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Abstract: Per- and Polyfluoroalkyl Substances (PFAS) are anthropogenic chemicals consisting of
thousands of individual species. PFAS consists of a fully or partly fluorinated carbon–fluorine
bond, which is hard to break and requires a high amount of energy (536 kJ/mole). Resulting from
their unique hydrophobic/oleophobic nature and their chemical and mechanical stability, they are
highly resistant to thermal, chemical, and biological degradation. PFAS have been used extensively
worldwide since the 1940s in various products such as non-stick household items, food-packaging,
cosmetics, electronics, and firefighting foams. Exposure to PFAS may lead to health issues such as
hormonal imbalances, a compromised immune system, cancer, fertility disorders, and adverse effects
on fetal growth and learning ability in children. To date, very few novel membrane approaches
have been reported effective in removing and destroying PFAS. Therefore, this article provides a
critical review of PFAS treatment and removal approaches by membrane separation systems. We
discuss recently reported novel and effective membrane techniques for PFAS separation and include
a detailed discussion of parameters affecting PFAS membrane separation and destruction. Moreover,
an estimation of cost analysis is also included for each treatment technology. Additionally, since
the PFAS treatment technology is still growing, we have incorporated several future directions for
efficient PFAS treatment.

Keywords: PFAS; nanofiltration; reverse osmosis; novel membranes; hybrid membranes; coupled
technology

1. Background on PFAS

Per- and Polyfluoroalkyl Substances (PFAS) are anthropogenic chemicals consisting of
thousands of individual species. Resulting from their hydrophobic and oleophobic nature
and chemical and mechanical stability, PFAS have been used extensively worldwide since
the 1940s as oil- and water-repellent products, mainly in non-stick household items, paints,
food packaging, cosmetics, lubricants, electronics, and aviation film-forming foam (AFFF)
for firefighting [1]. PFAS consist of a carbon chain with carbon–fluorine (C–F) bonds which
require a high amount of energy to break (536 kJ/mole) [2], resulting in stable compounds
that are difficult to degrade naturally; therefore, they remain present in the environment
for long durations [3].

Exposure to PFAS may result in health issues such as hormonal imbalances, liver
disfunction, a compromised immune system, cancer, fertility disorders, negative effects on
fetal growth, and learning ability in children [4]. Exposure routes are by inhaling, ingesting,
and direct skin contact [5]. Furthermore, ultra-short chain PFAS (C ≤ 2, e.g., C2F6, CHF3,
CF4, etc.) are volatile as well as highly water-soluble, and can easily enter the human body
when breathing or consuming food or drinking water [6,7]. The adverse health effects
of PFAS are not only limited to humans; they could be equally harmful to animals and
livestock [4].

One of the main exposure routes to PFAS is by wastewater effluents [1] from industries
manufacturing them or from municipal wastewater impacted by PFAS-related products.
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As PFAS are not easily removed by conventional biological wastewater treatment processes
such as activated sludge [8], effluents were shown to contain varying PFAS species which
could contaminate the aquatic environment. In the US, wastewater effluents were shown to
contain ΣPFAS29: 20–4773 ng/L (from 29 PFAS species) in North Carolina [9] and ΣPFAS17:
442–2234 ng/L in Nevada [10]. Similar data was obtained in Europe, where ΣPFAS8:
1.2–290 ng/L was obtained in the Netherlands [11,12], ΣPFAS8: 0.3–90.4 ng/L was found
in Germany [12], and ΣPFAS8: 1.7–200 ng/L was found in Italy [12].

As the awareness of the presence and environmental and health impacts of PFAS has
been growing, several countries have published guidelines and regulations addressing
PFAS concentrations in drinking water [13]. The US Environmental Protection Agency has
set the PFOA and PFOS (individually or combined) limit in drinking water to 70 ng/L [14],
whereas for the UK, Germany, Italy, Netherlands, and Sweden, it is 10, 300, 30–500, 200–390,
and 90 ng/L, respectively [15].

Resulting from their stability, PFAS were shown to have limited biodegradation in
environmental conditions and low environmental concentrations [16]. Biodegradation was
shown only in specific cases of co-metabolism [17,18]. Therefore, the destruction or removal
of PFAS is mainly based on high-energy incineration [19] or advanced oxidation processes,
e.g., electrochemical oxidation, microwave treatment, photocatalytic degradation [20,21],
pyrolysis, plasma-based treatment [22], and sonochemical reactions [23] (Figure 1). As
PFAS degradation techniques are energy extensive, they are relatively expensive, especially
considering the large volume and high flow rate of wastewater and groundwater requiring
treatment. Among the techniques mentioned, membrane-based treatment can concentrate
low concentrations of PFAS present in the wastewater/groundwater and is therefore one
of the most effective treatment techniques in terms of cost and efficiency [24–26].
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In recent years, a growing number of studies have addressed the environmental oc-
currence, fate, and transport of PFAS in potable water and wastewater treatment plants,
as well as varying treatment approaches [2,27–31]. Therefore, it is necessary to systemat-
ically review and critically analyze the state of knowledge and determine research gaps
for suitable and economically viable technology leading to PFAS removal from water.
This study thoroughly reviews existing publications to summarize the currently available
membrane-based treatments and identifies novel approaches for PFAS removal. It also
addresses factors affecting PFAS removal via membrane filtration and delineates research
gaps and key future research directions.
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2. Current Treatment Approaches

Conventional water/wastewater treatment technologies (e.g., flocculation, aeration,
sand/rapid filtration, sedimentation, and disinfection) were shown to be less efficient
in treating PFAS-contaminated groundwater and wastewater [32]. As PFAS are typically
found in the aqueous phase at relatively low concentrations in the range of tens to hundreds
of ng/L, they require concentration by adsorption, ion exchange resins, and membrane
filtration prior to destruction. The advantages and limitations of the above-mentioned
PFAS concentration techniques are summarized in Table 1.

Table 1. Advantages and limitations of techniques for removing Per- and Polyfluoroalkyl Substances
(PFAS) from wastewater.

Advantages Limitations

Granular activated carbon (GAC) or powder activated carbon (PAC)

Can remove low concentrations (ng/L) from drinking water [33] compared to other
methods (UV [34], Ozone [34], modified silica [35], etc.).

Long-chain PFAS (e.g., legacy PFAS as PFOA and PFOS) are efficiently (>90%) removed
by GAC or PAC depending on the flow rate of the water, carbon bed depth, empty bed
contact time, the temperature of the medium, and the presence of other organic matters

[33,36,37].
Relatively low cost (0.093–0.12 $/m3) [33,38].

Inefficient for removal of short-chain PFAS due to weak
(hydrophobic) interaction [36,39].

The presence of organic compounds reduces
adsorption efficiency [25].

Regeneration and reuse are energy-intensive
(0.78 $/kg) [40].

Ion-exchange resin

Efficient for removal of anionic and long-chain PFAS (even for ng/L concentrations) [41].
Adsorption capacity is higher compared to GAC or PAC.

Fast adsorption kinetics [36,42].
Operating cost is about 60% of GAC and PAC [38].

Less efficient for water containing organic or inorganic
matter [38].

limited removal of short-chain PFAS (efficiency ratio
PFOS (C8):PFPrS (C3) = 82) [43].

Requires expensive regeneration [40].

Membrane separation

Effective for short-chain as well as long-chain PFAS [44].
Other organic and inorganic impurities are also removed [45].

High removal rate and efficiency (discharge goal 10–75 ng/L) [44].
Time-efficient compared to adsorption technique as no adsorption is required [38].

Fouling of membranes due to inorganic, organic,
biological, and colloidal impurities may result in

limited efficiency [24].
Requires brine management, which can be overcome

by partnering it with a destruction process [46,47].
The energy requirement for membrane wastewater

treatment is high compared to adsorption or ion
exchange resin (~0.12 $/m3 permeate) [38].

2.1. Adsorption and Ion Exchange

Adsorption is considered an effective separation technique for PFAS due to its low cost,
high efficiency, simple operation, and insensitivity toward toxic substances. Besides con-
ventional adsorbent materials (SI Table S1)—e.g., granular and powdered activated carbon—
few other efficient adsorbents— such as silica [35], zeolites [48], aminated rice husk [49],
graphitized carbon nitride—g-C3N4 [50], metal organic frameworks—MOFs [51,52], cova-
lent organic frameworks—COFs [53], and modified chitosan [54]—have been synthesized
and used. PFAS adsorption mainly depends on two predominant forces, namely electro-
static [55] and hydrophobic iterations [56–58]. Adsorption efficiency also depends on the
molecular structure of PFAS and its physiochemical properties (surface functional group,
porosity, polarity, diameter, surface charge, and surface area). Furthermore, the solution’s
pH [59] and ionic strength [60] may also impact the adsorption rate and capacity. When
used for large-scale applications, adsorption processes have a few limitations, including
the relatively high cost of the adsorbent, which is required in high volumes. Moreover, the
regeneration of the adsorbent by chemical [61], microwave [62], or thermal treatment [63]
is expensive, and the adsorbent may lose its effectiveness after several regeneration cycles.
Additionally, short-chain PFAS (<C6) are difficult to remove by conventional adsorbers,
e.g., based on activated carbon.

