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Abstract: The US Department of Defense (DoD) realizes the many uses of additive manufacturing
(AM) as it has become a common fabrication technique for an extensive range of engineering
components in several industrial sectors. 3D Printed (3DP) sensor technology offers high-performance
features as a way to track individual warfighters on the battlefield, offering protection from threats
such as weaponized toxins, bacteria or virus, with real-time monitoring of physiological events,
advanced diagnostics, and connected feedback. Maximum protection of the warfighter gives a
distinct advantage over adversaries by providing an enhanced awareness of situational threats on
the battle field. There is a need to further explore aspects of AM such as higher printing resolution
and efficiency, with faster print times and higher performance, sensitivity and optimized fabrication
to ensure that soldiers are more safe and lethal to win our nation’s wars and come home safely.
A review and comparison of various 3DP techniques for sensor fabrication is presented.

Keywords: additive manufacturing; 3D printing; sensor technology; fabrication; diagnostics

1. Introduction

The advent of wearable [1] or body-borne electronics is rapidly changing the approach
of the US Department of Defense (DoD) to providing diagnostic and therapeutic medical
care to the warfighter [2,3]. The demand for novel consumer and military analytical
electronic devices, packing more functionality into less volume, is driving the need for
advanced manufacturing (AM) methods that tightly integrate electronic circuitry with
physical packaging to provide advanced diagnostics and valuable information to improve
safety and acute care on the battlefield [3]. The focus of this paper is primarily on flexible
strain sensors and analytical /biomedical devices. This study highlights and expands
upon examples in the literature in which this technology has already been explored by the
military and academia. Furthermore, it emphasizes the AM-based approaches to provide
maximum protection to warfighters and soldiers, thus giving them the distinct advantage
of protection from weaponized toxins, bacteria, and virus, while monitoring their medical
status and safety during combat/operations.

Sensors are utilized in automated industries such as robotics, aeronautics and aerospace,
biomedical devices and manufacturing to detect changes in the environment during man-
ufacturing and to transfer data to a monitoring unit [4-12]. In the early days of sensors,
semiconductors based on silicon were used for monitoring various industrial and environ-
mental applications, with limited use in biomedical sensing due to fabrication techniques
utilizing older planar technologies [7]. Even though silicon substrates are currently utilized
for micro and nano-sensors, they are limited by their flexibility, temperature dependence,
low signal, high noise and cost, and non-biocompatible behavior, all the properties that are
critical for biomedical applications [4,5,7]. Thus, flexible sensors have been fabricated with
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a wide range of materials for prototypes in the substrate including polymethylsiloxane
(PDMS), polyethylene terephthalate (PET), polyimide (PI), polyethylene (PE), polyurethane
(PU), carbon nanotubes (CNTs), graphene (GE), carbon black (CB) and gold nanoparticles
representing the conductive electrode components of the sensing prototypes [4]. Addi-
tional functional materials include nanowires (NWs) and nanoparticles (NPs). Conductive
polymers such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS),
polypyrole (PPy), and polyaniline (PANI) have also been explored in sensor fabrication,
but generally have lower conductivity than carbon- and metal-based composites [5].

Flexible and stretchable strain sensors can be generally classified as resistive and
capacitive, the former working on the basis of the piezoresistive effect and dimensional
variations of electrodes in which mechanical strain creates a change in electrical resistance.
The latter shows variations in the capacitance between two electrodes sandwiching a di-
electric layer [6]. Other transduction mechanisms such as optoelectric, triboelectric, Raman
shift, and Bragg grating exist but are limited by their practicality due to the requirements
of complex measurement devices, low resolution and poor dynamic performance.

2. Fabrication of Sensors

Fabrication techniques and materials for sensor manufacturing have led to variations
in the structure and dimensions of the sensors, with the final application dictating these two
parameters [6]. Processing techniques commonly involve photolithography, screen printing,
laser cutting, contact printing, spray deposition, film casting and finally 3D printing, the
latter becoming very popular for prototyping due to the array of materials available, in
addition to its tunability, accuracy, resolution, customization, repeatability, sensitivity
and the decreased labor and number of steps involved [4]. The fabrication of wearable
strain sensors relies on the flexibility and elasticity of materials as key parameters [5].
The substrate works as the flexible support providing desirable mechanical flexibility and
stretchability, with good thermal properties, low cost and good adhesion to other materials
being of significant importance.

