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Abstract

The utilization of heterosis is a successful strategy in increasing yield for many crops. How-

ever, it consumes tremendous manpower to test the combining ability of the parents in

fields. Here, we applied the genomic-selection (GS) strategy and developed models that sig-

nificantly increase the predictability of heterosis by introducing the concept of a regional

parental genetic-similarity index (PGSI) and reducing dimension in the calculation matrix in

a machine-learning approach. Overall, PGSI negatively affected grain yield and several

other traits but positively influenced the thousand-seed weight of the hybrids. It was found

that the C subgenome of rapeseed had a greater impact on heterosis than the A subge-

nome. We drew maps with overviews of quantitative-trait loci that were responsible for the

heterosis (h-QTLs) of various agronomic traits. Identifications and annotations of genes

underlying high impacting h-QTLs were provided. Using models that we elaborated, combin-

ing abilities between an Ogu-CMS-pool member and a potential restorer can be simulated in

silico, sidestepping laborious work, such as testing crosses in fields. The achievements

here provide a case of heterosis prediction in polyploid genomes with relatively large

genome sizes.

Author summary

Oilseed rape (Brassica napus) is of significant economic interest worldwide, providing

high-quality oil with excellent health-promoting properties. It represents an excellent

model of a successful recent polyploid that rapidly became an important crop worldwide.

The utilization of hybridization, leading to hybrid vigor, or heterosis, is a successful strat-

egy in increasing yield and vigor for many field crops including rapeseed (Brassica napus).
However, the procedure of using classical breeding methods remains slow and laborious,
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illustrating the need for predictive and innovative methods. Here, we have achieved a sig-

nificant breakthrough by using genome selection and significantly advanced models to

predict the heterosis by pairing genome-wide nucleotides of parents. We provided maps

with overviews of quantitative trait loci that were responsible for the heterosis of various

agronomic traits. The research used deep resequencing (>30x) data of the entire poly-

ploidy rapeseed genome, providing a successful case for the prediction of heterosis in

polyploid genomes with relatively large genome sizes. Moreover, we provided the genetic

information (SNPs) of 1007 core accessions of this species in the public domain for testing

combinations with high heterosis using our predicting model for rapeseed breeders all

over the world.

Introduction

Heterosis, which is a product of crossing two parents with different genetic backgrounds, is a

common phenomenon in the biological world. The hybrid generation often displays more

vigor, greater resistance to disease, better adaptability under stressful environments, and

higher yield, when compared with the parents. Heterosis was first discovered in a tobacco

hybridization experiment approximately 150 years ago, and it has been applied extensively for

yield improvement in various field crops such as rice [1], corn [2], cotton [3], rapeseed [4],

and some vegetables [5].

High-parent heterosis (HPH) and mid-parent heterosis (MPH) describe the degrees of phe-

notypic differences between a hybrid and its better parent and between a hybrid and the aver-

age of its two parents, respectively [6]. Numerous theories have been used to explain heterosis,

and the major ones are the dominance and over-dominance hypotheses. The dominance

hypothesis attributes the enhanced performance of hybrids to the repression of undesired

recessive alleles of a parent by dominant favorite alleles of the other parent, and the poor per-

formance of inbred lines to the loss of a diverse genetic basis, which is manifested by numerous

homozygous loci [7]. Conversely, the over-dominance hypothesis attributes the superiority of

heterozygotes to the survival of alleles that are recessive and harmful in homozygotes, and the

poor performance of inbred lines to high proportions of such deleterious recessive alleles [8].

Dominance and over-dominance effects give rise to different gene expression profiles in

offspring. Considering over-dominance is the main source of superiority in adaptability under

heterosis, certain genes in heterozygous individuals could be overexpressed in comparison to

their homozygous parents. However, in the case of dominance, fewer genes would be downre-

gulated in heterozygous individuals compared with their parents. Based on such assumptions,

greater heterosis would be generated with an increase in heterozygous loci.

To obtain ideal hybrids, breeders have to generate high numbers of hybridization combina-

tions and test their performance under multiple environments over time. Genomic selection

(GS), a novel approach in which selection is not performed based on a few markers but on a

genome-wide marker dataset, combines marker data with phenotypic and pedigree data (if

available), and attempts to accurately predict the performance of the next generation rather

than to identify individual loci that are significantly associated with a trait, with more rapid

results and reduced costs in breeding activities. In addition, GS, which considers the entire

genome sequences of parents as valuable breeding assessments and captures single-site effects

even if they are minimal, can shorten the breeding cycle considerably, and save a lot of time

and labor. At present, the major methods of developing GS include the genomic best linear

unbiased prediction (GBLUP) method [9], and the least absolute shrinkage and selection
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operator (LASSO) method [10]. The Pearson correlation coefficient between the observed and

predicted phenotypic values is often an indicator of the prediction ability [11,12].

Rapeseed (Brassica napus), a typical amphidiploid species, which originated from interspe-

cific hybridization between Brassica rapa (AA, n = 10) and Brassica oleracea (CC, n = 9) only

7500 years ago [13], is one of the significant economic interests worldwide, providing high-

quality oil with excellent health-promoting properties, and with a significant potential for

non-food use such as biofuels and bioplastics. The yield and overall production of the crop

have been increased significantly owing to the commercial use of hybrids in major rapeseed

production areas, such as Canada, China, and Europe. As for many other crops, the strategy of

choice for large-scale commercial production of hybrids relies on the development of cyto-

plasmic male-sterile parents, which fertility can be restored when crossed to another parent

carrying a restorer-of-fertility gene. In rapeseed, the Polima cytoplasmic male sterile (Pol-
CMS) system is widely used in semi-winter Chinese ecotype breeding [14]. Although it is rela-

tively easy to find restorers for Pol-CMS lines, male sterility in the Pol-CMS type lines is unsta-

ble under certain environmental conditions. However, the Ogura Cytoplasmic Sterile (Ogu-

CMS) is much more stable and complete; nevertheless, finding restorers for Ogu-CMS lines is

challenging, and it takes several years to transfer restoring genes into potential restorers.