Ion exchange resins are also used for PFAS concentration and removal. Recent studies
(SI Table S2) show that PFAS removal by ion exchange resins is an efficient technology,
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especially for short-chain PFAS. PFAS removal efficiency depends on the resin’s functional
group (e.g., tertiary, or quaternary amine), polymer matrix, and porosity (e.g., gel, macro
porosity). PFAS removal capacity by resins can also be affected by other parameters, such
as pH, ionic strength, and the presence of organic matter and inorganic salts [41,64–66].
Regenerating and disposing of used resins are among the main downsides of ion exchange
resins for PFAS removal. Studies reveal that regenerated resins are less efficient in adsorbing
PFAS and require a longer contact time than single-use resins [31,40,67]. Furthermore, the
chemical regeneration process of the resins is expensive; therefore, the destruction of resins
is a better option to avoid the loss [68,69].

2.2. Membrane Separation

In contrast to adsorption by activated carbon or removal by ion exchange resins, the
removal capability of membranes is usually not limited by organic matter concentration,
salts, or the presence of co-contaminants, as membrane selectivity is defined by its surface
properties, such as porosity, pore size, material and zeta potential [70–72]. Furthermore,
the presence of a ‘fouling’ layer on the membrane may even enhance its selectivity and
removal efficiency while reducing permeate flux [73,74]. The membranes can be divided
into porous and dense membranes according to their physical characteristics.

In terms of porous membranes, in most cases the relatively large pore size—in the range
of tens of nm to microns of porous membranes (e.g., microfiltration and ultrafiltration)—makes
them less efficient for PFAS separation [25]. For example, Appleman et al. (2014) [32] observed
that the removal of PFOS, PFDoA, and FOSA by a UF/MF membrane system was ineffective
(removal of 24%, 44%, and 42%, respectively), resulting from the membrane’s large pore size
in comparison to the PFAS compounds (molecular weight 499–614 g/mol), leading to limited
size exclusion [32]. Another work on UF membranes (UP020 and UH030) by Zeng et al.
(2017) [75] showed 68.9–83.7% rejection of PFHxA for similar reasons. Additional work by
Olimattel et al. (2021) [45] shows that modification of a commercially available UF membrane
(UA60) via a layer-by-layer approach with polyelectrolytes (polyallylamine hydrochloride and
polyacrylic acid) reduced the membrane’s molecular weight cut off (MWCO) from 2263 Da to
1411 Da and the porosity of the membrane by 9.2%. This functionalization increased PFOA
and PFOS removal efficiency by 30% compared to the unmodified membrane. In addition, the
presence of cations (e.g., Mg2+ (1 mM added to 10 ppm humic acid) and Ca2+ (2 mM added to
10 ppm humic acid)) and humic acid (5–10 ppm) in the treated water might also impact PFAS
separation, resulting in the formation of macromolecular complexes (cation-PFOS, PFOA-
cation-humic acid, PFOS-cation-humic acid, etc.). This was shown to increase the removal
efficiency of PFOA and PFOS by 18% and 23%, respectively [45], in UF membranes.

Another approach for PFAS separation using porous membranes is membrane distilla-
tion (MD). MD requires that a hydrophobic MF membrane is hydrophobic with a relatively
large pore size (0.1–0.45 µm), and the transport of water is based on partial water pressure
resulting from a thermal gradient [76]. Chen et al. (2020) [24] used direct contact MD
to remove perfluoropentanoic acid (PFPeA). They used a commercially available poly-
(tetrafluoroethylene) (PTFE) membrane with an average pore size of 0.46 ± 0.02 µm. Their
work mainly shows the impact of membrane surface fouling and material stability, which
depends on the amphiphilic nature of the PFPeA (Figure 2). SEM and AFM images in
Figure 2 illustrate the membrane’s surface morphology under different conditions. The
long-term use of the membrane was affected by the surface diffusion across the membrane,
as can be confirmed from the AFM analysis through the change in surface roughness in
Figure 2. When feed temperatures were increased from 50 to 70 ◦C, permeate flux increased
from 17 to 43 kg/m2/h; on the other hand, rejection was reduced from 85 to 58%, leading
to an increase in PFPeA concentration by 1.8, 2.1, and 2.8 times in permeate as feed temper-
ature increases to 50, 60, and 70 ◦C, respectively. A simple mechanism of PFAS (PFPeA)
separation by membrane distillation is depicted in Figure 3. First, (a) at time t = 0, the
surface deposition starts taking place upon flowing of the PFAS solution in contact with the
membranes. In the next step, (b) adsorption rises and produces globular aggregates across
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the membrane pores. Following this, (c) surface diffusion occurs within the membrane
pores. Finally, (d) the membrane gets saturated and pores blocking or filling take place due
to PFPeA deposition within the pores. As PFAS are amphiphilic, they act as surfactants and
might impact the hydrophobicity of the MD membrane, leading to a wetting of the pores
and thus limited rejection. In addition, as a result of the need to continuously heat the feed,
MD suffers from temperature polarization [77] and is considered cost inefficient [24].
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Figure 2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) images of PTFE
membrane in Membrane Distillation (MD) of PFPeA (a) before filtration, (b) after filtration of 6 h at
50 ◦C, (c) 60 ◦C and (d) 70 ◦C feed temperatures, and (e) 60 ◦C feed temperatures with 72 h duration
of distillation process; the permeate temperature was maintained at 20 ◦C for all the experiments
(reprinted with permission from Ref. [24]. Copyright 2020 Elsevier).
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Figure 3. Mechanism of membrane distillation process for PFAS (PFPeA) removal: (a) nucleation
of surface deposition, (b) PFAS adsorption and aggregation across the membrane pores, (c) surface
diffusion within the membrane pores, and (d) PFPeA coating within the pores (reprinted with
permission from Ref. [24]. Copyright 2020 Elsevier).

In contrast to porous membranes, the use of dense membranes, e.g., in nanofiltration
(NF) and reverse osmosis (RO), is a viable, sustainable, and highly efficient technique for
removing emerging contaminants from water and wastewater [26,78]. Therefore, commer-
cial/industrial removal of PFAS from groundwater is typically done by RO [79]. Most
studies suggest that RO membranes are superior to NF membranes in terms of PFAS re-
moval efficiency and that they can achieve PFAS discharge values established by the USA,
Canada, Australia, and European countries. As all membranes, including RO, are prone to
fouling, they are a suitable choice for removing PFAS mainly from groundwater considered
less contaminated (e.g., low TSS, low TOC) [80]. Tang et al. (2007) [81] compared the
efficiency of NF (DK, NF270, and NF90) and RO (BW30, LFC3, ESPA3, SG, and LFC1)
membranes in removing PFOS from wastewater; the results reveal that the rejection of RO
membrane efficiencies was above 99%, whereas for NF membranes, removal efficiency
varied between 90–99%. Other studies also confirm the removal of multiple PFAS species
(PFOS, PFHxA, PFOA, PFDA, etc.) by RO membranes [75,82,83], with over 99% rejection
compared to the around 95% rejection of NF (NF270, NF200, DK, NTR-7410, NTR-7450,
and DL) [75,78,84] membranes.

Rejection of other pollutants such as colloids (foam, gel, muddy water, etc.) and large
organic compounds (carbohydrates, lipids, proteins, etc.) by NF membranes is mainly
influenced by physical sieving [85,86]. However, for ions (e.g., Ca2+, Mg2+, Na+, HCO3

−,
etc.) and lower molecular weight substances (methanol, isopropanol, etc.) [87], solution
diffusion and the surface charge (zeta potential) of the membrane and pollutant play a key
role in separation. Due to their varying length and charge, the removal of PFAS by NF is
described in the literature by multiple mechanisms, including:

Steric (size) exclusion—rejection depends on the molecular weight cut-off (MWCO)
of the membrane and dominates throughout the separation process. Lower MWCO leads
to higher rejection of PFAS, resulting from the steric hindrance that affects the rejection of
short/large molecules of PFAS [88,89]. For example, NF membranes with varying MWCO,
e.g., NF270 with 300 Da and NF90 with 100–200 Da, showed rejection of 96.2 and 99.8%,
respectively, for PFHxA [75]. Furthermore, the presence of ions (Ca2+, Na+, Mg2+, Fe3+)
in the feed water leads to the formation of complex compounds containing PFAS. This
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typically resulted in a higher rejection of PFAS resulting from the larger size of the complex.
In addition, during the NF/RO membrane filtration process, fouling of the membrane by
organics and colloids may lead to a change in membrane selectively resulting from partial
pore blocking, leading to further reduction of pore size, resulting in a higher rejection of
PFAS [58]. In contrast, fouling was also shown to lead to foulant-enhanced concentration
polarization, resulting in lower rejection of pollutants [90].

Electrostatic interaction: The interaction between the charged organic pollutants and
the charged membrane surface resulting from electrostatic forces (Donnan effect) is affected
by pH and ionic strength. Filtration of anionic PFAS by negatively charged membranes
resulted in higher separation of PFAS, especially for short-chain PFAS [44].