2.1. Conventional Manufacturing of Strain Sensors

Amjadi and coworkers [7] reported the fabrication of a strain sensor with an
environmentally-friendly silicon-based material, Ecoflex, chosen because of its mechanical
properties (Young’s modulus of ~125 kPa) and similarities to human skin. Ecoflex has
the capability to form strong interfacial bonds with other materials such as CNTs and
is skin-mountable without limitations. The resulting strain sensor exhibited appreciable
stretchability (e ~ 510%) with good resistance recovery under cyclic loading/unloading. A
somewhat labor-intensive solution drop-cast fabrication process with subsequent annealing
step was used to form the nanocomposite thin film for the sensor. Ko et al. [8] developed
an environmentally-friendly and low-cost PDMS-derived wearable sensor based on silver
nanoparticles (AgNPs) and multiwalled (MW) CNT nanocomposite films. The AgCNT
nanocomposite thin film preparation was performed via a tip-sonication method, as illus-
trated in Figure 1. The advantages of this technique lay within the improved electronic
performance, good stability in the stretching cycle test at 21% strain, fast response time and
detection capability in compressive strain, tensile strain, and bending. Another conductive
film-forming technique involves spin-coating, which has been demonstrated to create a
sandwich-structured PDMS-GE/PDMS-PDMS flexible strain sensor with excellent stability
and decreased electrical resistivity to 9.4 () cm, with a graphene loading of 25 wt. % [9].
Table 1 provides a rundown of materials recently reported for fabrication of stretchable
strain sensors [6].
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Figure 1. Schematic illustration of the fabrication of AgCNT biocomposite thin films and the assembly
of the corresponding piezoresistive wearable sensor. Reproduced with the permission of Reference [8].
Copyright 2021 Elsevier.

Table 1. Materials utilized in the fabrication of stretchable strain sensors (Based on Reference [5]).

Materials Type of Sensor Stretchability (%)
CNTs-Ecoflex Resistive 500
Aligned CNTs-PDMS Resistive 280
CNTs-Ecoflex Capacitive 150
CNTs-Dragon-skin elastomer Capacitive 300
Graphene foam-PDMS Resistive 70
CBs-thermoplastic elastomer (TPE) Resistive 80
Graphene-rubber Resistive 800
AgNWs-PDMS Resistive 70
CBs-PDMS Resistive 30
Zinc Oxide (ZnO) NWs-PDMS Resistive 50
CBs-PDMS Resistive 10
CBs-Ecoflex Resistive 400
CNTs-silicone elastomer Capacitive 100
AgNWs-Ecoflex Capacitive 50
Platinum (Pt)-PDMS Resistive 2

AuNWSs-PANI-rubber Resistive 149.6
AgNWs-PEDOT:PSS/PU Resistive 100
AuNWs-latex rubber Resistive 350
CNTs-PEDOT: PSS/PU Resistive 100

The significance of flexible strain sensors for biomedical applications is that various
physiological parameters, including blood pressure, heart rate, body motion, respiration
rate, brain activity and skin temperature, can all be monitored. Prototypes have been de-
ployed in this sector utilizing wearable and non-wearable devices. Furthermore, all these
parameters have been measured with 3DP sensing components that are integrated with the
biomedical device. 3DP offers new, enhanced cost-effective manufacturing techniques to
attain higher mechanical reliability and construct more complex geometries in a highly pro-
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grammable and seamless manner over conventional methods [1]. The US DoD realizes the
considerable potential this can have for protecting the warfighter. What makes 3DP sensors
valuable is not its role in conventional manufacturing, but its versatility and applications
in which rapid modifications are required (for example, in combat or training operations)
and situations of patient-matched medical device/s [10,11]. Table 2 shows a comparative
study describing the common 3DP methods that are available for all biomedical sensor
applications in terms of materials, principles, and resolution while showcasing some of the

advantages and disadvantages associated with each printing technique [4].

Table 2. A summary of Additive Manufacturing (AM) techniques: principle, materials, resolution and 3DP sensors in
biomedical applications (Based on Reference [4]).

