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ABSTRACT: Numerous pathogenic DNA variants im-
pair the splicing mechanism in human genetic diseases.
Minigenes are optimal approaches to test variants under
the splicing viewpoint without the need of patient sam-
ples. We aimed to design a robust minigene construct
of the breast cancer gene BRCA2 in order to investi-
gate the impact of variants on splicing. BRCA2 exons
19-27 (MGBR2_ex19-27) were cloned in the new vec-
tor pSAD. It produced a large transcript of the expected
size (2,174 nucleotides) and exon structure (V1-ex19-
27-V2). Splicing assays showed that 18 (17 splice-site
and 1 silencer variants) out of 40 candidate DNA vari-
ants induced aberrant patterns. Twenty-four anomalous
transcripts were accurately detected by fluorescent-RT-
PCR that were generated by exon-skipping, alternative
site usage, and intron-retention events. Fourteen variants
induced major anomalies and were predicted to disrupt
protein function so they could be classified as pathogenic.
Furthermore, minigene mimicked previously reported pa-
tient RNA outcomes of seven variants supporting the
reproducibility of minigene assays. Therefore, a relevant
fraction of variants are involved in breast cancer through
splicing alterations. MGBR2_ex19-27 is the largest re-
ported BRCA2 minigene and constitutes a valuable tool
for the functional and clinical classification of sequence
variations.
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Introduction

Recent advances in genomic technologies have allowed the devel-
opment of new strategies for the molecular diagnostics of human
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diseases. Actually, hundreds of thousands of DNA variants are de-
tected in massive sequencing projects of genetic disorders. Variations
are usually classified attending to their impact on the protein trans-
lation, such as synonymous, missense, nonsense, and frameshift
variants. With the exception of protein-truncating variants, most
of the remaining ones are of unknown clinical significance (UV),
whose classification as neutral or pathogenic represents a challenge
for genetic counseling [Gomez Garcia et al., 2009]. Interestingly,
recent estimations have shown that an unexpectedly large fraction
of genetic diseases are caused by variants that disrupt the splic-
ing process [Wang and Cooper, 2007], ranging from 15% to >60%
[Krawczak et al., 1992; Lopez-Bigas et al., 2005]. The generation of
aberrant splicing events or changes in ratio of isoforms in a spe-
cific tissue can be associated with a disorder, its clinical severity
and even the penetrance of a particular variant. Intron removal is
guided by a large number of splicing factors, ribonucleoproteins,
and a complex array of sequences including acceptor and donor
sites, polypyrimidine tract and branch point, as well as exonic and
intronic splicing enhancers and silencers that stimulate or repress
exon inclusion into the mature mRNA, respectively. Consequently,
all these elements are potential targets for variants with impact on
splicing.

Hereditary breast and ovarian cancer (HBOC) shows high ge-
netic heterogeneity with more than 1000 susceptibility loci esti-
mated [Michailidou et al., 2013]. Germ line variants in the tu-
mor suppressor genes BRCAI (MIM# 113705) and BRCA2 (MIM#
600185) confer high risk to breast and ovarian cancer as well as
other types of tumors [Miki et al., 1994; Wooster et al., 1995;
Narod and Foulkes, 2004], accounting for about 16% of famil-
ial risk of breast cancer [Stratton and Rahman, 2008]. Remark-
ably, about one half of the >3,800 described variants at the Breast
Cancer Information Core database (BIC; https://research.nhgri.
nih.gov/projects/bic/Member/index.shtml) are UVs [Frank et al.,
2002]. We formerly reported that one third of disease-causing vari-
ants of 14 exons of BRCA1/2 disrupted splicing [Sanz et al., 2010;
Acedo et al., 2012]. Interestingly, it was shown that splicing variants
are enriched in cancer-related genes [Sterne-Weiler and Sanford,
2014]. The characterization of a deleterious splicing variant is a
complex task that requires a functional validation as bioinformat-
ics predictions are not today able to predict the consequence of a
splicing motif alteration at the mRNA level. A five-tier scheme was
proposed to improve classification of spliceogenic variants that in-
tegrates bioinformatic and experimental data [Spurdle et al., 2008]
whose purpose was to pre-select candidate variants for functional
tests as well as to interpret the splicing outcomes. Splicing assays
of patient RNA by RT-PCR is the most straightforward and direct
method to assess the clinical relevance of DNA changes [Baralle
et al., 2009]. However, patient samples are not always available so
that functional tests of hybrid minigenes in splicing reporter plas-
mids, such as pSPL3 (Life Technologies, discontinued), have become
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valuable tools to check the splicing profiles induced by a sequence
variation. The laborious constructions of minigenes and the low
pSPL3 efficiency precluded a more widespread use and the cloning
oflarge minigenes with several exons [Burn et al., 1995]. In addition,
the natural genomic context is a critical factor for exon recognition
[Buratti et al., 2006] that must therefore be considered for minigene
design.

