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In clinical medicine, increasing attention is being directed towards the important areas of nutritional biochemistry and toxicant
bioaccumulation as they relate to human health and chronic disease. Optimal nutritional status, including healthy levels of vitamin
D and essential minerals, is requisite for proper physiological function; conversely, accrual of toxic elements has the potential to
impair normal physiology. It is evident that vitamin D intake can facilitate the absorption and assimilation of essential inorganic
elements (such as calcium,magnesium, copper, zinc, iron, and selenium) but also the uptake of toxic elements (such as lead, arsenic,
aluminum, cobalt, and strontium). Furthermore, sufficiency of essential minerals appears to resist the uptake of toxic metals. This
paper explores the literature to determine a suitable clinical approach with regard to vitamin D and essential mineral intake to
achieve optimal biological function and to avoid harm in order to prevent and overcome illness. It appears preferable to secure
essential mineral status in conjunction with adequate vitamin D, as intake of vitamin D in the absence of mineral sufficiency may
result in facilitation of toxic element absorption with potential adverse clinical outcomes.

1. Introduction

The medical literature has achieved general consensus that
vitamin D levels throughout much of the world, as reflected
by population measurements of 25(OH)D

3
levels, are inade-

quate [1]. About 2/3 of the population in northern climates
are considered deficient with average 25(OH)D

3
levels of

67 nmol/L [2], much below the 100–150 nmol/L level that has
recently been associated with preferred health [3]. There are
many papers emphasizing the benefits of supplemental vita-
min D in order to achieve levels that are protective for many
diseases [4, 5].There has been recent concern expressed, how-
ever, that consumption of excessive doses of supplemental
vitaminDmay pose certain risks and potentially confer harm
to individuals. With recognition that vitamin D intake can
also facilitate the uptake of toxic elements, the objective of
this review paper is to explore known interactions between
vitamin D, essential minerals, and toxic elements in order to

provide clinical recommendations regarding the supplemen-
tal use of this important vitamin.

This review was prepared by assessing available medical
and scientific literature fromMedline, as well as by reviewing
several books, nutrition and toxicology journals, conference
proceedings, government publications, and environmental
health periodicals. A primary observation, however, was that
limited scientific literature is available on the issue of vitamin
D in relation to essential and toxic elements. The format of a
traditional integrated review was chosen as such reviews play
a pivotal role in scientific research and professional practice
in medical issues with limited primary study and uncharted
clinical territory [6].

2. Vitamin D Adequacy and Safety

As vitaminD acts epigenetically in the regulation of over 2700
different genes by acting on vitamin D responsive elements
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[7], it is not surprising that considerable literature confirms
the necessity of achieving adequate 25(OH)D

3
in order to

attain optimal health. A recent article suggests that 25(OH)D
3

levels >30 nmol/L have significantly lower all-causemortality
than levels <30 nmol/L [8]. Levels above 78 nmol/L are con-
sidered beneficial for bone health and maintaining normal
parathyroid hormone [9]. Cancer prophylaxis may not be
fully realized until levels are over 90 nmol/L [10]. Benefits in
countering infections such as tuberculosis and influenza may
require levels of over 100 nmol/L [11] and levels at or above
120 are associated with the lowest mortality [3].

While there is abundant evidence confirming potential
harms associated with deficient vitamin D, as well as much
research displaying the enormous benefits of supplementa-
tion to replete andmaintain adequate vitamin D indices [38],
uncertainty has arisen regarding levels that are considered
too high. A recent article, for example, showed increased 90-
day mortality rates in hospitalized patients with preadmis-
sion levels of 25(OH)D

3
<50 nmol/L or >150 nmol/L [3].

Such findings have raised concern that levels of 25(OH)D
3

greater than 150 nmol/L may not be optimal. This U shaped
phenomenon of benefit only within a specific range and risk
outside of this range has been suggested in other articles as
well. The risk for pancreatic cancer, for example, allegedly
increases at higher vitamin D levels [39] but on further anal-
ysis this finding may have been a statistical artifact due to the
chosen cut-off point groupings [40].