In this study, we successfully bred a series of Ogu-CMS restorers and constructed a pool of

Ogu-CMS lines, which reflects the genetic diversity of the semi-winter ecotype [15]. We

applied GS and developed models to predict the heterosis by pairing genome-wide nucleotides

of parents. Maps with an overview of quantitative trait loci for heterosis (h-QTLs), at which

parental genetic similarity index (PGSI) positively or negatively correlated with the heterosis

of a specific trait, were drawn. With the GS-based predictive models that we elaborated, com-

bining abilities between an Ogu-CMS-pool member and one of 1007 potential restorers could

be tested in silico by pairing the nucleotide sequences of parents. This will fasten rapeseed

breeding by saving years of effort, and provide a case of study of heterosis prediction in poly-

ploid genomes with relatively large genome size.

Results

Heterosis of F1 hybrids of the Ogu-CMS system

We developed an Ogu-CMS pool consisting of 50 members in addition to eight Ogu-restorers

for this experiment. The identifications (ID) and relevant information of the CMS and restorer

lines are provided in S1 Table. The 50 Ogu-CMS lines constituted an Ogu-CMS pool that had a

wide genetic diversity reflected by a principal component analysis (PCA) based on 1,057

sequenced genomes, including those of the CMS lines used in the present study. The lines rep-

resent the semi-winter ecotype in the background of a worldwide germplasm collection (S1

Fig) [15].

Crosses between the 50 CMS lines and the eight restorers yielded 400 hybrids. The hybrid

lines were grown under three environmental conditions from 2017 to 2019. They demon-

strated significant heterosis in terms of HPH and MPH across various agronomic traits such

as plant height (PH), the number of seeds per silique (NSS), and grain yield (GY). The pheno-

typic data and the genetic relationship between parents and offspring are provided in S2 and

S3 Tables. In addition, they exhibited significant MPH across traits such as number of

branches per plant (NBP), number of siliques per plant (NSP), and thousand-seed weight

(TSW) (Fig 1). GY-HPH and GY-MPH values of the top 10% hybrid lines were 90.16% and

146.33%, respectively, whereas, the GY-HPH and GY-MPH values of the top 1% hybrid lines

were as high as 168.81% and 233.01%, respectively (S4 Table).
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To estimate the influence of parents on heterosis, we calculated the correlation coefficients

between the phenotypic values of the parents and those of the hybrids. For most traits, the cor-

relations between the hybrids and their male parents were higher than those between the

hybrids and their female parents (S5 Table). Notably, the correlation coefficient of PH between

the hybrids and male parents was the highest (r = 0.64), indicating a higher impact of the male

parents on the PH of the hybrids. Furthermore, we compared the correlations among the six

agronomic traits of the hybrids. There were relatively high positive correlations between GY

and NSP (r = 0.63), NSP and NBP (r = 0.46), NSS and PH (r = 0.31), and relatively high nega-

tive correlations between TSW and NSS (r = -0.31), TSW and NSP (r = -0.15), and NSP and

NSS (r = -0.21) (Fig 2B and S6 Table). Among the six traits, NSP had the greatest correlation

with GY, suggesting a considerable influence of silique number on yield heterosis in rapeseed

(Fig 2A). Overall, the heterosis of the hybrids in the semi-winter ecotype with the Ogura sys-

tem was significant and attractive.

Correlation between parental genetic similarity index (PGSI) and F1

heterosis

To determine the mechanism by which parental-sequence similarity potentially influences

hybrid vigor, we calculated the correlations between the genome-wide PGSI and heterosis. A

total of 4.44 million SNPs were obtained across the paring genomes by mapping reads to the

Fig 1. Comparison of agronomic-trait performance between the F1 hybrids and their parents. PH: plant height, NBP: number of branches per plant, NSP:

number of siliques per plant, NSS: number of seeds per silique, TSW: thousand-seed weight, and GY: grain yield. P1 represents female parents, and P2 represents

male parents. The values indicate the significance of pairwise comparisons.

https://doi.org/10.1371/journal.pgen.1009879.g001
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reference genome [13]. Overall, PGSI negatively influenced GY, NSS, NSP, and PH, but posi-

tively influenced TSW, regardless of the type of heterosis (HPH and MPH) (Fig 3). The abso-

lute values of the correlation confidence between PGSI and NSS-HPH, TSW-HPH, PH-MPH,

and NSS-MPH were relatively high (S7 Table).

As rapeseed (Brassica napus) is a typical polyploid species, we compared the influence on

heterosis between the A and C subgenomes. In general, the influence from the C subgenome

was greater than the influence from the A genome on heterosis across the six traits. Further-

more, we compared the influences between the 19 chromosomes making up the whole

genome. The PGSIs of C01, A03, C05, C06, C02, A06, C09, A01, C04, A07, C08, A02, A09,

A04, C03, A10, C07, A05, and A08 had influences (in order from high to low) on HPH, respec-

tively. The PGSIs of C05, A03, C04, C01, C03, A07, C09, C02, C06, A09, A01, A06, A10, C08,

A02, A05, A04, A08, and C07 had influences (in order from high to low) on MPH, respectively

(S8 Table). Here, the influence was calculated by stacking up the absolute values of the correla-

tion coefficients, where positive correlations meant that the higher the PGSI, the smaller the

heterosis, negative correlations indicated that the lower the PGSI, the greater the heterosis.

The absolute value indicates the degree of impact.