Solution-diffusion: PFAS separation is based on diverse diffusivities and solubility
in the NF/RO membrane matrix. In this case, PFAS are ‘dissolved’ in the NF/RO thin-
film and diffuse across the membrane down a concentration gradient. The separation of
different PFAS species present in the wastewater can be achieved based on the compounds
with different diffusivities and solubility in the membrane matrix [91,92].

NF membranes were shown to be able to remove PFAS due to their small pore di-
ameter, low MWCO, and negative surface charge [93,94]. Multiple reported studies on
NF claim above 93–95% removal efficiency. At the same time, other impurities are also
removed along with PFAS, and the concentrated brine solution must be subjected to further
treatment [84,95,96].

Franke et al. (2019) [78] showed the use of nanofiltration (NF270) to reject a mixture of
15 different PFAS species with carbon chains of C4–C12 (e.g., PFHxS, PFBS, PFOS, PFHxA,
etc.), with an initial concentration of 6–110 ng/L (molecular weight 213–500 g/mol). Ac-
cordingly, the removal efficiency was 99%, with a feed flow rate of 2.3 m3 h−1 [78]. An
additional NF membrane (NF90) was shown to have >98% removal efficiency for 32 dif-
ferent PFAS species (C3–C8, PFHxA, PFOA, PFBS, PFOS, PFHxS, etc. Average concentra-
tion: ~160 ng/L) [38]. This NF membrane successfully removed other pollutants, such as
uranium-238, dissolved organic carbon, and mineral hardness, from the raw water. This
work also highlights the treatment cost, which largely depends on the drinking water
treatment targets and concentrates discharge requirement [38]. In the above-mentioned
NF membranes (NF90 [38] and NF270 [78]) studies, NF90 showed less rejection compared
to NF270, even though NF90 has a lower MWCO. This is probably because 32 different
species of PFAS (mostly short-chain, C3–C8) were separated using NF90, whereas NF270
was employed to remove 15 different types of PFAS (mostly longer chain, C4–C12). Another
study by Liu et al. confirms the PFAS’ rejection of >97% by NF, while 42 different PFAS were
present in the medium. Their study also revealed that the operating conditions of mem-
branes marginally impacted the rejection of PFAS and that long-term use of a membrane is
also possible [97].

Another polyamide thin-film composite membrane (spiral wound NF/RO) [97] for
AFFF containing PFAS treatment was employed by Liu et al. (2021). The rejections by
these membranes were >97% for most of the operating conditions (Flux: 7–50 LMH, Feed
flowrate: 5.7–13.2 Lpm, feed pressure: ~60 psi) and water matrices (laboratory matrix
(~60,000 ng/L) and groundwater (~6000 ng/L)). The shorter-chain PFAS in groundwater
showed a rejection of 92–95% in some cases; in these, it was affected by Ca2+ ions and
dissolved organic matters, which may have interacted with the sulfonate groups present in
the system and reduced rejection. The organic matters and Ca2+ ions present in the ground
water can also deposit on the membrane surface (sometimes it forms a complex of organic
matter-Ca2+) and reduce the membrane surface charge (it becomes less negative), which
leads to less electrostatic repulsion between the membrane surface and PFAS; finally, the
membrane becomes less efficient. Furthermore, these ions and organic matter successfully
decrease the PFAS rejection due to fouling enhanced concentration polarization, where
the solute concentration on the membrane surface is greater than in the bulk wastewater.
However, the membrane rejection was ~98% even after 13 days of uninterrupted operation,
which shows its stability and efficacy for a long-term run [97].
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On the other hand, RO membranes were shown to be highly efficient in PFAS removal
due to their highly selective polyamide thin film. The rejection of fluorinated compounds
by RO membranes can be explained through the solution diffusion model, where PFAS
molecules have a very slow diffusion rate through the membrane’s active thin film com-
pared to the water molecules [82,83,98–100].

Flores et al. (2013) [82] were able to remove >99% of fluorinated compounds (PFOA
and PFOS) present in a wastewater matrix by RO. After the RO process, trace amounts of
PFOA (<4.2–5.5 ng/L) and PFOS (3–21 ng/L) were detected in the treated water. These
concentrations are lower than the US recommended value in drinking water (70 ng/L).
In another work by Tang et al. (2006) [83], semiconductor wastewater with a wide range
of PFOS concentrations (0.5–1500 mg/L) was treated by RO membranes (ESPA3, LFC3,
BW30, and SG), resulting in over 99% rejection. In addition, Zeng et al. (2017) [75] were also
able to remove PFHxA (>99% rejection) from wastewater using RO membranes (NTR-759
HR). Accordingly, most of the PFAS removal processes by RO membranes suggest that the
treated effluents can reach PFAS values below the drinking water limitations suggested.

Current examples of NF and RO systems used for PFAS removal are presented in
Table 2.

Table 2. Recently reported Nanofiltration (NF) and Reverse Osmosis (RO) membranes for the
treatment of PFAS.

Pollutant (Concentration, ppm) Membrane
Technology Used Conditions Water Matrix Rejection Ref.

PFOS: 0.5–1500 RO

pH 4
25 ◦C

200 psi
24 h

Real wastewater >99% [83]

Perfluorobutanoic acid (PFBA),
perfluorobutane sulfonate (PFBS),

perfluorooctanoic acid (PFOA), and
perfluorooctane sulfonate (PFOS): 0.001

NF and RO
87–116 psi
22–28 ◦C
pH 7.4

Tap water 95–99.9% [101]

PFXxA: 0.0001–0.0003 RO, NF, and UF pH 7 MilliQ water 69–99.2% [75]

9 types of PFAS NF
pH 6.7
18 ◦C

125 psi

Artificial ground
water 95–99% [96]

PFOA: 1 NF (negatively
charged)

pH ~7
25 ◦C

100 psi

Simulated
groundwater ∼90% [102]

The separation techniques of PFAS can be affected by multiple parameters, hence it is
necessary to know those parameters for a better understanding of the process. The most
important parameters are discussed in the section below.

3. Factors Controlling PFAS Separation by Membranes

PFAS rejection by membrane technology can be impacted through several parameters.
To enhance or optimize the process performance, it is necessary to understand the basic
parameters that control and affect membrane treatment efficiency. Here, we present some
of the crucial parameters.

Effect of organic matter: Organic matter present in the feed solution can influence
PFAS treatment by coupling or reacting with the targeted PFAS compound, changing the
membrane surface charge and leading to membrane fouling. Most of the reported work
investigated the effect of fulvic acid and/or humic acid as an organic matter in simulated
wastewater containing PFAS. However, the industrial wastewater matrix has a wide range
of organic (proteins, amino acids, humic acids, fulvic acid, carboxylic acid, etc.) or inorganic
(heavy metals, sulfur, phosphorous, etc.) compounds along with varying PFAS compounds.



Membranes 2022, 12, 662 9 of 34

Organic matter was shown to bind to the membrane’s surface and lead to fouling. In
consequence, the permeate flux decreases, and the rejection rate may increase. Moreover,
fouling caused by organic matter deposition onto a composite membrane can impact the
membrane’s surface charge, turning it more hydrophilic, which may not favor the removal
of large chain PFAS.

Effect of pH: Changes in the solution’s pH may impact the membrane’s surface
charge according to the isoelectric point of the compounds and the relevant groups at
the membrane’s surface. Furthermore, in some cases, the membrane’s pore size, flux,
and rejection rate can be manipulated by changing the pH [103,104]. Depending on the
functional groups at the membrane’s surface and their pKa values, the membrane’s surface
may be positively charged, which attracts anionic PFAS (negatively charged), resulting in a
decrease in rejection. On the other hand, if the membrane surface is negatively charged,
the electrostatic interaction between anionic PFAS and negatively charged membrane can
enhance PFAS separation efficiency [28]. In some cases, the membrane’s pore size can
be manipulated by controlling the solution’s pH, which affects PFAS removal [105]. The
electrostatic repulsion force inside the membrane pores may be reduced when the pH is
lowered, which leads to membrane pore size shrinkage and results in enhanced rejection
rate [106].

Effect of ions and ionic strength: The interaction between different ions (present in
water and on the membrane surface) and PFAS is a critical factor. Due to electrostatic
interaction between PFAS and ions present in the water, ions can bind PFAS to form larger
clusters which may even lead to partial pore-blocking [107]. This is expected to reduce the
transport of short and long-chained PFAS through the membrane, resulting in a better PFAS
removal. In addition, the increase of valance ions present in the water matrix can improve
the electrostatic interaction between PFAS and ions, which promotes the PFAS clustering.
For instance, the presence of PO4

3− resulted in better removal efficiency in comparison
with Cl− or SO4

2− when assessing the removal of positively charged compounds. This
phenomenon is not only limited to anions, and the presence of divalent and trivalent cations
(Ca2+, Pb2+, Fe3+) can also enhance PFAS rejection.