The risk of potential harms associated with higher levels,
however, is dismissed by others with the contention that
25(OH)D

3
levels of 225 nmol/L can be achieved with ordi-

nary sunlight and are thus considered normal. Furthermore,
levels of <375 nmol/L have been shown in some research to
not result in any evident toxicity [41]. In review, there is
insufficient study of supplementary doses of vitaminDwhich
result in 25(OH)D

3
levels higher than 150 nmol/L to make

firm conclusions. Just the same, there has been preliminary
exploration of pathophysiological mechanisms that might
account for potential risks associated with higher 25(OH)D
levels.

3. Vitamin D and Inorganic Elements

One point of note is that adequate 25(OH)D
3
is associated

with improved absorption of essential elements including
calcium, magnesium, iron, phosphate, zinc, and copper [12].
What has largely been forgotten, however, is that higher
levels of 25(OH)D

3
have been linked to enhanced absorption

of toxic elements such as aluminum, cadmium, cobalt, and
lead as well as radioactive isotopes including cesium and
radioactive strontium [12]. It has also been observed in the
chick that vitamin D increases zinc and cadmium absorption
[42]. Vitamin D has no effect on mercury absorption in the
chick intestine but increases cobalt and iron absorption in the
presence of low calcium [43]. In children, elevated 25(OH)D

3

levels in the summertime are associated with a seasonal
increase in blood lead levels via increased intestinal absorp-
tion [44]. It is also well recognized that bioaccumulation of
such toxic metals in turn appears to disrupt physiological

functioning of vitamin D within the body. For example,
accrual of lead or cadmium diminishes the activity of vitamin
D, by blocking the normal renal synthesis of active 1,25-
dihydroxyvitamin D [12]. There is also evidence discussed
in the literature of myriad adverse effects that various toxic
metals including cadmium, lead, mercury, and aluminum
can have on normal biological processes including uptake,
absorption, and assimilation of assorted essential minerals
[16, 17]—which may consequently result in health problems.
Toxicmetals themselves can also accrue in various tissues and
have been directly linked to various adverse health outcomes
[45–47]. Table 1 provides an overview of the complex inter-
action between vitamin D and various inorganic elements—
both required minerals and toxic metals.

The question therefore arises as to whether the alleged
rise in morbidity and mortality associated with elevation of
25(OH)D

3
(>150 nmol/L)may be, in part, associated with the

increased accumulation of toxic metals—a common concern
in contemporary society [48]. To the authors’ knowledge,
however, no studies have been done to date which measure
accrued levels of toxic metals in population groups in direct
relation to 25(OH)D

3
levels. One of the challenges with the

assessment of this hypothesis is that much of the reported
biomonitoring of toxic elements in population groups has
been confined to unprovoked blood or urine levels of
toxicants—which often underestimate the body burden.Most
toxic elements and compounds tend to sequester in tissues
and may not be evident on blood or urine testing [49]. Lead,
for example, may be abundant in bone and brain where it
tends to accumulate, with potentially little evidence of such
accrual with blood or urine testing [50].

It is also evident that vitamin D does not act solely in iso-
lation. Impaired vitaminD functioning and insufficient levels
of essential minerals can have synergistic and cumulative
adverse action on biological function with significant patho-
physiological impact. For example, vitamin D metabolism is
dependent on sufficient magnesium as a cofactor for vitamin
D to bind to its transport protein and for this vitamin to
convert into the active form via hydroxylation in renal and
hepatic sites [51]. Furthermore magnesium deficiency may
upregulate the 24(OH)ase enzyme in the kidney resulting
in catabolism of active vitamin D [51]. Insufficiency of
magnesium has been associated with many adverse clinical
effects including depression [52], anxiety [53], and cardiac
problems [54] and has recently been found to be associated
with impaired immune function [55] and to inversely affect
C-reactive protein [56]. It is estimated that more than 68%
of US adults are consuming levels of magnesium below the
recommended daily allowance (RDA) [57]. Factors that may
enhance magnesium deficiency, states such as accrued toxic
metals possibly resulting from elevated vitamin D in the
absence of sufficient minerals, may thus have an impact on
metabolic function.

Furthermore, any determinant such as accrued toxic
metals that would exacerbate zinc deficiency also has a poten-
tial detrimental impact on physiological function. Along
with iron, boron, manganese, and copper, the essential
mineral zinc is important as a cofactor in bone health.
Specifically, zinc facilitates bone formation by stimulating the
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Table 2: Vitamin D levels achieved in 2 studies done at northern latitudes.