Genomic regions where parental genetic similarity impacts on heterosis of

the Ogura hybrids

We calculated PGSI and performed LASSO analysis to identify the genomic regions responsi-

ble for the heterosis of traits, which were defined as h-QTLs. 172 h-QTLs were associated with

GY-HPH (Fig 4 and S9 Table). Some h-QTLs had a relatively greater effect on heterosis, as

shown with the darker colors in Fig 4. The darker the colors of circles or triangles, the greater

Fig 2. Correlations between the phenotypic value of agronomic traits (left) and the contribution of a trait to grain yield (right). PH: plant height, NBP: number of

branches per plant, NPB: number of primary branches per plant; NSB: number of secondary branches; NSP: number of siliques per plant, NSS: number of seeds

per silique, TSW: thousand-seed weight, GY: grain yield. (A) Contribution of a specific trait to the grain yield. R represents the correlation coefficient and P

represents significant values. (B) Pairwise correlations among the phenotypic values of agronomic traits. The sectors indicate the positive or negative values of the

correlations. The darker the sectors, the greater the absolute values. The number inside the box represents the correlation coefficient. Changes in color from dark

red to dark blue correspond to changes in correlation coefficient from -1 to +1.

https://doi.org/10.1371/journal.pgen.1009879.g002
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the impacts on heterosis, either positive or negative. We also observed 130, 60, 102, 111, and

104 h-QTLs associated with TSW-HPH, NSS-HPH, NSP-HPH, NBP-HPH, and PH-HPH,

respectively (S2–S6 Figs and S10–S14 Tables). Consistent with the results illustrated in Fig 3,

the C subgenome had a higher impact on the heterosis, accounting for 57.0%, 56.6%, 62.7%,

62.7%, 63.1%, and 62.5% of the h-QTLs responsible for GY-HPH, TSW-HPH, NSS-HPH,

NSP-HPH, NBP-HPH, and PH-HPH, respectively.

In the present study, all the variables in the LASSO prediction model were defined as

h-QTLs, and the top 10% and the bottom 10% regression coefficients of the variables

were defined as high-impact h-QTLs. All h-QTLs for a specific trait were displayed on

the maps and the underlying genes responsible for high-impact h-QTLs for investigated.

There were 34 high-impact h-QTLs for GY-HPH according to the definition. The more

heterozygous the h-QTLs such as Chr.C06-04, Chr.C08-01, the higher the GY-HPH.

Conversely, the more homozygous the h-QTLs, such as Chr.C08-02 and Chr.C03-08, the

higher the GY-HPH. The candidate genes covered by the high-impact h-QTLs for

GY-HPH, PH-HPH, TSW-HPH, NSS-HPH, NSP-HPH, and NBP-HPH are listed in

S15–S20 Tables.

Fig 3. Effects of parental genetic similarity index (PGSI) on heterosis of traits. The pink and green squares represent

negative and positive effects, respectively. The darker the squares, the larger the absolute value of the correlation

coefficients. (A) Effect of PGSI on high-parent heterosis (HPH). (B) Effect of PGSI on mid-parent heterosis (MPH).

https://doi.org/10.1371/journal.pgen.1009879.g003
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Fig 4. h-QTLs responsible for GY-HPH. The circles represent the h-QTLs that positively contributed to the GY-HPH, and

the triangles represent h-QTLs that were negatively correlated to GY-HPH. The darker the colors of circles and triangles, the

greater the effects of the h-QTLs, either positive or negative. The colors on the chromosomes indicate the density of genes.

The darker the blue, the lower the gene density, the darker the red, the higher the gene density. A and C stand for the two

sub-genomes of Brassica napus. A limited number of h-QTLs on randomly piled contigs, whose positions on certain

chromosomes were unknown, are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the bigger the PGSI, the greater the

heterosis.

https://doi.org/10.1371/journal.pgen.1009879.g004

Table 1. Comparison of the predictability of high-parent heterosis (HPH) of six traits among six models.

Methods GY TSW NSS NSP NBP PH

GBLUP_A 0.7165 0.7110 0.6686 0.7218 0.7543 0.8815

GBLUP_AD 0.7165 0.7251 0.6855 0.7218 0.7576 0.8834

LASSO_SNP 0.8000 0.7987 0.7616 0.8062 0.8246 0.9165

LASSO_1Mb 0.8828 0.8671 0.7990 0.8260 0.8697 0.9370

LASSO_500Kb 0.8649 0.8842 0.8516 0.8544 0.8745 0.9646

LASSO_100Kb 0.8379 0.8729 0.8837 0.8816 0.9246 0.9754

Notes: PH, plant height; NBP, number of branches per plant; NSS, number of seeds per silique; NSP, number of siliques per plant; TSW, thousand-seed weight; GY,

grain yield.

https://doi.org/10.1371/journal.pgen.1009879.t001
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Prediction of heterosis in a training population containing 400 hybrids via

cross-validation

To predict heterosis of the hybrids with the Ogu-CMS system, we performed ten-fold cross-

validation with 100 replicates in a training population containing 400 hybrids produced by

50 Ogu-CMS lines and eight restorers. To identify the optimal model for prediction, we com-

pared the predictabilities of various models, namely GBLUP_A, GBLUP_AD, LASSO_SNP,

LASSO_100Kb, LASSO_500Kb, and LASSO_1Mb. Parameters from ANOVA for all the pre-

dictions were listed in S21 Table. All predictabilities were greater than 0.6 (Table 1). Predict-

ability varied across traits. For example, PH was the most predictable trait across all models. In

addition, the predictability of HPH was higher than that of MPH across most traits, excluding

NSS (Table 2).

Generally, the LASSO models demonstrated higher predictabilities than the GBLUP mod-

els. The GBLUP_AD model did not exhibit significantly higher predictability than the predict-

ability of the GBLUP_A model. Among the four LASSO models, LASSO_SNP had the lowest

predictability values across the six traits, regardless of the heterosis definition (HPH or MPH),

indicating the necessity for reducing dimension in the calculations. In terms of HPH, the opti-

mal model for NSS, NSP, NBP, and PH was LASSO_100Kb, and the optimal models for GY

and TSW were LASSO_1Mb and LASSO_500Kb, respectively (Table 1). In terms of MPH, the

optimal model for GY, TSW, NSP, and PH was LASSO_100Kb, and the optimal models for

NSS and NBP were LASSO_500Kb and LASSO_1MB, respectively (Table 2). Overall, accord-

ing to the results, an appropriate model should be selected to predict the heterosis of a specific

trait. The LASSO_100Kb model was acceptable for the prediction of heterosis in all six traits

(Fig 5).