3D Printin: Resolution ~ 3D-Printed Sensor
Metho dsg Principle Materials Range in Biomedical Advantages Disadvantages
(num) Applications
PP
Lactate sensor, cell
Fused x: 100 foxicity sensor, High speed Porous structure for the binder
deposition Extrusion of ABS, PLA, Wax ) 100 immunosensor, High quality Weak mechanical properties
mg dellin constant filament blend, Nylon }Z]: 250 DNA sensor, Used for a wide range of Often require su porf
g . glucose sensor, materialDurable over time q PP
bacteria sensor
Large parts can be built
. easily Not well-defined mechanical
High accuracy and surface roperties due to the usage of
UV initiated Resin (Acrylate or . DNA imagin finishGood for complex prop &
Yy x: 10 8ng P photopolymers
Stercolithogranh polymerization Epoxy based with ) 10 sensor, bacteria build Slow b il}él .
CIEOUINOBTIAPIY  rogs section b proprietar; ¥ sensor, cellular Simple scalabilit OW bulld process
y Y z: 15 y Expensive process
cross section photoinitiator ’ sensor Uncured material can be . h d chemical
reused Moisture, ‘eat, and chemicals
Improved mechanical can reduce its durability
properties
Multiple jetting heads are
Cell imaging available to build materials ~ Vulnerable to heat and
Deposition of the sensor, cell-based Different levels of humidity
droplets of the x: 30 sensor (for ATP flexibility Lose strength over time
Polyjet photocurable Polymer y: 30 sensing), Allows using different Relatively higher cost
liquid material and z: 20 physiological colored photopolymers compared to others
cured sensor, More control over the Sharp edges are often slightly
immunosensor accuracyHigh accuracy rounded
and smooth surface
No Sg;(flissclrl:éz?re is in'y metal parts can be Printed
Laser-induced x: 50 required Finishing or post-processing
Selective laser interi P Metallic powder, : 50 Cell densi Hieh st th required due to its grainy
sintering sitering o polyamide, PVC ¥ ell density sensor 180 Streng roughness
powder particles z: 200 Less time P . .
Difficulty in the material
Complex structures can be changeover
easily fabricated &
Fragile parts
. Extrusion of ink . x: 10 Bionic ear, Slow b‘?ﬂd process
3D Inkjet nd der liquid Photo-resin or ‘10 multifunctional Very good accuracy The grainy or rough appearance
rintin, and powaer iqu hydrogel ¥ utunctiona Very high surface finishes Post-processing is required to
P 8 binding yarog z: 50 biomembrane yhig P 8 !
’ remove moisture
Poor mechanical properties
Photocuring by a Piezoelectric Excellent accuracy of Insecurity of the consumable
I digital projector x: 25 acoustic sensor, laying material
Digital 1¥ght screen to protect Photopolyme.r 125 motion control and High resolution Difficult to print large structure
rocessin P and photo-resin y & P &
P 8 layers by squared p z: 20 soft sensors, Uncured photopolymer Boxy surface finish due to its
voxels glucose sensor can be reused rectangular voxels

2.2. 3DP of Biomedical Sensors and Analytical Devices

Inkjet printing has been commonly explored for strain sensor fabrication on various
substrates. Microchannel-based sensors, capable of detecting low levels of strain, have
been developed, as shown in Figure 2 [12]. Conductive viscoelastic inks in an embed-
ded 3DP (e-3DP) method to create a glove that monitors physical movement have also
been fabricated [1]. Other applications include cross-linked double network hydrogel,
poly(sulfobetaine-co-acrylic acid)/chitosan-citrate which shows substantial potential for
3DP due to its highly stretchable, transparent, anti-fatigue, self-adhesive and self-healing
properties [13] and textile-mounted strain sensor fibers incorporated by a multicore-shell
printing approach suitable to capture the gait cycle of wearers in real time [1].
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Figure 2. (a) Schematic depicting design and dimensions of microchannels. (b) Complete fabrication process of printed

strain sensor. Reproduced with the permission of Reference [12]. Copyright 2017 Elsevier.
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In terms of practical applicability, the range of available 3DP materials has been
limited conventionally to acrylonitrile-butadiene-styrene (ABS), polylactic acid (PLA),
acrylate-based polymers, and some metal alloys, significantly restricting the wider use
of 3DP devices in all branches of analysis [10,11]. Although introducing new printing
materials remains critical for the rapid progress of 3DP devices, more schemes are being
introduced to functionalize these sensors and devices, therefore revealing new geometric
features, chemical reactivity, properties, and functionalities; thus diversifying 3D-printed
devices and making them multifunctional. Figure 3A shows the increasing trends in re-
search interest in 3D-printed analytical devices with and without functionalization over
the past 7 years. Functionalization can be achieved through (i) treatment and modification
of printed parts and/or post-printing modification and surface immobilization, (ii) pre-
printing incorporation of desired reactive substances, and (iii) a combination of strategies (i)
and (ii). Figure 3B conceptualizes the recent advances in the functionalization of 3DP com-
ponents that integrate geometric functions and chemical reactivity, and their applications in
enzymatic derivatization and sensing, electrochemical sensing, and sample pretreatment.