Given the growing incidence of splicing alterations in disease-
predisposition genes and the need for appropriate tools to iden-
tify them, we intended to design a BRCA2 minigene with several
exons where candidate spliceogenic DNA variants could be easily
generated and checked. In a recent work, we comprehensively an-
alyzed 41 DNA variants from BRCA2 exons 19, 20, 23, and 24 in
two minigenes [Acedo et al., 2012] that constituted the starting
point of this study. Here, we show the construction of the largest
BRCA2 minigene (MGBR2_ex19-27, exons 19-27) reported so far
in the novel splicing vector pSAD (for Splicing And Disease), which
produced a transcript of 2,174 nucleotides. In order to validate
it, 40 candidate variants from exon 19 to 27 were assayed, 18 of
which disrupted BRCA2 pre-mRNA processing. We showed that
the “maxi-minigene” MGBR2_ex19-27 and the splicing reporter
plasmid pSAD are valuable tools to classify sequence variations of
uncertain clinical significance under the splicing perspective.

Materials and Methods

Ethical approval for this study was obtained from the Ethics
Review Committee of Faculty of Medicine at the University of Val-
ladolid (14/04/2010).

Databases and Bioinformatics Tools

Data of BRCA2variants detected in breast/ovarian cancer patients
were taken from the mutation databases: the BIC and the Uni-
versal Mutation Databases (UMD; http://www.umd.be/BRCA2/)
[Caputo et al., 2012]. To identify potential splicing variants, mu-
tant and normal sequences were analyzed with NNSPLICE version
0.9 for splice sites (http://www.fruitfly.org/seq_tools/splice.html)
[Reese et al., 1997], and Human Splicing Finder version 2.4.1
(HSF; http://www.umd.be/HSF/) [Desmet et al., 2009], which in-
cludes algorithms for splice sites, silencers and enhancers. Vari-
ant descriptions were according to the BRCA2 GenBank sequence
NM_000059.1 and the guidelines of the Human Genome Variation
Society (HGVS; http://www.hgvs.org/mutnomen/).

Development of the New Splicing Vector pSAD

The new splicing plasmid pSAD (Patent P201231427-CSIC, Pri-
ority Patent Application filed) has a pSPL3 backbone with the fol-
lowing features (Fig. 1A): (1) reduction of intron size by 1.2 kb;
(2) introduction of Beta-Galactosidase (LacZ) as a second selection
marker; (3) new polylinker with 27 restriction sites (pSPL3, 10 sites);
(4) strengthening of acceptor site of vector exon V2 (NNSPLICE
score 0.99 vs. 0.64) by triple mutagenesis; (5) elimination of old
PSPL3 restriction sites (HindIIl, Xbal, and Sall) that interfere with
those of the new multiple cloning site (MCS).

Construction of Minigene MGBR2_EX19-27

MGBR2_EX19-27 was constructed in four cloning steps in this
order: exons 19-24 + exon 25 + exon 26 + exon 27 (Table 1 and

Fig. 1B). Two distinct cloning strategies were used: classical restric-
tion digestion/ligation and overlap extension PCR cloning [Bryksin
and Matsumura, 2010]. All the inserts were amplified with Phusion
High Fidelity polymerase and primers indicated in Table 1. Exons
19-20 and 21-24 were subcloned into the pSAD vector with between
the Xhol and Kpnl sites (MGBR2i_ex19-24). Exon 25 was inserted 3’
to exon 24 in the appropriate orientation by overlap extension PCR
(MGBR2i_ex19-25). Exon 26 was then cloned downstream exon 25
into the Kpnl site (MGBR2i_ex19-26). Finally, we designed a strategy
where 752 bp of vector pSAD, including part of the MCS, the vector
intron, and 50 bp of exon V2 with its acceptor site, were replaced
by 221 bp of intron 26 and 723 bp of exon 27 (MGBR2_ex19-27),
so that the final construct contains a chimeric exon 27-V2 with the
acceptor site of BRCA2 exon 27 and the annealing site of specific
vector primer RT-PSAD-RV.