Further validation of heterosis prediction models

We adopted the LASSO_100Kb, LASSO_500Kb, and LASSO_1Mb models to predict the het-

erosis of a 100-hybrid population generated by the Ogu-CMS-pool members and two indepen-

dent restorers. The predicted and actual values observed in fields were analyzed to determine

the predictability (Fig 6 and S22 Table). For HPH, the correlation coefficients between the pre-

dicted and actual values were 0.84, 0.68, 0.66, 0.52, 0.64, and 0.65 for PH, NBP, NSP, NSS,

TSW, and GY, respectively. For MPH, the correlation coefficients between the predicted and

actual values were, conversely, 0.73, 0.36, 0.51, 0.62, 0.61, and 0.41 for PH, NBP, NSP, NSS,

TSW, and GY, respectively. The predictability of PH was the highest, regardless of heterosis

definition. As illustrated by the red and blue colors in Fig 6, the model could successfully indi-

cate a superior restorer based on the performances of some certain traits. For example,

Table 2. Comparison of the predictability of mid-parent heterosis (MPH) of six traits among six models.

Methods GY TSW NSS NSP NBP PH

GBLUP_A 0.6310 0.6463 0.7193 0.7136 0.6236 0.7808

GBLUP_AD 0.6310 0.6506 0.7230 0.7136 0.6276 0.7811

LASSO_SNP 0.7416 0.7550 0.8000 0.8000 0.7416 0.8485

LASSO_1Mb 0.7733 0.8071 0.8698 0.8199 0.8374 0.8928

LASSO_500Kb 0.7898 0.8134 0.9203 0.8342 0.8117 0.9240

LASSO_100Kb 0.7902 0.8352 0.8806 0.8670 0.8229 0.9490

Notes: PH, plant height; NBP, number of branches per plant; NSS, number of seeds per silique; NSP, number of siliques per plant; TSW, thousand-seed weight; GY,

grain yield.

https://doi.org/10.1371/journal.pgen.1009879.t002
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Restorer No. 9 was superior to Restorer No. 10 in PH-HPH and TSW-HPH; conversely,

Restorer No. 10 was superior to Restorer No. 9 in NSS-HPH. However, the GY-HPH,

NBP-HPH, and NSP-HPH depended on specific combinations between the restorers and the

Ogu-CMS-pool members (S1 Table), and it was hard to tell which restorer was better in yield-

ing higher GY-HPH, NBP-HPH, and NSP-HPH. Nevertheless, the combinations for the high-

est GY-HPH, NBP-HPH, and NSP-HPH could be recommended based on the result.

Discussion

As a promising new breeding method, GS has been applied to the prediction of heterosis of

various crops such as rice [11,12,16], corn [17], barley [18], wheat [19], ryegrass [20], and

pumpkin [21]. The traits which were predicted in the different studies were not only limited to

yield and yield components [16–21], but also those traits such as biotic- and abiotic-stress tol-

erances [22,23], nutrient utilization efficiency [24,25].

Compared with the previous GS studies on other crops, our research had the following

characteristics. First, the genetic information used in our study involves 4.44 million SNPs,

which were 2–3 orders of magnitude more than the number of molecular markers used in the

previous studies [16–25]. The previous studies either involved resequencing data of the crops

with much smaller genomes such as rice [11,12,16], or only a small part of genome-wide SNPs

of the crops with larger genomes such as barley [18] and corn [17]. We used deep resequencing

(>30x) data of the entire polyploidy rapeseed genome, providing a successful case for the pre-

diction of heterosis in polyploid genomes with relatively large genome sizes. More SNP mark-

ers tend to imply a more comprehensive level of genome coverage and indicate the

involvement of more genetic information. However, a higher number of SNPs does not always

mean higher predictability. Previous studies showed that the accuracy of prediction increases

with more molecular markers within a specific region, but it reaches a peak after which

increasing the density of markers is no longer beneficial for prediction accuracy [26–31]. In

addition, there is a relationship between the number of markers required and the degree of

linkage disequilibrium (LD) of the species. The more rapidly a species declines in LD, the

Fig 5. Comparison of predictability of LASSO_100Kb model for high-parent heterosis (HPH) and mid-parent heterosis (MPH) among six agronomic

traits. Different letters indicate a significant difference (p = 0.01) between a comparison pair. PH: plant height, NBP: number of branches per plant, NSP:

number of siliques per plant, NSS: number of seeds per silique, TSW: thousand-seed weight, and GY: grain yield.

https://doi.org/10.1371/journal.pgen.1009879.g005
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smaller the LD distance, and more molecular markers would be required within the same size

of the chromosomal fragment. The LD distances of the populations used in our study were less

than 100Kb (S7 Fig), which is consistent with the previous study [15].

Second, instead of the direct use of SNPs, we introduced the concept PGSI to drastically

reduce the dimension of the calculation matrix. The predictability was, therefore, increased to

0.8828 for GY-HPH and even 0.9754 for PH-HPH, which were much higher than those in pre-

vious reports were [16–24]. When we calculated the PGSI, we simply divided the chromo-

somes into 1Mb-, 500Kb-, and 100Kb-sizes, respectively, without considering local LD and

gene numbers within the regions, which was technically complicated. LD is a concept of popu-

lation genetics, meaning the non-random association of alleles at different loci. It is meaning-

ful to calculate LD for a given population but is practically difficult to calculate PGSI based on

LD because the LD distance of two parental genomes does not always match with each other,

and an LD distance for an individual genotype was rather difficult to be determined.

Third, we created the concept of h-QTLs and drew maps with overviews of h-QTLs across

the genome, at which PGSI positively or negatively associated with the heterosis as we showed

for several agronomic traits. The h-QTL maps published in our study predict that the genomic

regions (with a dark color) would exert a high impact on trait-specific heterosis, meaning that

Fig 6. Fitness between the predicted high-parent heterosis (HPH) and the actual observed HPH of the testing population containing 100 hybrid lines. Each

dot represents one of the 100 hybrid lines that arose from a cross between an Ogu-CMS-pool member and two restorers independent from the training population.

The red and blue colors represent restorer 9 and 10, respectively. The grey areas indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pgen.1009879.g006
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the PGSI of those regions strongly correlates with the heterosis. We would suggest that those

regions be very much considered in a GS breeding for heterosis. Since the LD distance of the

rapeseed population is less than 100kb (S7 Fig), and an h-QTL of 100 Kb in size might span

across two LD fragments on average. There must be a few genes that were responsible for a

kind of heterosis despite the ‘false’-gene majority (S15–S20 Tables). Most allelic changes might

not associate with trait-specific heterosis. However, it is beyond the scope of this paper to iden-

tify the major functional genes of each h-QTL.