Number Percentage
(1) Higher latitude statistics for high levels of 25(OH)D3,𝑁 = 1430 [2]

Number of patients with >150 nmol/L of 25(OH)D3 15 1%
Number of patients with >100 nmol/L of 25(OH)D3 315 22%
Number of patients with ideal levels 100–150 nmol/L 300 21%

(2) Nursing home study using 2000 IU daily of vitamin D3 for >5 months,𝑁 = 68 [63]
Number of patients with >150 nmol/L of 25(OH)D3 6 9%
Number of patients with >100 nmol/L of 25(OH)D3 54 78%
Number of patients with ideal levels 100–150 nmol/L 48 71%

∗All levels achieved in these patients were well below 375 nmol/L where side effects have been reported.

osteoblast [58]. While the average daily intake of zinc is
considered to be only 46–63% of the RDA, various toxic
metals have a detrimental impact on zinc uptake into the
body (Table 1). Additionally a study on mineral content of
foods has found that more than 80% of Americans do not
achieve the RDA or the estimated safe and adequate daily
dietary intake of calcium, magnesium, copper, zinc, and iron.
The result of such widespread deficiency may be increased
risk of toxic element absorption [59].

The complex interaction between the essential element
calcium, vitaminD, and toxicmetals is also evident in various
reports from the literature [Table 1]. While no more than
800mg of calcium a day may be required when vitamin
D levels are adequate, the typical diet in North America
may be inadequate to supply even this limited amount [60].
Furthermore, as is noted in Table 1, toxic metals may impair
calcium uptake resulting in deficiency states. While much
recent attention has been devoted to the finding that excess
calcium intake may actually cause harm, increasing the risk
of myocardial infarction by 31% and stroke by 20% [61], it is
important to remember that sufficiency of calcium is required
for normal physiological function, a clinical state that may
be compromised by vitamin D insufficiency or toxic metal
bioaccumulation.

4. Vitamin D Supplementation

Adequate sun exposure in warmer climates or consumption
of vitamin D containing foods such as fatty seafood in
northern areas has traditionally been the preferred means to
achieve adequate vitamin D status. However, higher latitudes
experience ultraviolet B sunlight intensities that are too weak
for extended periods to induce sufficient vitamin D skin
synthesis. Furthermore, insufficient consumption of vitamin
D containing foods frequently occurs because of dietary
preference, or avoidance because of concern about toxicant
accrual in foods such asmercury in fish.As a result, vitaminD
supplementation is being encouraged frommany sources as a
means to secure adequate intake in order tomaintain optimal
biological functioning.

With adequate sunlight and food consumption, it appears
that there are naturalmechanisms to secure preferred vitamin
D levels and to prevent excessive bioaccumulation. With
sun exposure, for example, enzyme downregulation appears

to occur as higher levels are achieved so that diminished
vitamin D skin production, absorption, and assimilation
occur [62]. This inherent protective approach, however,
may not be evident with supplemental intake of isolated
vitamin D ingestion. With supplementation particularly for
populations living in more northern latitudes, how does one
secure optimal vitamin D levels in clinical settings without
exceeding healthy levels?

Just as one might measure specific indices such as
hemoglobin or potassium levels in patients inclined to be
low in these biochemical markers, monitoring of individual
25(OH)D levels in clinical settings is the preferred way to
secure an optimal vitamin D status in individual patients. As
there is variation in response to vitamin D supplementation
as a result of factors such as weight and toxicant levels that
influence uptake and absorption of vitamin D, measurement
is the only way to confirm optimal vitaminD status, to ensure
compliance with instructions, and to preclude excessive or
dangerous levels. While there have been many studies that
confirm the benefits of vitaminD supplementation in specific
groups [4, 5], there has been a paucity of studies that actually
measure individual levels in population groups after a specific
level of supplementation.

The varied response to specific levels of vitamin D sup-
plementation is evident in one such study—a nursing home
study supplementing with 2,000 IU daily for more than 5
months (Table 2). The residential population with an average
age of 80.7 (𝑁 = 68) achieved an average 25(OH)D level
of 119.3 nmol/L with this level of vitamin D ingestion [63].
Further analysis of this data reveals that 12 patients or 22%
achieved levels less than 100 nmol/L but that 6 patients or
9% reached levels of >150 nmol/L. At this level of supple-
mentation, about 6% of patients would not achieve levels
considered necessary for good bone health at 78 nmol/L but
only 78% would have levels between 100 and 150 nmol/L. It
appears that about 4000 IU of vitamin D might be required
to allow a significant portion of the population to achieve the
desired 100–150 nmol/L. With this level of supplementation,
none of the participants would reach a commonly accepted
dangerous 25(OH)D level of >375 nmol/L.