Effect of chain length and hydrophobicity: PFAS are widely used for their hydropho-
bic and oleophobic nature. Long-chain PFAS are considered more hydrophobic than short-
chain PFAS due to the presence of a longer hydrophobic ‘tail’. During membrane filtration
of PFAS containing wastewater, PFAS are prone to interacting with solid surfaces (e.g.,
membranes) present in the system. Therefore, hydrophobic membranes may have an added
value when used to remove PFAS by coupling filtration and adsorption [78,91,108].

Effect of membrane zeta potential: The zeta potential of a membrane is a function of
surface-attached groups (e.g., carboxyl, amine groups) and of the ionic strength. Increasing
the ionic strength typically results in a reduction in membrane surface charge as a result
of ‘shrinkage’ of the electrostatic double layer and masking of surface charge. As a result,
lower membrane surface charge leads to weak electrostatic repulsive forces between similar
charged PFAS and membranes and resulting in a reduced rejection rate [109]. Accordingly,
maximum rejections by electrostatic forces may be achieved by increasing the charge
density at the membrane surface, thus leading to higher electrostatic repulsion forces [91].

Effect of membrane surface properties: Among different NF membranes, organic
membranes have an advantage over inorganic membranes, resulting from easier process-
ing, appropriate robustness, and low cost [91]. The active layer of the membrane is a key
component in quantifying the PFAS removal performance. The NF membrane surface is
usually negatively charged and hydrophilic, along with having a low molecular weight
cutoff, which affects the membrane performance. During the separation process, PFAS
concentrate (micelles or hemi-micelles) can form on the membrane surface due to concen-
tration polarization. PFAS micelles are formed at relatively high concentrations [110]. A
critical micelles concentration of PFOA and PFOS ranges between 25–38 mM and 8 mM,
respectively [111].
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The formation of micelles was shown to reduce the PFAS rejection caused by fouling
enhanced concentration polarization (CP), where the solute concentration at the membrane
surface is remarkably higher than in the bulk solution [97].

In the case of PFAS removal via an adsorption-based process coupled with membranes,
the membrane’s surface is coated with adsorbent materials and the process is controlled by
the characteristics of adsorbents, such as adsorbent particle size, surface area, pore-volume,
etc. In such cases, the electrostatic force between the membrane surface and the PFAS
mostly depends on the adsorbent material and not the membrane’s properties [112].

The initial concentration of PFAS: The initial concentration of the PFAS in the feed
affects both permeate flux and removal efficiency.

Several reported studies [80,113] addressed the removal efficiency of PFAS when
treating a high feed concentration (100 ppm). A high concentration of PFAS in the feed
may lead to micelle formation when concentrations reach the critical micelle concentration.
While in typical wastewater and groundwater streams, it is very unlikely that the critical
micelle concentration will be reached; this should be noted when treating concentrated
PFAS streams such as industrial effluents.

Since membrane technology for PFAS removal has several benefits over other available
techniques (adsorption, ion exchange resins, etc.), we will review and discuss aspects and
modern techniques related to membrane technology in the next section.

4. Novel Membranes for PFAS Rejection and Removal

The use of NF and RO membranes can efficiently remove PFAS from water but
may be impacted by fouling or require high pressure/energy to achieve appropriate
separation [114]. Various modifications have been suggested to improve the membrane’s
performance and longevity, including the development of novel membranes and surface
modification of commercial membranes, which play a critical role in PFAS rejection [113].
Novel membranes developed for PFAS removal and treatment are described below:

4.1. Polymeric Membranes

Linear fluorinated silane-functionalized aluminum oxide hydroxide-modified mem-
branes with an effective pore size of 1 µm were fabricated by Johnson et al. [115]. The
removal mechanism of PFOA (0.39 ng/L) and PFOS (0.86 ng/L) in this work was based on
the hypothesis that the perfluorinated side chains present on the prepared surface would
have a favorable fluorophilic (C−F···F−C) interaction with PFAS (Figure 4). The fabri-
cated membrane (containing 13–17 fluorine atoms) efficiently removed >90% (unmodified
membrane showed ~80% removal) of the PFOA and PFOS at a high flux rate (1223 LMH,
pressure drop 0.0413–0.317 bar, pH 7.5, filtration time 30 min). This work shows the ad-
vantage of using a hydrophobic surface to remove PFAS by adsorption to the membrane’s
surface. As the fluorophilic interaction is strong, the membrane will eventually reach
maximum capacity and rejection will be impacted; furthermore, such a mechanism requires
regeneration when reaching adsorption capacity. These have not been addressed in the
presented work. Furthermore, hydrophobic membranes have a higher fouling tendency
in comparison to hydrophobic membranes, but fouling of the membrane is not addressed.
However, due to the hydrophobic surface, a high-pressure drop (0.317 bar) was observed
across the membrane thickness during the operation. To overcome or reduce the back
pressure drop, the membrane surface was further modified with hydrophilic poly(ethylene
glycol) (PEG) units. The introduction of further PEG modification successfully reduced the
pressure drop (~0.0413 bar), and 99.9% PFAS removal was achieved. Furthermore, a de-
tailed analysis of membrane-fouling and regeneration/lifespan of the modified membrane
needs to be done to understand the process in detail [115].
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In addition, amyloid fibril-based membranes were used for the removal of 16 different
PFAS (~400 ng/L) from wastewater [28]. The membranes were able to efficiently remove
99% of long- and medium-chain PFAS (Molecular weight 214–714 Da). Solution pH was
shown to impact the removal efficiency, as at low pH values (about pH of 2) the amyloid
fibril membrane becomes more positively charged and attracts negatively charged PFAS
(due to electrostatic interactions). Furthermore, the significant role of hydrophobic inter-
action between PFAS and amyloid surface was also shown with long-chain PFAS, which
were adsorbed to the hydrophobic surface. Finally, it was suggested that the amyloid-
carbon hybrid membrane (permeability ~1739 LMH/bar) shows better performance in
short-chain PFAS removal (>96%) compared to a pristine NF membrane (20–90%), resulting
from a highly adsorbent amyloid-carbon surface. The operating cost of this membrane
($ 0.042/m3, energy requirement 0.2 kWh/m3) is moderate compared to the NF mem-
brane ($ 0.016–0.16/m3 [38], energy requirement 0.528 kWh/m3), and it is made up of
by-products from the dairy industry (prepared in the water phase and biodegradable),
making it suitable, appropriate, and convenient for such an application. While results are
encouraging in terms of an economical and sustainable treatment approach that can be
implemented to remove PFAS efficiently from wastewater, further consideration regarding
scaling up, fouling, and operational conditions is necessary [28].

4.2. Ceramic Membranes

In addition to polymeric membranes, ceramic membranes have been used to remove
PFAS. The principal advantages of inorganic ceramic membranes over polymeric mem-
branes include high thermal stability, mechanical strength, and chemical stability. Ceramic
membranes can withstand a broad range of temperatures and harsh pH environments.
Furthermore, they typically do not exhibit irreversible changes in structure that may affect
their operational performance [116–118]. Commonly used materials to develop ceramic
membranes are microporous glasses, titania, silica, alumina, zeolites, and zirconia [119].
Methods used to fabricate inorganic ceramic membranes mainly involve sol-gel, solid-state
sintering, chemical extraction, phase-separation, and chemical vapor deposition [116]. The
pore size of commercially available ceramic membranes ranges from approximately 4 nm
to 10 µm, which is similar to MF, UF, and NF membranes [120]. Therefore, ceramic mem-
branes are less effective in rejecting and removing most PFAS, especially when addressing
short-chain PFAS.

While some ceramic membranes are not able to directly remove PFAS, they can be
used for coupled processes, which include adsorption and filtration, mainly used to sepa-
rate the adsorbing material from the liquid phase; for example, Murray et al. (2019) [25]
used a commercial ceramic membrane along with a superfine powder activated carbon
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adsorbent to remove a mixture of 12 different types of PFAS collected from a firefight-
ing training area, with a concentration ranging between 1.18–55.7 ng/L. In addition to
removing the activated carbon (20 L adsorption tank, 100–500 mg/L), the ceramic mem-
brane (60–65 LMH, crossflow velocity 0.19 m/s, permeate flow 43–48 mL/min, experiment
duration 42–200 h) was able to mainly remove long-chain PFAS. The adsorption of PFAS
was achieved by using different adsorbents (granular activated carbon (GAC) and super
fine powder activated carbon (SPAC)), and the parameters affecting the adsorption capac-
ity (SPAC > 480 × GAC) were adsorbent particle size (SPAC—0.88 µm, GAC—650 µm),
adsorbent pore size (SPAC—2.70 nm, GAC—2.58 nm), adsorbent specific surface area
(SPAC—927 m2/g, GAC—784 m2/g), and chain length of PFAS (C4–C8).