Hybrid vigor was well demonstrated here in semi-winter rapeseed ecotype based on the

Ogu-CMS system, with the top 10% hybrids displaying 90.2% GY-HPH on average. Among

the major yield components, NSP had the greatest correlation with GY, which is consistent

with previous findings [4]. TSW was negatively correlated with NSS and NSP, and NSP was

negatively correlated with NSS, since the traits, which are both limited by photosynthate allo-

cation, counteract each other. Except for PH value, higher values of the traits such as TSW,

NSS, NSP, and NBP were better for GY-HPH. Higher PH may give rise to higher biomass,

which would positively affect yield. However, higher PH would not be always better for

GY-HPH, e.g. lodging caused by plant height could negatively influence the final yield. In the

present study, there was no correlation between PH-HPH and GY-HPH, which could be

attributed to relatively low lodging during the seasons when the field experiments were con-

ducted. The result shows that the male parents would affect the hybrids more than the female

parents on the height of F1 plants. One of the possible reasons could be the much smaller size

of the restorer-line (male) population than that of the CMS-line (female) population. The

results of our study showed that a high overall PGSI would lead to high TSW; conversely, a low

PGSI would favor a high NSS. To our knowledge, these interesting findings were not reported

in other field crops.

The commercial use of the Ogu-CMS system for the semi-winter rapeseed ecotype would

be a breakthrough in rapeseed production in the Yangtze River Basin because of the advan-

tages of this CMS system in the form of stability and complete male sterility [32]. Most rape-

seed genotypes can serve as Ogu-CMS line maintainers; however, the process of breeding an

Ogu-restorer is slow and laborious [33]. In the present study, we established a pool of 50 Ogu-

CMS lines, which represents the genetic diversity of the semi-winter rapeseed ecotype (S1 Fig).

Models that could predict the heterosis of F1 plants from the crosses between the Ogu-CMS-

pool members and potential restorers were developed. Using the models, we could test the

combining ability between an Ogu-CMS-pool member and any potential restorer by pairing

the nucleotide sequences in silico. Such a tool could bypass otherwise arduous manual work

such as testing crosses in the field. Breeding efforts could be, therefore, focused on the transfer

of restorer genes to a limited number of candidates, which are often achieved by backcrossing

processes that usually take several years. To facilitate such applications, we established

BnaSNPDB, an interactive web portal for efficient retrieval and analysis of Single Nucleotide

Polymorphisms (SNPs) of 1,057 rapeseed germplasm accessions (https://bnapus-zju.com/

bnasnpdb) [34]. SNPs of a genotype can be easily retrieved for in silico pairing with SNPs of an

Ogu-CMS-pool member to simulate hybrid vigor. To validate the accuracy of the model, we

created a test population using the same 50 Ogu-CMS lines and two independent restorer

lines. The results of the present study show that different models are suitable for predicting dif-

ferent traits or heterosis based on respective definitions. For example, the LASSO_100Kb

model is suitable for predicting NSS-HPH, NSP-HPH, NBP-HPH, and PH-HPH, whereas the

LASSO_500Kb and LASSO_1Mb models are suitable for predicting TSW-HPH and GY-HPH.

PH heterosis predictability was the highest among the six agronomic traits explored since PH

could be more accurately measured than other traits, in which the errors were more challeng-

ing to control. Numerous studies have compared the predictability of heterosis across various
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models. However, debate persists regarding the optimal method for predicting heterosis

[11,16,35].

In the present study, the four LASSO methods were superior to the two GBLUP methods in

terms of heterosis predictability. LASSO regression was characterized by variable selection and

regularization of complexity while fitting the generalized linear model. Variable filtering is

essential for LASSO, which means not inputting all variables into the model for fitting, but

selectively inputting variables into the model to obtain better performance parameters. Com-

plexity adjustment controls the complexity of the model through a series of parameters to

avoid overfitting. For a linear model, complexity is directly related to the number of variables

in the model. The more the variables, the higher the model complexity. Although including

more variables in the fitting could often lead to a superior model, there is a risk of overfitting.

In general, overfitting is possible when the number of variables is much greater than the num-

ber of data points, or when a discrete variable has too many unique values. In our study, there

was no significance between LASSO_A and LASSO_AD in predicting the heterosis. This may

be because the kinship matrix of additive effect has already captured much information about

the kinship matrix of dominant effect. The dominance effect did not, therefore, play a signifi-

cant role in accounting for the rest of the variances. The least predictability of the LASSO_SNP

model could have arisen from the fact that we used SNP markers as variables. Too numerous

variables could have led to overfitting, which, in turn, minimized heterosis predictability.

In general, there is a higher degree of genetic diversity in the A subgenome than in the C

subgenome in large genetic populations, which might be caused by the fact that the A subge-

nome integrates part of chromosome segments from the Brassica rapa genome through inter-

specific hybridization with B. rapa [15]. Moreover, evolutionary studies demonstrated that the

genetic diversity of natural populations in two ancestors of rapeseed varies greatly, with higher

genetic diversity in the natural populations of Brassica rapa than in natural populations of

Brassica oleracea [36]. With the above facts in mind, it was at first glance strange that there

were more h-QTLs distributed on the C subgenome than the A subgenome. One possible rea-

son could be that the genetically diverse regions in terms of SNP abundance might not be

those functional regions, as there was a biased expression of functional genes between the two

subgenomes. Further, the allelic variations on the genetically conserved C subgenome, not

those ‘wild’ alleles on the genetically diverse A subgenome, were more valuable to cause F1 het-

erosis. The knowledge about the asymmetric distribution of h-QTLs suggests the selection of

parents with a more allelic variation on C genomes which are valuable for F1 heterosis.

