effect on the

DLC1 locus, causing DLC1 more susceptible to deletion or

chromosomal loss; however, the underlying mechanism of such

effect remains to be investigated.

In this study, we confirmed the full-length sequence of the EST

transcript (2.3 kb) and demonstrated that the 39 end of the

transcript was polyadenylated by 59/39RACE. The expression

level of this transcript was significantly reduced in HBV-associated

HCC tumors, as compared to non-tumorous liver tissues.

Significantly, the transcript was also detected in other HCC cell

lines, specifically HLE, Huh7, BEL-7402, and PLC/PRF/5.

Despite the 2.3 kb length of the transcript, only very short ORFs

were predicted, with the largest encoding only 94 amino acids.

The C-terminal FLAG-tagged ORF was detected by anti-FLAG

immunoblotting in the transduced HepG2 clones, but its N-

terminal FLAG-tagged one was not expressed. The evidence is

consistent with the characteristics of ncRNAs suggested by Panzitt

et al.[19] We therefore propose that the transcript might act as

long ncRNAs, but further investigation is required. Moreover, it

remains to be investigated whether the reduction in expression is

limited to HCCs. ncRNAs are a class of molecules that play

regulatory roles in cells. Notably, several ncRNAs are implicated

in human cancers. In contrast to proteins that are encoded by

coding RNAs, the function of ncRNAs cannot currently be

inferred from their sequence or structure. A large intervening

ncRNA (lincRNA), which can range from 200 nt to .100 kb, can

be intergenic, intronic, antisense or overlapping with protein-

coding genes or other ncRNAs [20,21]. The known repertoire of

lincRNA functions is still being unveiled with roles as mediator of

mRNA decay [22], structural scaffolds for nuclear substructures

[23], and as regulators of chromatin remodeling [24]. For

instance, the HOTAIR lincRNA was reported to be overexpressed

in breast tumors and found to be a significant predictor of

metastasis and death [25]. Functional analyses revealed that

HOTAIR silences the HOXD locus in trans by inducing a repressive

chromatin state. Similarly, overexpression of the nuclear speckle

associated lincRNA metastasis-associated lung adenocarcinoma

transcript 1 (MALAT1) modulates alternative splicing. It was found

associated with metastasis and poor outcome in patients with lung

cancer [26]. Another recent report also identified and demon-

strated that the HULC long ncRNA is differentially expressed in

HCC tumors [19].

Table 1. Summary of association of SNPs in GWA and replication studies.

Chr SNP Positiona
Risk/non-
risk allele

GWA study
(Ncase = 95, Ncontrol = 97)

Replication
(Ncase = 500, Ncontrol = 728)

Combined
(Ncase = 595, Ncontrol = 825)

RAF in
cases

RAF in
controls OR P-value

RAF in
cases

RAF in
controls OR P-value

RAF in
cases

RAF in
controls OR P-value PAR

8 rs12682266 37548149 G/A 0.64 0.41 2.55 6.6961026 0.55 0.49 1.25 7.1061023 0.56 0.48 1.38 3.7661025 0.285

8 rs7821974 37569159 T/C 0.62 0.39 2.54 7.0161026 0.54 0.49 1.20 2.6161022 0.55 0.48 1.33 2.3261024 0.255

8 rs2275959 37574217 T/C 0.54 0.31 2.59 6.3561026 0.46 0.42 1.18 4.7561022 0.47 0.41 1.31 5.1961024 0.213

8 rs1573266 37581577 C/T 0.69 0.47 2.58 7.4461026 0.59 0.54 1.26 5.2061023 0.61 0.53 1.39 2.7161025 0.313

11 rs2611145 34240437 T/C 0.52 0.29 2.56 9.3161026 - - - - - - - - -

Chr, chromosome; RAF, risk allele frequency; OR, odds ratio.
aBased on NCBI build 36.
doi:10.1371/journal.pone.0028798.t001
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To the best of our knowledge, this study is the second largest

GWA study of HBV-related HCC susceptibility in Chinese and

the largest in Southern Chinese, but no SNP achieved genome-

wide significance (p,561028). Power should be an important

factor that influences the outcome of our current study. Our GWA

study and combined samples had 0.004% and 6.65% power,

respectively, for an OR of 1.35, assuming a disease prevalence of

0.65% and a 50% MAF. It is estimated that at least 1,700 cases

and an equal number of controls are required to achieve a power

of 80%. So, increasing sample size is one of the options to greatly

improve the power of our study. However, by adopting a less

stringent significant threshold of P,161025 which had recently

been used in another large scale GWA study [27], and after

demonstrating the consistent association in the validation sample

set and illustrating the in-vivo finding of reduction of the 8p12

EST expression in HCC, we speculated the 8p12 region is a new

HBV-associated HCC susceptible locus. Nevertheless, we could

not exclude the possibility that additional common genetic variants

with similar effect to those 8p12 SNPs exist.