Resulting from adsorption followed by ceramic nanofiltration, the permeate sample
contains substituted perfluoroalkane derivatives and sulfonamide precursor substances
(such as long-chain (3.3% FPeSA (C5) and 0.7% FOSA (C8)) and short-chain(43% FBSA (C4)
and 53% FPrSA (C3)), which indicates the inefficient outcome of the system. The pressure
drop during the operation (reflected in specific flux calculation) confirms membrane fouling,
mainly by the formation of a cake layer (after ~150 L of wastewater treatment). During the
activated carbon separation process, the carbon particles can build up on the membrane
surface and serve as a narrow protective layer that inhibits the foulants from reaching the
membrane surface. It is possible that the foulants are getting adsorbed and removed by
the protective layer of carbon formed on the membrane surface, which leads to a long-
term operation of the membrane with minimum fouling. For the long-term operation, the
authors have also used back-pulses for 2 s in every 5 min of interval to prevent fouling.
Further effort is needed to reduce the operating cost and remove short-chain PFAS [25].

4.3. Polyamide-Modified Thin Film Composite Membranes

Another approach to modifying membranes to enhance PFAS rejection was suggested
by Nadagouda and Lee (2021); they suggested modifying the NF/RO membrane’s surface
charge using nano-porous polyamide. This modification increased the negative charge
at the membrane’s surface. A negative charge was estimated to enhance the rejection
of anionic PFAS molecules by electrostatic repulsion between the negatively charged
membrane and anionic PFAS (Figure 5a,b), which can also help prevent fouling. Moreover,
the authors implied that elevated pH would improve the rejection, as carboxyl groups at
the membrane’s surface may be deprotonated, and therefore, the membrane’s negative
charge will increase [121].
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4.4. Modified Silica Membrane

Additional research by Zhou et al. (2016) [122] shows how PFAS (PFHxS, PFOS,
PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, and PFTA, concentration 0.5–50 ng/L,
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pH 3, volume 1 L) removal efficiency can be enhanced by a novel Fe3O4 nanoparticle-
coated silica membrane with fluorinated groups (Fe3O4@SiO2-NH2&F13). PFAS could be
adsorbed by the magnetic Fe3O4 particles due to electrostatic and F-F interaction (range
of adsorption capacity is 13.2–111.14 mg/g, at room temperature for 24 h). Compared to
activated carbon (58.61% adsorption), the magnetic material (86.29% adsorption) showed
better adsorption capacity. The authors confirm the stability and reusability (5 cycles
of adsorption and regeneration, by applying an external magnetic field and washing
with acetonitrile: ammonia-methanol (7 mol/L) (6:4 v/v) and ethanol: water (5:5 v/v)
solution three times, respectively) of the material, and showed no significant reduction
(<5%) in efficiency even after the fifth run. Furthermore, the addition of organic matter,
i.e., humic acid, did not show a significant influence on rejection; however, additional
information is needed on fouling and fouling mitigation to understand the applicability of
such membranes [122].

4.5. Graphene Oxide (GO)-Nanofiltration-Membranes

GO-nanofiltration-membranes were developed by Meragawi et al. (2020) [123] to
remove PFAS from wastewater, and they exhibited inferior performance (74.3% efficiency
for 50 ppm PFOA, transmembrane pressure 1 bar, permeate flow rate 10 ± 2.1 LMH/bar)
compared to normal NF membranes [96]. GO had an extended interlayer spacing in
aqueous media because of water molecules clustering around the oxidized functional
groups. This expanded interlayer spacing allows water transport but prohibits PFOA
molecules from passing the membrane due to size exclusion.

Further surface modification of the GO-membranes by solution casting of polyethylene-
imine (PEI) improved its permeance, selectivity, and mechanical stability. The electron-rich
polyethyleneimine deoxygenates GO, leading to a reduction in interlayered spacing and
improving the hydrophobicity of the surface layer. Furthermore, the retention of GO-PEI-
modified membranes showed improved performance, resulting from the enhanced steric
exclusion derived from the decreased interlayer spacing (Figure 6a,b). The introduction of
polyethyleneimine underwent reduction and cross-linking reactions, and demonstrated a
performance improvement (96.5% removal, permeate flowrate 15.9 ± 1.3 LMH/bar, which
is an improvement of >22%) for the same concentration of PFOA. Furthermore, antifouling
property and better abrasion resistance were observed due to the hydrophilic surface (con-
tact angle 24.7◦ of compared to GO membrane with a contact angle of 54.8◦). Antifouling
ability was evaluated while filtering a solution containing bovine serum albumin (BSA,
30 mg/L, for 2 h). The fouled GO-PEI membranes showed promising results with sodium
hydroxide (at pH 9 with 50 mL for 15 min, followed by DI water wash for 2 h) wash instead
of ethanol (at pH 9 with 50 mL for 15 min, followed by DI water wash for 2 h) wash. This
work demonstrates that the hydrophilic GO-PEI surface improves water permeance and
shows that incorporating a hydrophilic PEI layer on the top of the GO layer lowers the
requirement of energy for water permeance into hydrophobic pores, leading to further
improvement while also improving PFOA rejection as a result of membrane pore size [123].

4.6. Metal Organic Framework (MOF)-Based Membranes

In recent years, metal organic frameworks (MOFs) have been shown to be efficient
for wastewater treatment and adsorption processes [124,125], resulting from their unique
properties, including their large surface area, high pore volume, high adsorption capacity,
and high conductivity.

A MOF integrated dual-layer membrane (Figure 7) was employed to remove ammonia
and PFAS (PFOS, PFOA, PFBS, PFPeS, PFHpS, PFPeA, PFHxA, PFHpA, and PFHxS) from
landfill leachate. Zhang et al. (2022) [126] used a dual-layer membrane with a hydrophilic
upper surface coating a hydrophobic membrane (PTFE) for membrane distillation and per-
vaporation. The hydrophilic layer of aluminum fumarate-based MOF mixed with Polyvinyl
Alcohol (PVA) was coated on top of the conventional hydrophobic PTFE membrane to
overcome the low separation rate of PFAS and the pore wetting encountered during the dis-
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tillation process while using conventional pristine PTFE membranes. The authors assessed
the removal efficiency of pristine PTFE membranes and modified PTFE membranes with
different PVA to MOF ratios (100:0 (PSA0), 100:1 (PSA1), 100:5 (PSA5), and 100:10 (PSA10)).
The hydrophobic/hydrophilic dual-layer incorporated with MOFs showed a combined
effect of membrane distillation and pervaporation to remove PFAS. The rejection of total
PFAS increased (91.4 to 98.4%) when the MOFs loading was increased (0 to 5 wt%). Further
increment of MOF loading (to 10 wt%) had a limited impact on PFAS rejection, probably
from MOF particles agglomeration, which reduces the active surface area.
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Overall, the optimum loading of MOFs was found to be 5 wt%. The changes in
the surface morphology of the pristine and used membranes clearly define the fouling
(Figure 8) and confirm that the modified membrane has a better rejection compared to
unmodified PTFE membranes. The used PTFE membrane showed higher fouling agents
(from EDX analysis) compared to modified membranes in most of the cases (PTFE: Al 2.2%,
Ca 1.6%, Si 6.3%, Mg 0.6%, Na 1.4%; PSA0: Al 0.2%, Si 0.8%, Mg 0.2%, Na 0.8%; PSA1: Al
0.3%, Si 1.4%; PSA5: Al 0.1%, Si 0.4%, Na 0.4%; PSA10: Al 0.1%, Si 0.6%, Na 1.7%). Finally,
the fouling of MOF-modified membranes questions the stability and reusability of such
membranes, which needs further assessment.
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Figure 8. Pristine and used membranes after PFAS treatment (reprinted with permission from
Ref. [126]. Copyright 2022 Elsevier).

4.7. Functionalized-MXene Hollow Fiber Membranes

Functionalized-MXene (Ti2C3Tx, 0–0.05 wt% MXene) thin-film nanocomposite hollow
fiber membranes (Figure 9) were successfully developed by Le et al, for PFOS removal
from water. The thin film was formed through interfacial polymerization [112], and the
coated polyamide-MXene layer (optimum at 0.025 wt% MXene) on polysulfone hollow
fiber support was able to increase PFOS rejection from 72 to 96% in comparison to a
PES polyamide hollow fiber. Furthermore, the addition of an MXene layer increased the
permeability from 13.9–29.26 LMH/bar.
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Factors considered to influence PFOS rejection following modification were mainly
electrostatic interaction and size exclusion. Due to the lamella shape and interlayer of
MXenes inside the polyamide layer, a different transport mechanism was observed for ions
(interlayer spaces formed due to lamellar structure by MXenes inside the polyamide layer
results in swelling when exposed to water while filtration takes place, which promotes
passing of MgSO4 ions (0.35, 0.23 nm)), water (flowing through intralayer channels and
nanosheet gaps), and PFOS molecules (prevent the transport by MXene channels). Ac-
cording to the suggested transport mechanism, water passes through the membrane by
incorporating diffusion through the PA layer as well as the Mxene intralayer channels,
resulting in enhancing the membrane permeability and rejection of PFOS. The stability
of the MXene-modified membrane was tested under static (no pressure, 3 months) and
dynamic (4.48 bar, 24 h) conditions, which confirms there was no significant leaching of the
MXene particles. The authors also confirm that membrane–PFOS interaction is reversible,
while for the unmodified membrane it was based on irreversible adsorption, leading to
partial pore blocking.