The results do not imply that all forms of heterosis resulted from the h-QTLs with low

PGSI. On contrary, PGSI should be high, at Chr.C03-No.08, Chr.C04-No.04, Chr.C07-No.02,

Chr.C04-05, and Chr.C08-05 to achieve high GY-HPH, NSS-HPH, NSP-HPH, NBP-HPH,

and PH-HPH, respectively (S9–S14 Tables). Heterosis has been proposed as an alternative

term for ‘heterozygosis’ to avoid limiting the term to the effects that would only be explained

based on heterozygosity according to Mendelian inheritance principles [37]. Heterozygosity

between parents does not always give rise to hybrid vigor. Genetic incompatibility between

parents could reduce fitness via a form of ‘outbreeding depression’ [38,39].

We adopted regression coefficients of the variables of the regression models as the criteria

for selecting h-QTLs. Numerous h-QTLs responsible for GY-, TSW-, NSS-, NSP-, NBP-, and

PH-HPH, respectively, were identified and illustrated (Figs 4 and S2–S6). The candidate genes

responsible for high-impact h-QTLs were suggested (S15–S20 Tables). The field experiment

with 400 hybrids in three replicates was not a very small scale for rapeseed. Moreover, the

CMS pool consisting of maternal lines was genetically diverse, the population that contained

400 hybrids demonstrated a wide range of heterosis in all the six agronomic traits investigated.
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In conclusion, we demonstrated in this study the high heterosis of F1 hybrids in semi-win-

ter rapeseed ecotype using the Ogu-CMS system and implemented GS-based models for pre-

diction of heterosis and identification of heterotic parental combinations. PGSI negatively

influenced GY, NSS, NSP, and PH, but positively influenced TSW. The C subgenome had a

greater impact on heterosis than the A subgenome in the polyploidy genome of B. napus. We

went a step further and drew maps showing overviews of h-QTLs across the genome, at which

PGSI positively or negatively associated with GY- HPH, TSW- HPH, NSS-HPH, NSP- HPH,

NBP- HPH, and PH-HPH, and listed the IDs of the genes underlying h-QTLs. Using the GS-

based prediction models, combining abilities between an Ogu-CMS-pool member and a

potential restorer can be tested in silico by pairing the nucleotide sequences of parents. Such

models could sidestep laborious work, such as testing crosses in fields while facilitating breed-

ing efforts via the transfer of restorer genes to a restorer candidate. The achievements here pro-

vide a case of heterosis prediction in polyploid genomes with relatively large genome sizes.

Materials and methods

Definition of high and mid parent heterosis

High and mid-parent heterosis were calculated according to the formula below.

HPH ¼ F1� HP
HP , where, HPH stands for high parent heterosis; F1 is the phenotypic value of

the F1 hybrid; HP represents the phenotypic value of the high parent.

MPH ¼ F1� MP
MP , where, MPH stands for mid-parent heterosis; F1 is the phenotypic value of

the F1 hybrid; MP means the average phenotypic value of the parents.

Construction of the Ogu-CMS pool

Semi-winter genotypes that represent the genetic diversity of cultivars in the Yangtze River

Basin were carefully selected to develop Ogu-CMS lines. Genomes of the CMS lines were

deeply (30×) sequenced and analyzed. Their genetic diversity was analyzed in the background

of a worldwide germplasm collection consisting of 1,057 accessions [39]. After principal com-

ponent analysis (PCA), 50 CMS lines were selected for the construction of the Ogu-CMS pool.

PCA was performed using the smartPCA program in the EIGENSOFT package (https://

github.com/DReichLab/EIG; v.6.0.1). Different ecotype samples were separated by two princi-

pal components (PCs), that is, the winter type was separated from the semi-winter and spring

ecotypes by PC1, while the semi-winter type was separated from winter and spring ecotypes by

PC2.

Genome resequencing

DNAs of 50 Ogura CMS lines and 10 restorers were extracted and sequenced using a previ-

ously described method [15]. Genomic DNA was extracted from young leaves using a cetyltri-

methylammonium bromide-based protocol. A NanoDrop2000 spectrophotometer (Thermo

Fisher Scientific) was used to determine the quality and concentrations of the genomic DNA.

DNA libraries were constructed for each line for Illumina sequencing (Illumina, California,

USA) according to the manufacturer’s (Biomarker Technologies Cooperation, Beijing, China)

instructions. Following DNA-library construction, the accessions were resequenced on an Illu-

mina HiSeq XTen (Illumina, California, USA) platform using a commercial service, with a

150-bp read length. In total, 2,862-Gb high-quality sequences were obtained. All clean reads

were mapped to the ‘Darmor-bzh’ reference genome [13], resulting in a 38-fold coverage and a

99.2% mapping rate on average. SNPs and InDels within the 60 accessions were called using
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the HaplotypeCaller module in GATK [40] and were filtered based on parameters applied in a

previous study [15].

Definition of parental genetic similarity index

The PGSIs of each cross were calculated using 1-Mb, 500-Kb, and 100-Kb window widths, and

the entire genome could be divided into 873, 1722, and 8522 blocks, respectively, based on the

window widths. For each block, the sites where parents had the same single nucleotides were

marked as ‘2’. The sites where one parent had a nucleotide similar to the reference but the

other parent had a different nucleotide were marked as ‘1’. The sites where both parents had

different nucleotides from the reference were marked as ‘0’. The PGSI of a block was two times

the value obtained by accumulating the marks and then dividing them by the number of loci

available for computation.

Phenotyping and phenotypic data analysis

The 50 Ogu-CMS lines were used as female parents, and the eight restorer lines were used as

male parents to produce 400 hybrids based on an incomplete double-cross design. Another

100 hybrid lines were produced between the Ogu-CMS-pool members and two restorers, inde-

pendent of the 400-hybrid training population. The training and testing populations were

grown in Zhangye, Gansu Province (100˚85E, 38˚43N) in 2017, Hangzhou, Zhejiang Province

(120˚19E, 30˚26N) in 2018, and Huzhou, Zhejiang Province (119˚91E, 30˚01N), in 2019. The

phenotype values of six agronomic traits including PH, NBP, NSP, NSS, TWS, and GY were

measured. The experiments were based on a randomized-complete-block design with three

replicates. At least three plants were sampled for each genotype in each replicate. For the NSS

trait, 30 siliques from the main inflorescences of each plant were harvested and counted to

determine the number of seeds in each silique.