In our study population, a previously reported susceptibility

locus at 1p36.22 [11], rs17401966, was not significantly associated

with HBV-related HCC. We had 80%, 60% and 34% power,

respectively, for an OR of 1.4, 1.3 and 1.2, assuming a disease

prevalence of 0.65% and a 30% MAF. So, sample size is unlikely

to be the major drawback for studying the rs17401966 SNP in our

cohorts. There might be some other confounding genetic factors,

which are different from our Southern Chinese cohorts,

interplaying with the risk associated 1p36.22 locus, hence

contributing to the development of HCC. It has recently

demonstrated that Han Chinese populations indeed exit of

different genetic structures [12]. Comparing the Guangdong

cohorts used in Zhang et al and our cohorts genotyped for the

rs17401966 SNP, there is a great evidence of heterogeneity with

Phet = 0.035 by test of heterogeneity (Chi-square, 1df, 2-tailed)

although Hong Kong is situated closed to the Guangdong

province. The degree of heterogeneity is even greater when

comparing ours to the Northern Chinese Beijing cohorts

(Phet = 0.0017). Owing to these genetic difference among Chinese

Figure 2. Expression of the EST in human HCCs and cell line. (A) Quantitative expression analysis of the EST transcript in the HBV-associated
HCCs showed that the EST transcript was significantly under-expressed in HCC tumors when compared with the corresponding non-tumorous livers
(P,0.0001, non-parametric paired t-test). Dots: the ratio of expression level of the transcript versus the level of GAPDH in each testing sample.
Horizontal lines: mean of the relative expression level in the HCC tumors and non-tumorous livers. (B) Left panel: Schematic diagram of the FLAG-
tagged expression constructs. Right panel: Western blot analysis of FLAG-tagged EST translation in HepG2 cell line. The FLAG-tag could be translated
only when tagged at the N-terminus of the ORF but not at the C-terminus. b-actin served as a loading control. EV: empty vector, FLAG-ORF: N-
terminal FLAG-tagged ORF, ORF-FLAG: C-terminal FLAG-tagged ORF.
doi:10.1371/journal.pone.0028798.g002
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populations, originality of patients and the genetic components,

apart from those non-genetic factors, can be used for HCC risk

assessment and disease management. The joint effect of genes in

contributing to cancer risk supports polygenic model. Polygenic

risk score assessed by providing genotyping results of some genetic

variants/SNPs has been reported to provide better risk prediction

for other hunan cancers, such as prostate [28] and breast cancers

[29].

Overall, we identified a HBV-associated HCC susceptibility

locus, which harbors an EST whose expression is significantly

associated with HBV-associated HCC development. Further

validation using a larger sample size and/or multiple populations,

particularly in Chinese patients, is helpful to substantiate our

findings. The functions of this EST transcript should also be

investigated.

Supporting Information

Figure S1 Computational data retrieval from the UCSC
Genome browser database on the human 8p12 region
(chr8:37,560,000–37,600,000 on Human NCBI36/hg18

assembly). The location of the EST transcript (GeneBank:

AK025743) is indicated by the black bar (chr8:37,574,170–

37,576,534). The histone 3 methylation and acetylation marks

(H3K4me1, H3K27Ac, and H3K4me3) are indicated by the

colored peaks; each color represents the results of one type of

human cell line, such as H1 ES, HMEC, HSMM, HUVEC,

K562, NHEK, NHLF, and HepG2. The H3K27Ac and

H3K4Me3 marks are particularly high in HepG2, as indicated

by the light green peaks.

(TIF)

Figure S2 DNA conserved region analysis in mammals.
Conserved regions are highlighted with shaded colored bars.

(TIF)
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