2014 2015 2016 2017 2018 2019 2020 2021

B 3D-printed analytical device 3D printing Functionalization Analysis

[ W 3D-printed device with functionalization

Post-printing Pre-printing

U
Year

Figure 3. (A) Research interest in 3D-printed analytical devices and 3D-printed devices with functionalization. (B) Advances

in functionalization of 3DP components for sensors and analysis. Reproduced with the permission of Reference [11].

Copyright 2017 Elsevier.

3DP techniques for prototyping and manufacturing include Stereolithography (SLA),
which has also been used to design and fabricate microfluidic channels due to the require-
ment of a unibody design, which maintains channel integrity and eliminates leakage [4].
Examples include a 3DP helical microfluidic device for a rapid sensing of pathogenic
bacteria such as E. coli [14], and a microfluidic component for lab chips that makes the
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colorimetric analysis of urinary proteins inexpensive and efficient for disposable and point-
of-care quantification [15]. Digital Light Processing (DLP) techniques have been used to
prototype optical components-based glucose biosensor which couples a unibody lab-on-
a-chip (ULOC) to a cell phone camera [16]. Microfluidic chips have also been fabricated
by Fused Deposition Modeling (FDM) techniques to extrude polylactide filament at a
temperature of 210 °C for electrochemical analysis of influenza virus using CdS quantum
dots [17]. FDM printed biosensors have also demonstrated the real-time detection of lactate
in oral fluid and sweat [18]. This sensor could be valuable to injured service men and
women by monitoring their lactic acidosis in a preventative measure to avoid heart attacks.

3. Sensors for Military Applications

Michael O’'Hanlon has examined military technology and attempted to determine in
which areas the pace of change is likely to be revolutionary over the following 20 years,
versus high or moderate [19]. Revolutionary change is defined, notionally, as a type and
pace of progress that renders obsolete old weapons, tactics, and operational approaches
while making new ones possible. Military-relevant technology can be organized into four
categories, which are highlighted in Table 3. Special attention is given to 3DP or AM, as this
technology is proving to be unique for all key areas for the military. The focus of this section
is to discuss sensors and the recent advancements made from the technological change
3DP has made to military innovations, namely chemical /biological analytical sensors, in
addition to bioelectronic sensors for monitoring the medical status of soldiers.

Table 3. Military Sensor Technology.

Technology Moderate High Revolutionary

Sensors
Chemical sensors X
Biological sensors X
Optical, infrared, and UV sensors
Radar and radio sensors
Sound, sonar, and motion sensors
Magnetic detection
Particle beams (as sensors)
Computers and communications
Computer hardware
Computer software
Offensive cyber operations
System of systems/Internet of things
Radio communications X
Laser communications X
Artificial intelligence/Big data
Quantum computing X
Projectiles, propulsion and platforms
Robotics and autonomous systems X
Missiles X
Explosives X
Fuels
Jet engines
Internal-combustion engines
Battery-powered engines X
Rockets X
Ships X
Armor
Stealth
Satellites
Other weapons and key technologies
Radio-frequency weapons X
Non-lethal weapons X

X X X XXX X X
< X XXX

> X X
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Table 3. Cont.

Technology Moderate High Revolutionary

Biological weapons X

Chemical weapons X

Other weapons of mass destruction X
Particle beams (as weapons) X

Electric guns, rail guns
Lasers
Nanomaterials
3D printing (3DP)/Additive manufacturing (AM)
Human enhancement devices and substances

XX X X X

3.1. Chemical Sensors

Current research on chemical weapon detection has been focused on finding trace
amounts in a fixed location and making detectors more portable and affordable. Examples
include the pulsed-discharge ionization detector (PDID) and the miniaturized (mini-PDID)
version from Sandia Labs which can detect chemical weapons and identify volatile organic
compounds (VOCs) [20]. The challenge associated with chemical detection is the require-
ment of direct access to the chemical in question, and the analytical method of identification
(laser spectroscopy or gas chromatography (GC)), the latter of which has been employed
in the microPC-microGCxGC subsystem (Figure 4A) paired with mini-PDID (Figure 4B).
PDID can detect everything except neon, has extremely high sensitivity—sub ppb (parts
per billion) and can detect biomarkers that are indicative of disease or infection in humans,
plants, and animals. They are also significantly smaller than gold standard Volatile Chemi-
cal (VC) analyzers but at a fraction of the size and cost for remote, telemedicine, bedside,
and point of care usage.