To facilitate the subsequent analyses, phenotypic values from the three environments were

integrated according to a linear mixed model as follows: y = 1rμ+Zg+Eu+e, where y is the vec-

tor of the mean value of each genotype in each environment calculated in the first step; r is the

sum of the number of genotypes measured in each environment and 1r is an r-dimensional

vector of 1’s; μ is the common intercept; g is the vector of genotypic effects of all genotypes and

Z is the corresponding design matrices for g; u is the vector of environmental effects and E is

the corresponding design matrix for u. The genotypic effect g was assumed to be a fixed value

to gain the best linear unbiased estimation (BLUE) of each genotype across environments. The

BLUE value of each genotype was used to perform all the analyses in the study. All linear

mixed models were implemented using the lme4/R program [41].

Prediction methods

Two parametric methods, GBLUP and LASSO, were applied to predict heterosis. The general

model of the two parametric methods that include all m markers is described as follows:

y ¼ Xbþ
Pm

k¼1
Zkgk þ ε, where y is an n ×1 vector of the phenotypic values for each trait; n is

the individual size; X is an n × q matrix of predictors used to predict y; q is the number of pre-

dictors in the model; β is a q ×1 vector of model effects, ε is an n × 1 vector of residual errors

with an assumed N (0, Iσ2) distribution; Zk is a column for the genotype indicator variable of

all n individuals for marker k; γk is the additive genetic effect of marker k. The marker k for

individual j (where j = 1, 2, . . ., n) in the study is defined as 1, 0, and -1 for homozygote of the

minor allele, heterozygote, and homozygote of the major allele, respectively.
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The GBLUP method assumes gk � N 0; 1

m�
2

� �
, where ϕ2 represents the polygenic variance

shared by all markers. The expectation of y is E(y) = Xβ. The variance-covariance matrix is var

(y) = V = Kϕ2+ Iσ2 = (Kλ + I)σ2, where λ = ϕ2/σ2 is the variance ratio and K ¼ 1

m

Pm
k¼1

ZkZT
k is a

marker-generated kinship matrix. The GBLUP method exploits the genomic relationships

between training populations and testing populations to predict the genomic values for

unknown individuals without estimating marker effects. The GBLUP was implemented using

the predhy/R program [11].

The LASSO method assumes bk � Nð0; �2

kÞ and �
2

k � Exp 1

2
l

2
� �

for all k = 1,. . .,q, where λ
is a shrinkage parameter. The method directly estimates marker effects in the training popula-

tion and predicts the genomic values of individuals in the testing population. When perform-

ing LASSO, the marker k for individual j (where j = 1, 2, . . ., n) was defined as PGSI instead of

a single nucleotide marker value. Since the number of SNP markers had little effect on the

accuracy of the genomic prediction [11], 0.05% of all SNP markers were randomly selected

when SNP markers were used as genetic information in LASSO and GBLUP models. The

LASSO was implemented using the glmnet/R program in the present study [42]. Since the

LASSO method can achieve variable selection, the variables obtained using the LASSO method

were extracted and re-estimated using linear regression, and they were implemented in the R

program using the default functions. The Pearson correlation coefficient between the observed

and predicted heterosis was used to calculate predictability. We provided the codes in getting

the predictability as S1 Data.

Models applied for the prediction of heterosis

GBLUP_A, GBLUP_AD, LASSO_SNP, LASSO_100Kb, LASSO_500Kb, and LASSO_1Mb

models were applied to predict the heterosis of six agronomic traits. The two GBLUP models

differ from each other in building the models merely based on the consideration of additive

effects (GBLUP_A) only or both additive and dominant effects (GBLUP_AD). Conversely, the

four LASSO models applied differ based on the units used to calculate PGSIs, which ranged

from single nucleotide (LASSO_SNP) to decreased nucleotide sizes, including 100Kb (LAS-

SO_100Kb), 500Kb (LASSO_500Kb), and 1M (LASSO_1Mb) nucleotide fragments. Since the

application of the different prediction models resulted in different heterosis predictabilities for

the same trait, we adopted the model with the highest predictability for a particular trait to pre-

dict the heterosis of a trait. For example, the LASSO_100Kb and LASSO_500Kb models were

selected for the prediction of GY-HPH and PH-HPH, respectively.

Predictability drawn from ten-fold cross-validation

Predictability was drawn from 10-fold cross-validation, in which nine parts of a sample were

used to estimate parameters used for the prediction of heterosis in the remaining part of the

sample. Eventually, each individual was predicted once and used nine times to estimate the

parameters. The Pearson correlation coefficient between the observed and predicted heterosis

was used to calculate predictability. We replicated the cross-validation analysis 100 times, and

the predictability of each trait was the average value of the 100 times prediction.

Verification of prediction model

A testing population containing 100 hybrid lines was developed by crossing the Ogu-CMS-

pool members with two independent restorers that were not used to calculate the predictabili-

ties of the training population. The optimal model for NSS-HPH, NSP-HPH, NBP-HPH, and

PH-HPH was LASSO_100Kb, and the optimal models for TSW-HPH and GY-HPH were
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LASSO_500Kb and LASSO_1MB, respectively (Table 1). LASSO_100Kb was adopted to pre-

dict NSS-HPH, NSP-HPH, NBP-HPH, and PH-HPH. LASSO_500Kb and LASSO_1MB were

adopted to predict TSW-HPH and GY-HPH, respectively. The optimal model for GY-MPH,

TSW-MPH, NSP-MPH, and PH-MPH was LASSO_100Kb. The optimal models for

NSS-MPH and NBP-MPH were LASSO_500Kb and LASSO_1MB, respectively (Table 2).

Therefore, LASSO_100Kb was adopted to predict GY-MPH, TSW-MPH, NSP-MPH, and

PH-MPH, LASSO_500Kb, and LASSO_1Mb were adopted to predict NSS-MPH and

NBP-MPH. The predicted and actual values observed in the fields were analyzed to determine

the predictability, which indicated the validity of the prediction models.