In another study (Table 2) of the general population
(𝑁 = 1430) at a northern latitude [2], projections were made
based on average responses to specific levels of vitamin D
supplementation. In this report, only 22% of the 1430 patients



The Scientific World Journal 5

were found to have levels between 100 and 150 nmol/L.
Within the 1%of patients found to have levels over 150 nmol/L
of 25(OH)D

3
, more than 73% admitted to pronounced levels

of sun exposure, regular artificial sun tanning at tanning
studios, or both. The highest level recorded was 216 nmol/L
in a patient that both had sun exposure and was sun tanning,
Once again, none of the participants reached levels anywhere
near or >375 nmol/L.

In addition, a recent risk assessment for vitamin D tox-
icity with supplemental doses found no evidence of toxicity
using 10,000 IU daily for a six-month period [64]. As a result
of the evident safety of using considerable supplemental doses
of vitamin D, the Institute of Medicine (IOM) has recently
raised the maximum allowable amount of vitamin D to
4000 IU daily with no required monitoring for toxicity [65].
With variation in response to specific doses of supplemental
vitamin D, monitoring of 25(OH)D levels with required dose
adjustments appears to be the most effective means to secure
adequacy and to preclude excessive levels.

5. Clinical Implications

There has been much debate in the medical literature about
the preferred level of 25(OH)D, the optimal level of sup-
plementation, and the degree of intake or levels that might
be dangerous. In the medical literature as a whole, many
researchers suggest that measured levels of 25(OH)D should
ideally remain within the 100 and 150 nmol/L range [66].
This view is endorsed by the Vitamin D Society as lower
levels are associated with inferior human health outcomes
and higher levels might have the possibility of increasing risk
ofmorbidity andmortality. Asmentioned, some recent infor-
mation suggests that vitamin D intake to achieve a minimum
level of 120 nmol/L is associated with the lowest mortality
[3], a recommendation that has been adopted by groups such
as the “Vitamin D Council” and “Vitamin D Society.” A
recent Endocrine Society recommendation suggests targeting
for a 25(OH)D level value greater than 75 nmol/L. In order
to ensure that individuals “true” 25(OH)D is greater than
75 nmol/L, they suggest aiming for a value of 100 nmol/L, a
level that is not associated with toxicity [67].

Conversely, however, some prominent medical groups
have differed in their recommendations. While the IOM
(Institute ofMedicine) agrees that 4,000 IU of vitamin daily is
allowable and nontoxic, the actual recommended daily dose
by this group is 600 IU daily [65].This IOM recommendation
has been put into question [68] as a significant statistical
error has been identified in the way the recommendation
was arrived at [69]. Furthermore, the IOM recommendations
have been refuted by a study suggesting that it may take as
much as 8800 IU of vitamin D daily to bring 97.5% of the
population to levels of 50 nmol/L [69].

Because of practical concerns such as expense associated
with testing, nonetheless, some have suggested that there
is no point determining and following 25(OH)D measure-
ments, with the rationale that most individuals are low and
should simply be taking regular vitamin D supplementa-
tion. But the degree of supplementation will vary based on
geographic area, degree of sun exposure, nature of the diet,

level of toxicants, and so on. Annual testing has long been
suggested for this reason [5]. Accordingly, while it is increas-
ingly suggested that a certain range of 25(OH)D may be
associatedwith preferred health outcomes, theremay be huge
differences in the required intake of supplemental vitamin
D to achieve a specific 25(OH)D endpoint. For example,
populations at higher latitudes would require significantly
more supplemental vitamin D in order to achieve levels
above 100 nmol/L compared to those living in warm sunny
climates. Accordingly, annual biomonitoring of 25(OH)D
levels is suggested when possible as the health benefits and
resultant cost savings should far outweigh the expense of
annual testing. The savings in healthcare dollars have been
estimated to be in the range of 14 billion dollars in Canada
[70], 187 billion in Western Europe [71], and 56 billion in the
United States [72]. Essentially, it is estimated that the cost of
biomonitoring would be about 5% of the cost savings.