Modulation valve *
between the GCs

Figure 4. (A) Prototype of the microPC-microGCxGC subsystem. (B) Prototype of the mini-PDID. Reproduced with the
permission of Reference [20]. Copyright Sandia National Labs.

3.2. Biological Sensors

Similar to chemical detection, direct access to a pathogen has been required for its
identity to be revealed, requiring time that is not available on the battlefield. BioWatch
technology has been utilized since Operation Iraqi Freedom, and remains the platform on
which current systems are based, using modified commercial off-the-shelf (COTS) products
to detect biologicals using polymerase chain reaction (PCR) technology [21]. Given the
latest advancements in genetics and microbiology, new ideas are advancing including
the Lawrence Livermore Microbial Detection Array that examines DNA directly (without
cultures). Unfortunately, this application is limited to very specialized applications and
is not at the basis of current DHS or DoD deployable systems [19]. Additionally, the
Department of Homeland Security (DHS) is prototyping a two-tier system that is capable
of detecting and identifying a relatively narrow range of potential pathogens at close range
within 15 min.
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(a)

(b)

An example of a new technology involves the use of holography and Stereolithography
3D-printing lightweight plastics to detect aerosols [22]. HAPI (Holographic Aerosol Particle
Imager) is an instrument carried by an unmanned aerial vehicle (UAV) that can obtain
images in a non-contact manner, resolving particles larger than 10 microns in a sensing
volume of approximately 3 cubic centimeters. The US Army has found a useful application
for it on the battlefield to protect soldiers. As a qualitative comparison, HAPI-Imaged
particles could be used for the identification of potentially hazardous aerosols, biological
cells and pathogens [23]. The optical system utilized to achieve these measurements consists
of two beam paths: a trigger beam and a holography beam [as a reference]. Aerosol
particles are imaged via light scattering techniques and detected by a photomultiplier
sensor. Particles then travel into the hologram beam path where they are reconstructed
into images as illustrated in Figure 5.

particle-laden
_air flow

reference wave object wave

PH L

1
|

L
oo
pulsed = D -
laser El

CCD sensor

illuminated ’
:f aerosol particle f

| K|

particle image

50 um

Figure 5. Basic operational principle of digital holographic imaging of aerosol particles. (a) A pulsed, expanded laser beam
illuminates free-flowing aerosol particles and a CCD sensor records the interference pattern produced by unscattered and
particle-scattered light. (b) Diagram of the image reconstruction process where the hologram is envisioned as a transmission
diffraction grating in the plane Sy, that produces an image | K |2 in the plane Simage through application of diffraction
theory. (c,d) Example of a contrast hologram I, for an aerosol of spherical particles and the particle image obtained from it.
Reproduced with the permission of Reference [22]. Copyright Springer.
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4. 3D Printing Biomedical Devices to Transform Military Medicine

Multiple DoD entities from the U.S. Army Combat Capabilities Development Com-
mand’s Chemical Biological Center to the Defense Threat Reduction Agency are seeking
bioelectronics that can transform military medicine by providing valuable information for
improving acute care on the battlefield [24]. Multiscale extrusion-based 3DP is an enabler
for the integration of diverse classes of materials for fabricating electronics and function-
alized devices that are difficult to manufacture utilizing conventional microfabrication
techniques such as lithography and screen printing. This opens up the possibilities for
printing new active electronics in unique, functional, interwoven technology such as func-
tionalized nanomaterials dispersed in solution-processable inks, which can be integrated
into micron-scale coating or printing processes for the next generation bioelectric sensors,
as shown in Figure 6 [25-27]. Control over the deposition of nanomaterials dictates the
performance of advanced printed devices, but the complex and dynamic forces involved in
the drying process of the nanomaterial solutions are far from fully understood. Multiscale
characterization and imaging of nanomaterial deposition helps to elucidate the relationship
between solvent evaporation and microstructure morphology [28].

Manoscale Inks Microscale Patterning Macroscale Device Fabrication

Figure 6. Multiscale 3D printing of functional devices and bioelectronics Reproduced with the
permission of Reference [24]. Copyright National Science Foundation.