Definition of h-QTLs and high-impact h-QTLs

The regression coefficients of the variables in the model were the criteria for selecting h-QTLs.

All the variables were defined as h-QTLs, and the top 10% and bottom 10% regression coeffi-

cients of the variables were considered high-impact h-QTLs. Excluding the h-QTLs on ran-

domly piled scaffolds, whose positions on certain chromosomes are unknown, all the other h-

QTLs for specific traits were displayed on the maps, and the underlying genes responsible for

high-impact h-QTLs were investigated.

The naming of h-QTLs

The name of an h-QTL indicates its position on a chromosome. The position of the chromo-

some from the top to the bottom corresponds to its position from the beginning to the end.

The h-QTLs of each chromosome were named based on the IDs of chromosomes and series

numbers. For example, Chr.C01-01 indicates the No. 01 h-QTL, counting from the top to the

bottom on Chromosome C01. We indicated positive and negative h-QTL on the maps for spe-

cific traits. A positive effect shown with a circle on maps means the smaller the PGSI, the great

the heterosis, whereas, a negative effect tagged with a triangle means the bigger the PGSI, the

greater the heterosis. The gradation of color (dark or tint) represents the degree of an effect.

Drawing of h-QTL map

The h-QTL map was drawn by using the Rldeogram/R program [43]. The density of genes on

chromosomes is plotted from the annotation file (Brassica_napus.annotation_v5.gff3.gz,

https://www.genoscope.cns.fr/brassicanapus/data/).

Linkage disequilibrium analysis

We used a previously described method for linkage disequilibrium analysis [15]. Briefly,

PLINK software (www.cog-genomics.org/plink2; v1.9) was used to calculated complete and

partial LD between each pair of SNPs. The squared correlation coefficient (r2) values and the

significance of all detected LD between polymorphic sites (P< 0.05) were analyzed for all chro-

mosomes with a 1000-kb window.

Supporting information

S1 Fig. Principal component analysis (PCA) plot of the first two components (PC1 and

PC2) of the 1057 accessions. PC1 accounts for 11.19% of the total variation in the winter-type

accessions compared to the other accessions, whereas PC2 accounts for 6.90% of the total vari-

ation between the semi-winter type and the spring type accession. Green dots represent spring

ecotype, blue dots represent winter ecotype, grey dots represent semi-spring ecotype, and red
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dots represent sterile lines that were used as female parents in the study.

(TIF)

S2 Fig. h-QTLs responsible for TSW-HPH. The circles represent the h-QTLs that positively

contributed to the TSW-HPH, and the triangles represent h-QTLs that were negatively corre-

lated to TSW-HPH. The darker the colors of circles and triangles, the greater the effects of the

h-QTLs, either positive or negative. The colors on the chromosomes indicate the density of

genes. The darker the blue, the lower the gene density, the darker the red, the higher the gene

density. A and C stand for the two sub-genomes of Brassica napus. A limited number of h-

QTLs on randomly piled contigs, whose positions on certain chromosomes were unknown,

are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the

bigger the PGSI, the greater the heterosis.

(TIF)

S3 Fig. h-QTLs responsible for NSS-HPH. The circles represent the h-QTLs that positively

contributed to the NSS-HPH, and the triangles represent h-QTLs that were negatively corre-

lated to NSS-HPH. The darker the colors of circles and triangles, the greater the effects of the

h-QTLs, either positive or negative. The colors on the chromosomes indicate the density of

genes. The darker the blue, the lower the gene density, the darker the red, the higher the gene

density. A and C stand for the two sub-genomes of Brassica napus. A limited number of h-

QTLs on randomly piled contigs, whose positions on certain chromosomes were unknown,

are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the

bigger the PGSI, the greater the heterosis.

(TIF)

S4 Fig. h-QTLs responsible for NSP-HPH. The circles represent the h-QTLs that positively

contributed to the NSP-HPH, and the triangles represent h-QTLs that were negatively corre-

lated to NSP-HPH. The darker the colors of circles and triangles, the greater the effects of the

h-QTLs, either positive or negative. The colors on the chromosomes indicate the density of

genes. The darker the blue, the lower the gene density, the darker the red, the higher the gene

density. A and C stand for the two sub-genomes of Brassica napus. A limited number of h-

QTLs on randomly piled contigs, whose positions on certain chromosomes were unknown,

are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the

bigger the PGSI, the greater the heterosis.

(TIF)

S5 Fig. h-QTLs responsible for NBP-HPH. The circles represent the h-QTLs that positively

contributed to the NBP-HPH, and the triangles represent h-QTLs that were negatively corre-

lated to NBP-HPH. The darker the colors of circles and triangles, the greater the effects of the

h-QTLs, either positive or negative. The colors on the chromosomes indicate the density of

genes. The darker the blue, the lower the gene density, the darker the red, the higher the gene

density. A and C stand for the two sub-genomes of Brassica napus. A limited number of h-

QTLs on randomly piled contigs, whose positions on certain chromosomes were unknown,

are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the

bigger the PGSI, the greater the heterosis.

(TIF)
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S6 Fig. h-QTLs responsible for PH-HPH. The circles represent the h-QTLs that positively

contributed to the PH-HPH, and the triangles represent h-QTLs that were negatively corre-

lated to PH-HPH. The darker the colors of circles and triangles, the greater the effects of the h-

QTLs, either positive or negative. The colors on the chromosomes indicate the density of

genes. The darker the blue, the lower the gene density, the darker the red, the higher the gene

density. A and C stand for the two sub-genomes of Brassica napus. A limited number of h-

QTLs on randomly piled contigs, whose positions on certain chromosomes were unknown,

are not shown on the map. A positive effect indicated with a circle on maps means the smaller

the PGSI, the great the heterosis, whereas, a negative effect tagged with a triangle means the

bigger the PGSI, the greater the heterosis.

(TIF)

S7 Fig. Genome-wide average LD decay in the sterile lines, restore lines, and all lines. The

green, red, and blue curves display the rate of LD decay over distance(Kb) in all sixty parental

lines, sterile lines, and restore lines, respectively.

(TIF)
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