Site directed mutagenesis. Generation of exonic
microdeletions

Mutagenesis was carried out according to the PCR mutagene-
sis protocol (http://www.methodbook.net/pcr/pcrmut.html) with
Pfu UltraHF polymerase (Agilent, Santa Clara, CA). Wild-type
(wt) minigene MGBR2_ex19-27 was used as template to generate
40 DNA variants reported in the BIC/UMD databases (Supp.
Table S1). Thirty-four exonic microdeletions of 30 bp were also gen-
erated to map splicing regulatory elements. The first two and the
last three nucleotides of each exon were always preserved to avoid
disruptions of the natural acceptor and donor sites, respectively.
Deletions were introduced by PCR-mutagenesis with chimeric
50-mer primers (Supp. Table S1) containing 25 nucleotides of each
border of the deletion.

Transfection of eukaryotic cells

Approximately 10> HeLa (human cervical carcinoma) or MCF-7
(human breast adenocarcinoma) cells were grown to 90% conflu-
ency in 0.5 ml of medium (DMEM, 10% fetal bovine serum, 1%
glucose, and 1% penicillin/streptomycin) in four-well plates (Nunc,
Roskilde, Denmark). Cells were transiently transfected with 1 ug
of each minigene and 2 ul of Lipofectamine 2000 (Life Technolo-
gies, Carlsbad, CA). To inhibit nonsense-mediated decay (NMD),
cells were incubated with cycloheximide (Sigma—Aldrich, St. Louis,
MO) 300 pg/ml (4 hr). RNA was purified with Nucleospin-RNA-
II (Macherey-Nagel, Diiren, Germany) with on-column rDNAse
treatment.

RT-PCR of minigenes

Retrotranscription was carried out with 200 ng of RNA and
the Transcriptor cDNA synthesis kit (Roche Applied Science,
Penzberg, Germany). Two microliters of cDNA was amplified
with GoTaq polymerase (Promega, Madison, WI) and specific
primers of the vector exons RTpSAD-FW and RTpSAD-RV
(Patent P201231427,CSIC), or one of both combined with one
of the following BRCA2 exonic primers: RTBR2_ex24-FW (5’-
TTTTTAGATCCAGACTTTCAGC-3’), RTBR2_ex25-FW (5-TTT
GCTGGAGATTTTTCTGTG-3’), RTBR2_ex22-RV (5-TGGATC
TGAGCTTGTTTCTT-3’), RTBR2_ex23-RV  (5-ATTCTGTAT
CTCTTTCCTTCTGTT-3’), and RTBR2.ex25-RV  (5-CAC
AGAAAAATCTCCAGCAAA-3’). RT-PCR primers from pSPL3,
SD6-PSPL3_RTFW  (5’-TCACCTGGACAACCTCAAAG-3’) and
211

HUMAN MUTATION, Vol. 36, No. 2, 210-221, 2015



SV40 promoter ExonV1

Splicing reaction

ExonV2

pSAD v5.0
4,993 bp

Intron Intron
mcs

<

B
Expected splicing reactions
Exon V1
MGBR2_ex19-27
10,613 bp
BRCAZ insert +cloning tails: 5,620 bp
AmpP
c & 8 8 85 3
g 2 2 9 3
X 5 & X =
3 & & & o 3
> & @ & & 5
(a] =] [} 2] o a
< [G) U] G} [} ~
a 2 =3 = 2 -
o 2174 =28
w1354 ——
1109 =
—
-
- —
| —
pu— e
184 o