Sufficiency of vitamin D has implications for other
essential nutrients as this important vitamin is recognized
to interact and maintain physiological function in concert
with other vitamins and minerals. As discussed, absorption
of essential minerals and toxic metals are all increased with
more vitamin D, and insufficient levels of various essential
minerals appear to facilitate toxic metal absorption [Table 1].
The majority of Americans, however, receive insufficient
magnesium [73] largely due to the processing of foods where
magnesium levels are reduced by as much as 400% [74].
Evidence suggests that intake of other essential minerals is
also inadequate in many situations, resulting in a higher risk
of toxic metal absorption. Hospitalized patients, for example,
are prone tomineral deficiencies, particularly in the intensive
care units [75]. Accordingly, in order to achieve an optimal
vitamin D status and to minimize the risk of toxic element
accumulation, securing intake of essential minerals through
foods or supplementation in addition to adequate vitamin D
levels is fundamental to achieving optimal health outcomes.

6. Conclusion

Several clinical recommendations are in order based on
the presented information from the literature. Population
studies across the world report low levels of vitamin D.
Lifestyle changes and adequate supplementation are required
to achieve optimal 25(OH) levels—thought to be about 100–
150 nmol/L. From the studies listed in Table 2, it is evident
that, in the average population in a country such as Canada
with little natural UVB stimulation for >6months of the year,
only 22% of the population achieve levels to confer all the
benefits (bone andnonbone) of vitaminDadequacy. Likewise
supplementingwith 2000 IUwould achieve adequate levels in
less than about 78% of the population. Blood monitoring is
recommended on a yearly basis with sufficient supplementa-
tion to secure optimal levels (25(OH)D levels>100 nmol/L) as
outlined above [5]. Such an approachwould realize enormous
savings of healthcare resources across the world.

It is important to recognize that vitamin D does not work
alone but requires essentialminerals to achieve its full benefit.
Deficiency of minerals including magnesium, calcium, zinc,
and iron is very common as outlined above. Recognizing
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the synergistic action of mineral deficiency with elevated
vitamin D levels on the uptake of toxic elements, adequate
intake of minerals needs to be ensured.

It is possible that the concern associated with excessive
vitamin D might be explained by the increased absorption
and bioaccumulation of toxic elements. Further study is
required to explore this emerging concern. Just the same,
efforts to reduce exposure to and accrual of toxic elements
such as the diminution of emissions of toxic elements by
industry are also indicated.This would reduce contamination
by toxic elements in the air we breathe as well as deposition
in soil and uptake into consumed foods, thus diminishing
the risk of exposure and uptake of toxic metals, regardless of
levels of vitamin D and essential minerals.

Finally, there is preliminary evidence that highermorbid-
ity and mortality may be associated with excessively elevated
vitamin D levels. This problem may be exacerbated by a
deficiency of essential minerals, potentially resulting from
inadequate dietary intake or the result of accumulated toxic
elements. Therefore, efforts to secure mineral adequacy and
to avoid toxic metal exposure and avoidance of potentially
excessive vitamin D intake are suggested.

Key Points

(i) Vitamin D sufficiency as reflected by a 25(OH)D level
of about 100–150 nmol/L may be an optimal clinical
endpoint, although controversy remains over the
ideal level. Taking into account the vast number of
population studies, in both temperate and equatorial
climates, population levels are quite low in many
jurisdictions and supplementation is recommended
to achieve optimal levels.

(ii) The IOM daily recommendation of 600 IU of vitamin
D3 for adults <70 years old would not achieve these
preferred levels in more than 50% of people and
thus the IOM recommendation has been called into
question as outlined above.

(iii) Sufficiency of essential minerals is necessary to
prevent bioaccumulation of toxic elements and to
enhance activation of vitamin D related proteins.

(iv) Excessive vitamin D intake may have detrimental
effects, perhaps by enhancing the absorption of toxic
elements.

(v) Levels of vitamin D supplementation required to
reach optimal endpoints will vary depending onmyr-
iad factors and thus a single recommended dose for
all may not be an optimal approach to secure vitamin
D adequacy.
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