To summarize, due to their relatively easy fabrication approaches and low cost, most
of the membranes used for PFAS removal are polymeric, but a few of the recently reported
work shows that silica and ceramic membranes are also employed for PFAS removal from
wastewater [25,121]. Several aspects of these research papers are tabulated below (Table 3).

Table 3. Different membrane fabrication materials are employed for PFAS removal.

Membrane Type Pollutant (Concentration, ppm) Experimental
Conditions Water Matrix Rejection Reference

Polymeric

PFOS and PFOA: 0.00086 and
0.00039

pH 7.5
Room temperature

Flux: 1223 LMH
Pressure drop: 0.04–0.07

bar
Time 0.5 h

DI water >90% [115]

PFOA: 100

pH 7
Pressure: 2.06 bar

Room temperature
Flux: 123–145 LMH

Time: 3.34–4.67 h

DI water 99% [113]

15 different PFAS (PFBA, PFPeA,
PFHxA, PFHpA, PFOA, PFNA,

PFDA, PFUnDA, PFDoDA, PFBS,
PFHxS, PFOS, PFDS, FOSA, FTSA)

pH ~7.7
Temperature: 8.5 ◦C

Water flow rate: 2.3 m3/h
Wastewater 99% [78]

PFOS and AFFF: 0.06 and 100

pH ~7
Temperature: 20 ± 2 ◦C

Flux: 7–50 LMH
Pressure: 4.14 bar
Time: continuous

operation for 13 days

DI water >98% [97]

Ceramic

12 different PFAS (PFPeA, PFHxA,
PFHpA, PFOA, PFNA, PFPrS, PFBS,
PFPeS, PFHxS, PFHpS, PFOS, and
PFDS): 1.18 × 10−6–55.7 × 10−6

Flux: 60–65 LMH
Time: 42–200 h Real wastewater ~10% specific

water flux [25]

Silica
membrane

9 different PFAS (PFHxS, PFOS,
PFHpA, PFOA, PFNA, PFDA,

PFUnDA, PFDoDA, and PFTA)
0.2 mg mL−1

Room temperature,
Time: 24 h,

pH 3

DI water and real
wastewater

8.6–99.17%
removal efficiency. [122]

From Table 3, it seems as though there is no direct connection between the bulk
materials (e.g., polymeric or ceramic) used for fabrication and PFAS removal efficiency, and
that the rejection is mainly controlled by the active layer and its specific physiochemical
properties (e.g., hydrophobicity and charge). In addition to the active layer properties,
membrane pore size and porosity play a critical role in PFAS rejection, and membranes with
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larger pores were shown to be inefficient in PFAS removal. On the other hand, modification
of the membrane’s surface properties might not always favor fouling mitigation, which
could significantly impact the lifetime of the membrane and require frequent cleaning.

5. Coupled Membrane Technology

Physical separation techniques (e.g., adsorption, ion-exchange resins, membrane
separation, e.g., NF or RO) are able to remove PFAS from the liquid phase onto adsorbent
materials or into a concentrated brine solution. As these processes are unable to destroy
PFAS, which are considered ‘forever chemicals’ [63,127,128] resulting from the strong C–F
bond, there is a need to deal with the disposal of absorbents contaminated with PFAS or
PFAS-concentrated-brine which may raise secondary pollution risks.

Complete degradation technologies (Details given in SI 1) for PFAS are mainly based
on high-energy incineration or advanced oxidation processes, including microwave ther-
mal treatment, electrochemical oxidation, photocatalytic degradation, sonochemistry, and
pyrolysis. These novel and extreme PFAS degradation techniques are expensive, especially
when dealing with the large volume and high flow rate of water containing PFAS. Thus, it
is ideal to utilize other relatively low-cost technologies to reduce PFAS wastewater volume
first and concentrate PFAS along with co-contaminants. The wastewater containing highly
concentrated PFAS may be transferred to a disposal well deep underground [129,130]
or a PFAS-specialized degradation plant for complete destruction. This approach is also
expensive, requires further treatment steps, and does not always eliminate the concentrated
PFAS streams [63,131].

To overcome these limitations, membrane separation was shown to be coupled with
PFAS destruction through electrooxidation, photocatalysis, and more. This approach allows
the direct breakdown of PFAS at the membrane’s surface while overcoming typical limita-
tions of such processes, including insufficient contact area or diffusion limitations [132,133].

The next section includes some examples of novel destructive approaches coupled
with membrane separation.

5.1. Electromagnetic Ceramic Membrane

BiFeO3 (BFO) catalyst-coated ceramic membranes (140 nm pore size, catalyst sus-
pension loading 4–7 ng/L) were tested under a microwave environment (7.2 W cm−2) to
achieve a Fenton-like reaction (Figure 10) [134]. The surface morphology of pristine and
low and heavily coated BFO membranes (SEM, elemental analysis, and AFM) is shown
in Figure 11. According to Liu et al. [134], the pristine membrane shows only 2% removal
of PFOA (25 µg/L initial concentration), whereas the modified membrane drastically im-
proves the efficiency to 65.9% while H2O2 was additionally added to the system within
2 min of hydraulic time (permeate flowrate 43 LMH, pressure 0.42–0.96 bar, and power
density 416–472 Wm−3). Even though the BiFeO3-coated membrane blocks ~20% of the
membrane pores, the author claimed that microwave irradiation improves productivity
and permeates flux. The removal/destruction mechanisms are described in terms of several
stages. First, PFOA is adsorbed on the membrane and catalyst surface, followed by full
penetration to the membrane filter after reaching adsorption equilibrium. Next, PFOA is
destroyed by the formation of hydroxyl radicals by a Fenton-like reaction. Furthermore, the
increase in transmembrane pressure (from 0.42–0.96 bar) confirms some fouling, probably
due to degraded by-products adsorbed on the membrane’s surface. However, further
investigation is necessary to understand the scalability and applicability of electromagnetic
ceramic membranes for PFAS removal [134].
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Figure 11. SEM and AFM images of (a) pristine (with elemental analysis), (b) low BFO-coated, and
(c) heavy BFO-coated (with elemental analysis); and only SEM image of (d) cross-sectional of BFO
coated membranes (adapted from Ref. [134]).

5.2. Reactive Electrochemical Membrane

A recent study by Le et al. (2019) [135] showed the use of a ceramic Ti4O7 Reactive
Electrochemical Membrane for electrochemical oxidation of PFOA and PFOS (pH 7). The
Reactive Electrochemical Membrane operated at a high flux of 240 LMH with a residence
time of 11.3 s, resulting in almost complete removal of PFOS and PFOA at open circuit
potential of 3.3 and 3.6 V/SHE, respectively. The membrane served as an anode. At
first, the PFOA forms a perfluorinated alkyl radical via direct electron transfer, and then
it undergoes Kolbe decarboxylation and produces C7F•

15 radicals. These radicals react
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with ȮH to form C7F15OH while eliminating HF, and at the last stage it forms PFHpA by
hydrolysis. The problem with such techniques is that they generate a shorter chain PFAS
with similar toxicity.

In terms of energy requirements, 5.1 kWhm−3 were required to treat 10 µM PFOA and
6.7 kWhm−3 for PFOS. Treatment did not totally destroy the PFAS but reduced it to safe
levels for drinking water (PFOA final concentration: 86 ng/L, PFOS final concentration:
35 ng/L).

This process implies high degradation efficiencies at a relatively low operating cost
in comparison to other existing technologies (photocatalysis, microwave-hydrothermal,
ultrasonication, etc.); further details and comparison is given in the next section. While
results are highly encouraging, implementation of this technology in real-life applications
requires investigating the performance of Reactive Electrochemical Membranes with actual
industrial wastewater. Additionally required is the understanding of the complete break-
down or destruction of the parent compound as well as by-products. Furthermore, the use
of multiple Reactive Electrochemical Membranes in a series can help remove the possible
intermediate/by-products formed during the oxidation of PFAS [135].

Another study by Zhuo et al. (2012) reported effective removal of PFOA (~97.5%) using
boron-doped diamond (BDD). While BDD was shown to be efficient in PFAS destruction,
the cost of the BDD electrode is extremely high (~$ 7000/ m2), which makes it unrealistic in
real-life applications [136].