Figure 1. Structures and functional analysis of the splicing vector pSAD and the minigene MGBR2_ex19-27. A: The pSAD vector contains a
SV40 transcription promoter, two constituve exons (V1 and V2), and two selection markers: ampicillin resistance and B-galactosidase (LacZ) with
a multiple cloning site (mcs). Specific primers to amplify minigene transcripts are indicated by arrows in V1 and V2 exons. B: Structure of the
minigene MGBR2_ex19-27: [IVS18 (247 bp) - EX19 (156 bp) - IVS19 (398 bp) - EX20 (145 bp) - 1VS20 (207 bp) // IVS20 (90 bp) - EX21 (122 bp) - IVS21
(262 bp) // IVS21 (262 bp) - EX22 (199 bp) - 1VS22 (234 bp) - EX23 (164 bp) - IVS23 (93 bp) - EX24 (139 bp) - IVS24 (147 bp)// IVS24 (271 bp) - EX25
(245 bp) - 1VS25 (431 bp) // IVS25 (341 bp) - EX26 (147 bp) - IVS26 (344 bp) // IVS26 (221 bp) - EX27 (723 bp)]. The expected splicing reactions in
eukaryotic cells are indicated by arrows. The acceptor site and part of exon V2 was replaced by that with 221 bp of intron 26 and 723 bp of exon 27
with its corresponding acceptor site but maintaining the V2 sequence to anneal specific reverse RT-PCR primer. C: Splicing Functional Assays of the
pSAD" v5.0 vector, the intermediate minigenes MGBR2i_EX19-24, MG BR2i_EX19-25, MG BR2i_EX19-26 and the final construct MGBR2_EX19-27.
RNA was retrotranscribed and amplified with vector specific primers. Sizes of each transcript are indicated below each band.

SA2-PSPL3_RTREV (5TGAGGAGTGAATTGGTCGAA3’), were
also used. Samples were denatured at 94°C for 5 min, followed by
35 cycles consisting of 94°C for 20 sec, 58°C for 20 sec, and 72°C
(1 min/kb), and a final extension step at 72°C for 5 min.
Semiquantitative fluorescent RT-PCRs were done in triplicate
with one FAM-labeled vector primer. One microliter of a dilution
1/10-1/20 of the RT-PCR products was mixed with 18 ul of Hi-Di
Formamide (Life Technologies) and 0.2 ul of Genescan 500 Rox
Size Standard (Life Technologies) or 1.0 ul LIZ-1200. Samples were
run on an ABI3130 sequencer and analyzed with Peak Scanner (Life
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Technologies). Mean peak areas of each transcript and standard
deviations were calculated.

Results

Construction and Validation of the Minigene
MGBR2_ex19-27

With the purpose to maintain the natural genomic context, a
9-exon minigene was constructed (MGBR2_ex19-27) that



Table 1.

Primers for Amplification and Cloning of Fragments Containing Exons 19-27

Primers Exons Sequence 5'—3'

Mgbr2_ex19-fw* 19-24 5" CACACACTCGAGCACACATCCGGAATAGCATTAAGAACTTGTAGCA 3’
Mgbr2_ex24-rv* 5" CACACAGGATCCCACACAGGTACCAAATCAGAGGTTCAAAGAGGCT 3
Mgbr2_ex25-fw? 25 5’ gtaagcctctttgaacctctgattt AATCTGTACTCCTGTTAGCAAT 3
Mgbr2_ex25-rv° 5’ caaaagggaacaaaagctgggtaccTCAGTGTCTCTTATCTGGGATT 3/
Mgbr2_ex26-fw* 26 5" CACACAGGTACCAGTAAATAGAGCTAGGACTTGA 3’

Mgbr2_ex26-rv* 5" CACACAGGTACCTTGATTTGCATCTACTGTGATT 3’

Mgbr2_ex27-fw® 27 5" ccagcttttgtteccttttgtgagggt CTTCCTTCCTTTTCATGTCATTT 3/

Mgbr2_ex27-rvP

5 atctgtetetgtetetetetecacctt AATTTCTTTTCTCATTGTGCAAC 3/

?Cloning sites are underlined.
PInsertion tails for overlap extension PCR cloning are in lower case.

contained an insert of 5620 bp with 9 exons of BRCA2 (19-27) (Fig.
1B) representing a fivefold reduction of the original genomic region
(28,717 bp). It constitutes the largest BRCA2 minigene ever reported.
To check it, constructs with BRCA2 exons 19-24 (MGBR2i_ex19—
24),19-25 (MGBR2i_ex19-25), 19-26 (MGBR2i_ex19-26), and 19—
27 (MGBR2_ex19-27) as well as the plasmid pSAD were transfected
and RNA retrotranscribed and amplified with specific vector exon
primers (Fig. 1C). An increasing ladder of transcripts of the expected
sizes from minigene MGBR2i_ex19-24 to 19-27 could be observed,
as exons 25, 26, and 27 were successively incorporated in the tran-
script, respectively. The final construct MGBR2_ex19-27 produced
a large transcript of 2,174 nt of the appropriate size and exon com-
position (Fig. 1) that was completely sequenced and consisted of
V1, BRCA2-19-20-21-22-23-24-25-26-27 and V2 exons (canonical
transcript), without any anomaly.