Next generation bioelectronic sensors can be used to measure multiple signals such
as heartbeat and metabolite secretion in perspiration, providing remote monitoring of the
warfighter’s medical status during operations [25,26]. As mentioned previously, conven-
tional electronic devices are typically fabricated via planar, top-down processes on a rigid
substrate [4]. The challenge involved with designing stretchable, flexible electronics for
monitoring soldier’s health is complex due to the intense physical activities that soldiers
endure. Fabricating biosensors via multimaterial printing allows for non-surgical and
needle-free delivery of wireless electronics into the human body and is seen as a way to
circumvent the challenge of fabricating flexible sensors while still monitoring the medical
status of the warfighter with the added potential to deliver therapeutic medications [27,28].

Multimaterial 3DP for Soldiers

Multiscale 3DP allows for manufacturing biocompatible medical devices that can
be used in regions not accessible by wearable, textile-based or epidermal electronics [29].
Ingestible electronics allow for oral delivery that bypasses the adverse immune responses
or infection risk associated with surgery [30]. Fortunately, the stomach is relatively immune
enabling a long-residence time of devices, but ingestible devices are currently not yet
technologically mature to survive the hostile and dynamic gastric environment for a
period longer than a few days [31]. Multimaterial 3DP has conceptualized and created
the “gastric resident electronics” (GRE), a device that folds into a capsule size dose for
oral delivery [32-34]. The GRE fabrication was completed with a multimaterial FDM 3D
Printer utilizing PLA and thermoplastic polyurethane filaments. This device, in Figure 7,
performs long-term wireless bilateral communications and control via Bluetooth and has
been demonstrated with an Android device for up to 15 days. The integration of electronics
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with the human body has the potential for revolutionary impact on soldiers’ personalized
diagnostic and treatment strategies.

Future works are focused on extending the electronic functionalities to beyond a
month lending a next-generation remote monitoring, diagnosis, and treatment platform for
the warfighter, ultimately enhancing the safety and well-being of service members before,
during and after training/operations [24].

Drug delivery
_ modules

Electronics

Drug-delivery Modules

s

w Bl Gastric Residence
ry ., Architecture

5mm |

i Wireless -« i
| Micro-controller Antenna !

Figure 7. (a) 3D models of GRE device components, such as the gastric resident architecture, per-
sonalized drug delivery modules, electronics and power system for communications and control.
(b) Optical photograph of the 3D-printed GRE. (c) X-ray image of the deployed GRE in a porcine
stomach. Reproduced with the permission of Reference [24]. Copyright National Science Foundation.

5. Conclusions, Challenges and Future Opportunities

Despite the impressive achievements, fundamental challenges and opportunities
remain in terms of improving the adaptability, diversity, and performance in 3D-printing
sensors and functionalized analytical devices for biomedical applications [35]. Formulation
efforts are key in 3DP sensors as the available monomer and polymer feedstocks generally
do not vary from specific thermoplastics and photopolymers. Nanomaterials remain
the primary choice for formulators in functionalizing thermoplastics or photocurable
resins into diversified and functionalized analytical devices and sensors because of their
thermostability, physiochemical properties and reactivity [24]. Emerging 4D printing
technologies, based on the printing of stimuli-responsive (e.g., temperature, humidity,
light, magnetic field, pH, analyte or product concentration, redox) materials (SRMs), are
greatly enhancing functionalized devices unlocking new possibilities for chemical and
biochemical analysis [36]. Furthermore, 4D active composite materials and resins have
been demonstrated to achieve a programmed action through the stimulation of shape
memory fibers [37]. These materials have significant potential for developing scaffolds that
only become active when encountering certain parts of the human body.

From the perspective of the warfighter, future works can leverage the integration of
biomedical devices and sensors with soft, complex and flexible substrates that are designed
to fit or be implanted within the human body [4,24]. The development of wireless powering
and energy harvesting strategies to extend greater electronic functionality in the gastric
environment to beyond a month is a prime example. Ingestible wireless electronic devices
are envisioned to be fabricated from a desktop-sized 3D printer(s) that can enable a next-
generation remote monitoring, diagnosis, and treatment platform [30]. Functionalized
multiscale biomedical materials, sensors and analytical devices that can better interface and
integrate with the warfighter will enhance the safety and well-being of service members
giving them a distinct advantage over adversaries on the battlefield.
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