5.3. Phosphorene Nanocomposite Membranes

Eke et al. [113] developed a dual-function phosphorene nanocomposite membrane
for filtration combined with treatment by UV irradiation (365 nm, 200 min operation) or
by oxygenation (at a flowrate of 3 L/min for 280 min) (Figure 12a,b). Perfluorooctanoic
acid (PFOA, 100 ppm) was removed using a nanohybrid membrane made of sulfonated
polyether ether ketone and phosphorene. The low bandgap of phosphorene on the mem-
brane surface provides electronic and photocatalytic properties, which simultaneously
helps to remove as well as destroy the PFOA from the membrane surface. The surface
morphology of this membrane is shown in Figure 13 (SEM and AFM images of the pristine
membrane after PFOA removal and after UV and oxygen treatment on membrane surface).
The SEM images strongly suggest (Figure 13) that the surface of the membrane has changed
after the UV/oxygen treatment, but further information is required to confirm the degrada-
tion of the membrane surface. However, XPS analysis of the membrane surface suggested
that the fluorine content on the membrane surface was low after UV treatment (to some
extent), whereas oxygen treatment was not significantly impactful. The stability of the
membrane was also analyzed by the authors, implying that the phosphorene leaching was
<1% of the initial phosphorene added to the membrane surface. Almost complete rejection
was achieved for PFOA, whereas the recovery of flux for reverse-flow filtration was 84%,
indicating there was no significant attachment of PFOA on the membrane surface (at 2.06
bar and room temperature, flux varies between ~123–145 LMH). The small amount of PFOA
accumulated at the membrane’s surface during the treatment process was destroyed by UV
light (98.4%) and liquid oxygen (96.6%). This study highlights the removal and destruction
of fluorinated compounds from wastewater, but the long-term impact of photocatalysis on
membrane degradation and stability is not addressed [113].

Additional reported work on combined technology such as membrane-ion exchange
resins, membrane-adsorption, membrane UV/O2, membrane-photocatalysis, and membrane-
electrocatalysis for PFAS wastewater treatment is summarized in Table 4.

According to Table 4, membrane separation process can be used first to reduce PFAS
contaminated wastewater volume and concentrate PFAS into its highest possible concen-
tration, and then other technologies can be used to degrade the PFAS completely. For
instance, a study by Boonya-Atichart et al. (2017) [46] discovered that the NF membrane
efficiently removed >99% PFOA from wastewater; next, the concentrated PFOA solution
was subjected to photocatalytic degradation, which showed ~60% destruction. In the case
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of destruction technologies, it is always necessary to find an economical, efficient, and
suitable process. A brief discussion about cost analysis is provided in the next section. A
few of the conventional and modified membranes used for PFAS removal and destruction
are summarized in Table 5.
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Permeate flow rate: 

4.5–20.5 mL/min. 
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demonstrates the effective re-

moval of long-chain PFAS (by 

adsorbents) and short-chain 

PFAS (by NF) from the 

wastewater, but further work 

is needed before it is 

[96] 

Figure 13. SEM and AFM images of membrane surface: (A) plain/clean membrane, (B) the membrane
after PFOA filtration, (C) the membrane after PFOA filtration and irradiation with UV, and (D) the
membrane after PFOA filtration and oxygenation (adapted from Ref. [113]).
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Table 4. Recently developed combined techniques for PFAS removal.

Processes Materials/Approach Conditions Water Matrix Remarks References

Membrane-adsorption/Ion
exchange resin

NF membrane (NF90-400), Granular
activated carbon (Filtrasorb®400), and

anion exchange resins (Resin A600)

pH ~7.7,
Temperature: 8.5 ◦C,

Water flow rate: 2.3 m3/h.

Real wastewater (contains
other impurities as well)

Combining the technologies worked in
favor of the efficient removal of PFAS

from wastewater.
[78]

Membrane-adsorption-Ion
exchange resin

NF270 membrane, Granular activated
carbon (Filtrasorb 400 and Norit

1240 W), and anion exchange resins
(Purolite A600 and Purofine PFA694)

pH ~7.8,
8.5 ◦C,

Pressure: 5–8 bar,
Feedwater flow rate: 8 m3/h.

Real wastewater (32 different
PFAS: 0.0001–0.0002 ppm)

This study expands knowledge of
cost-efficient PFAS removal technology
based on the pollutant concentration

present in wastewater.

[38]

Membrane-adsorption
NF270 membrane and Granular
activated carbon (Filtrasorb 300,

Filtrasorb 600, and AquaCarb 1240C)

pH 6.7,
18 ◦C,

Pressure: 1.7–9.6 bar,
Permeate flow rate: 4.5–20.5

mL/min.

Artificial groundwater
(PFAAs: 0.001 ppm)

This bench-scale study demonstrates
the effective removal of long-chain

PFAS (by adsorbents) and short-chain
PFAS (by NF) from the wastewater, but

further work is needed before it is
implemented for large-scale

application.

[96]

Membrane-adsorption

Adsorbents: Chemviron F-400 (density
440 kg/m3; 12 filters), Norit ROW 0.8

(density 381 kg/m3; 2 filters) and Norit
1240 EN.

- Real wastewater
The combined process effectively

removed >86% pollutants (present in
ppt-range) from the wastewater.

[82]

Membrane-UV/O2

The membrane was a polymeric blend
of polysulfone and poly ether ketone;
oxygen flowrate 3 L/min, UV lamp

intensity 365 nm

Pressure 2.06 bar,
Room temperature,

pH 7,
Flux: 123–145 LMH,

Time: 3.34–4.67 h

Synthetic wastewater (PFOA) 99% PFOA rejection. [113]

Membrane-photocatalysis
NF membrane (2540-ACM5-TSF) and

nano zero-valent iron as a
photocatalyst (20–100 mg/L)

pH–11,
Temperature: 2–45 ◦C,

Feed flow rate: 1.4 m3/h,
Flux: 70–150 LMH,
Pressure: 3–41 bar

Synthetic wastewater (PFOA:
0.1 ppm)

In this coupling technology,
Nanofiltration alone efficiently

removed >99% PFOA, and the PFOA
concentrated rejected water was

photocatalytically degraded (~60%).
This type of coupled technology needs
more attention since it can first remove
the pollutants and then destroy them

successfully.

[46]
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Table 4. Cont.

Processes Materials/Approach Conditions Water Matrix Remarks References

Activated carbon/Ceramic
membrane

Ceramic microfiltration membrane
(nominal pore size of 0.1 µm) and

super-fine powder activated carbon
(particle diameter < 1 µm)

Flux: 60–65 LMH,
Time: 42–200 h

Real wastewater (12 different
PFAS: 1.18 × 10−6–
55.7 × 10−6 ppm).

~10% specific water flux [25]

Membrane-Electrochemical
technology NF90 membrane

Pressure: 10.3–17.2 bar, Time:
10 min,

crossflow velocity: 21.3 cm/s

Simulated wastewater
(Hexafluoropropylene oxide

dimer acid: 1 ppm)

The electrochemical treatment after
membrane treatment appeared to be

cost-efficient compared to direct
electrochemical oxidation.

[47]

Membrane -electrochemical
treatment NF90 and NF270 membranes

Feed flow rate: 3.6 m3/h,
Pressure: 10 bar, Temperature:
20 ◦C, Other ions present in
the feed water (SO4

2−, Cl−,
Ca2+, and Na+ with

concentrations of 321, 19.8,
172, and 24.9 ppm,

respectively)

Simulated wastewater
(PFHxA: 204 ppm)

Energy savings with NF90 membrane
was 60–71% for 99% and 90% removal

ratio.
[137]

Membrane-electrooxidation NF90 and NF270 membranes

Flow rate: 3.2 m3/h,
Permeability:

6.98–9.4 LMH/bar, Other
ions: Na+ (162 ppm), SO4

2−

(338 ppm); Feed volume:
10 m3; pressure: 10 bar;

Temperature: 25 ◦C

Simulated wastewater
(Perflurohexanoic acid:

100 ppm)

The treatment cost can be reduced
further by replacing boron-doped

diamond electrodes.
[26]

Membrane-electrooxidation NF90 and BW30 membranes

Pressure: 10 bar, Crossflow
velocity: 24.7 cm/s, Other

salts present: NaCl and
CaSO4

Simulated wastewater
(mixture of PFOA, PFHpA,
PFHxA, PFPeA, and PFBA

with initial concentrations of
0.01 ppm each)

Efficiently removed PFAS to the below
level set by the USEPA. [138]
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Table 5. Summary of membrane technologies employed to remove PFAS.

Technology Membrane Used Effectiveness Remarks/(Rejection/Removal) References

Removal

UF Not effective Works better with surface modification
(10–75%). [45]

MD To some extent Not effective for short-chain PFAS (58–85%). [24]

NF Highly efficient May suffer from scale formation (~90–99%). [78,84,96,97,102]

RO Highly efficient May suffer from fouling and scale formation (>99%). [83,98–100]

FO Not reported - -

GO-nanofiltration-membrane Reasonable Increases membrane stability (74.3%). [123]

Ceramic membrane Effective Irreversible change on the membrane surface can reduce the
performance of the membrane. [25,116]

Nanoparticle coated silica membrane Highly effective Membrane is stable and reusable
(8.67–99.17%). [122]

Destruction

Reactive electrochemical membrane Highly effective
Reduction in operating cost is possible without compromising the

final concentration of PFAS to the safe limit, but further work is
needed with real wastewater (98.3%).

[135,139]

Phosphorene Nanocomposite membrane Highly effective
Destruction of fluorine compound after membrane treatment was

removed by UV photolysis and liquid aerobic oxidation, which can
also negatively affect the membrane surface (99%).

[113]

Electromagnetic (microwave) membrane Effective to some extent Further improvement needed (65.9% degraded). [134]
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6. Cost Analysis of the PFAS Treatment Technologies

Overall, PFAS treatment technologies are energy intensive and expensive. Although
the treatment technologies for PFAS are rapidly improving, only a few of them are currently
mature enough to be deployable for full-scale operation. In particular, adsorption by
activated carbon and ion exchange resins as well as separation by membrane technology
have proven to be the most effective and practical methods for PFAS-contaminated water
treatment.

The treatment cost of wastewater containing PFAS largely depends on the treatment
goals and discharge requirements, which are mostly based on the guidelines established by
government regulations. Additionally, the amount of wastewater can also influence the
treatment cost. The treatment cost of a large volume of contaminated water can cost less in
comparison to a small volume, since the fixed cost is constant and almost the same while a
large amount of wastewater is being treated [33,38].

The key cost factors to consider for PFAS treatment technology include: (a) presence
of co-pollutants in the system, (b) PFAS species, (c) influent concentration, (d) contact time
between adsorbent and pollutant, (e) adsorbent or membrane regeneration, (f) adsorbent or
membrane reusability, (g) adsorbent or membrane lifecycle, (h) adsorbent disposal, (i) pre-
treatment of the effluent, and (j) energy and concentrate disposal for membrane technology.
Generally, membrane technology is more expensive than the adsorbent process for the
removal of PFAS. The cost evaluation of various processes is tabulated below (Table 6).

Table 6. Cost analysis of different PFAS removal techniques.

Processes Materials Treatment Cost/Energy Requirement References

Adsorption
GAC (~$1.2–2.75/kg)

0.084–0.11 $/m3 wastewater for
10 ng/L treatment goal

0.021–0.025 $/m3 wastewater for
85 ng/L treatment goal

[33,36]

Ion exchange resins
(~$17.6–20.35/kg)

1.2–8.9 $/m3 wastewater for 25 ng/L
discharge goal

[36]

GAC and Ion exchange resins
combined

0.84–3.28 $/m3 for 25 ng/L discharge
goal~3.78 × 106 L/day

[36]

Membrane NF 0.016–0.16 $/m3 permeate [28,38]

Membrane-Adsorption -
~0.28 $/m3 for 90 ng/L discharge goal
~0.87 $/m3 for 25 ng/L discharge goal
~1.31 $/m3 for 4 ng/L discharge goal

[38,83]

Membrane-electrochemical
oxidation - 2.7–13.1$/m3 (High energy

requirement)
[26,47,137,138]

Photocatalysis
Indium Oxides@254 nm light

source

(Mostly depends on the catalyst);
energy requirement 2106 KWh/m3,
$295/m3, time required >11 h, ~89%

removal efficiency

[140]

Pt-TiO2@365 nm light source
Energy requirement 1458 KWh/m3,
time required >7 h, 100% removal

efficiency
[135]

Electron-beam - 98% PFOA and 99.99% PFOS removal
at 1500 kGy (~$295/m3) [141]

Electrochemical treatment
Ti4O7 electrode (∼$0.36/m2)

Boron doped diamond
($7000/m2)

5–32 KWh/m3 (high electrode cost and
energy requirement)

[136,142]

Incineration For regeneration of GAC or
Ion exchange resins ~0.751$/kg [143,144]

Biological treatment (cost not
reported) -

Selection of a proper biological entity,
pre-treatment; additionally, the process
takes a longer time, which increases the

operating cost

[145–147]
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From the above Table 6, most of the effective techniques are expensive. Hence, it is
necessary to develop an eco-friendly, novel, efficient, and economical technique for PFAS
which can be implemented easily to overcome this global issue. There are several possible
approaches that can be implemented efficiently in the future, which are discussed in the
next section [33,38].

7. Future Directions

Currently, the available membrane treatment processes for PFAS are still dependent
on conventional techniques which are incapable of destroying PFAS (e.g., RO, NF, adsorp-
tion), resulting in a concentrated stream that needs to be disposed of or destroyed safely.
Therefore, future technologies should address PFAS destruction coupled with separation.

A few possible approaches for efficient, economical, and environment-friendly ways
to remove PFAS are enlisted below:

Thin-film nanocomposite membranes are reportedly used as NF or RO membranes for
monovalent and divalent separation. The surface modification of these membranes using
graphene oxide, graphitic-carbon nitride, Mxenes, COF, etc., can improve the membrane
performance by severalfold. Furthermore, mixed matrix membranes (MMM) [148] can
be efficient in the removal of PFAS from wastewater when the support matrix contains
adsorbing materials. Based on the hydrophobic/hydrophilic nature of the membrane, the
targeted short/long-chain PFAS can be removed from wastewater [148,149].

Modification of surface properties in terms of surface charge and hydrophobicity was
shown to control the removal of a targeted PFAS from the wastewater matrix [150]. This
is specific to the charge of the PFAS and was mainly explored with anionic PFAS such
as PFOS and PFOA. Addressing the removal of cationic or zwitterionic PFAS [151] will
require tailoring specific surface properties. Furthermore, short and ultra-short PFAS (C4
and below) are less impacted by hydrophobicity and will not be adsorbed to hydrophobic
membranes. It should be noted that surface modification also impacts the fouling tendency
of membranes; while hydrophobic membrane may remove long-chain PFAS better, the
modified surface may result in organic and biological fouling, which will reduce the
treatment efficiency.

Finally, coupling filtration with degradation is a promising technology for PFAS
removal due to the concentration of PFAS at the membrane’s surface and low diffusion
limitation. Therefore, novel nanocomposite electrodes coupled with membrane filtrations
can enhance PFAS degradation by allowing (a) rapid activation through direct charge
transfer followed by (b) mineralization via electrogenerated reactive oxygen species [152].
While electrochemical processes were shown efficient, similar mechanisms could be used
based on other destructive methods such as photocatalysis and sonolysis [46].

8. Conclusions

PFAS are a large group of anthropogenic chemicals characterized by their high chem-
ical stability, hydrophobicity, oleophobicity, and persistence in environmental decompo-
sition. Resulting from high volumes of contaminated water and wastewater, membrane
systems were shown to be an efficient treatment and separation approach.

This review addresses the removal of PFAS via known commercial membrane ap-
proaches such as RO and NF and presents their advantages, disadvantages, and removal
mechanisms. In most cases, the membrane filtration process can remove >99% of PFAS from
wastewater (regardless of the presence of other organic and inorganic impurities present in
the system) and produce potable water. Furthermore, we present novel membranes—based
on nanomaterials or specific surface modifications—which were shown to remove PFAS
more efficiently (at the laboratory-scale). Finally, as membranes are able to reject and con-
centrate PFAS, there is always a need to treat the contaminated brine. Therefore, we present
novel membrane systems which couple PFAS separation with ‘in-situ’ PFAS destruction.

It should be noted that most of the experimental studies have been carried out us-
ing synthetic wastewater that includes, for example, an excessive dosage of adsorbent
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materials, acidic pH, high concentrations of PFAS spiked in distilled water, etc. These
artificial conditions do not represent either a full-scale wastewater treatment plant or real
environmental conditions. Furthermore, the artificial conditions used are not representative
of the possible scaling, organic fouling, and biofouling issues that could be found in a real
water matrix. Overall, the presence of PFAS in water still remains a big concern since there
is no single method ensuring their complete decimation; however, the use of membrane
coupling ‘in situ’ destruction is a promising approach that requires further research.
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Abbreviations

PFAS Per and Poly-fluoroalkyl Substances
PFHxS Perfluorohexane sulfonate
PFOS Perfluorooctanesulfonic acid
PFHpA Perfluoroheptanoic acid
PFOA Perfluorooctanoic acid
PFNA Perfluorononanoic acid
PFDA Perfluorodecanoic acid
PFUnDA Perfluoroundecanoic acid
PFDoDA Perfluorododecanoic acid
PFTA Perfluorotetradecanoic acid
PFPeA Perfluoropentanoate
PFHxA Perfluorohexanoate
PFPrS Perfluoropropane sulfonate
PFBA Perfluorobutanoate
PFNA Perfluorononanoic acid
FPeSA Perfluoropentane sulfonamide
FBSA Perfluorobutane sulfonamide
FPrSA Perfluoropropane sulfonamide
FOSA Perfluoroalkyl sulfonamide
FTSA 6:2 Fluorotelomer sulfonate
PFBS Perfluorobutane sulfonate
PFPeS Perfluoropentane sulfonate
PFHpS Perfluoroheptane sulfonate
PFDS Perfluorodecane sulfonate
GO Graphene oxide
GAC Granular activated carbon
PAC Powder activated carbon
PMPA Perfluoro-2-(perfluoromethoxy) propanoic acid
PEI Polyethyleneimine
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PVDF Polyvinylidene fluoride
AFFF Aqueous Film-Forming Foam
UF Ultrafiltration
MF Microfiltration
RO Reverse Osmosis
NF Nanofiltration
MD Membrane Distillation
MOF Metal Organic Frameworks
COF Covalent Organic Frameworks
AOPs Advanced Oxidation Processes
ARPs Advanced Reduction Processes
UV Ultraviolet
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