Splicing Assays of DNA Variants from Exons 19-27

To validate minigene MGBR2_ex19-27 for functional classifica-
tion of DNA variants, 40 variants were tested, four of which from ex-
ons 19, 20, 23, and 24 were previously assayed in pSPL3 (c.8486A>T,
€.8488-1G>A, c.9117G>A, ¢.9256+1G>A, minigenes 19-20 and 23—
24) [Acedo et al., 2012]. A total of 166 BIC and UMD variants of
exons 21, 22, 25, 26, and 27 were analyzed with Human Splicing
Finder and NNSPLICE. Thirty-six out of them were selected ac-
cording to the following criteria: disruption of canonical acceptor
and donor sites (only one variant per splice site was usually se-
lected), creation of new splice sites, ESE elimination or ESS creation
(Table 2 and Supp. Tables S1 and S2). Fourteen were intronic
(mostly surrounding the splice sites) and 22 exonic that comprised
11 predicted missense, 4 frameshift, 3 synonymous and 2 nonsense
changes, as well as 2 splice site deletions.

All variants were generated in MGBR2_ex19-27 and assayed in
HeLa cells. Eighteen of them (45%) showed anomalous splicing
patterns by capillary electrophoresis (CE) (Fig. 2), which were 12
intronic single nucleotide substitutions, two splice site deletions,
two predicted missense and two synonymous changes (Table 2).
Regarding the bioinformatics output, 17 disrupted the acceptor or
donor sites and one created two silencers.

Atotal of 25 different isoforms, including the canonical transcript,
were detected and characterized by CE except for two, designated as
ins23 (exon 20) and 436-nt (exon 26). The anomalous events were
exon skipping, intron retention and usage of alternative donor or ac-
ceptor splice sites. Most of the characterized RNA isoforms (18/22)
were predicted to truncate the BRCA2 protein, including intron 19
retention, exon 20 skipping, exon 21 skipping, ivs21-ins46, exon
22-dell, exon 22 skipping, exon 22-del7, intron 22 retention, ivs22-
ins4, ivs22dell1- retention, exon 23 skipping, exon 24 skipping, exon

24-del43, ivs25-ins70nt, exon 25 skipping, exon 26-del28, exon 27-
del424, and exon 27-del62 (Fig. 2). Only four isoforms kept the ORF
that included exon 19 skipping and exon 20-del12, both of which
were discussed elsewhere [Acedo et al., 2012], and exon 25-del27
and exon 26 skipping whose roles in the disease are arguable. In-
terestingly, most variants induced more than one splicing isoform,
but remarkably, c.8488-1G>A triggered five different transcripts.
To compare the splicing outputs in different cell lines, seven vari-
ants with impact on splicing (c.8486A>C, c.8488-1G>A, c.9117G>A,
¢.9256G>T, ¢.8948_8953+5del, c.8953+1G>T, and c.9649-2A>G) and
the wt minigene were also checked in MCF-7 but no signifi-
cant differences were observed with HeLa cells as we previously
demonstrated for MCF-10A cells [Sanz et al.,, 2010] (data not
shown).

Impact of NMD on splicing

The NMD process can imbalance the ratio of isoforms that could
be essential for the clinical classification of variants. We checked the
effect of the NMD inhibitor cycloheximide on the splicing outcome
of four variants (c.8486A>T, c.8754+4A>G, c.8948_8953+5del, and
€.9649-2A>G). With the exception of ¢.8754+4A>G that produced
100% of the aberrant transcript Ivs21-ins46 in both experimen-
tal conditions, we observed remarkable differences in peak areas
or band intensity between presence and absence of cycloheximide
(data not shown). Figure 3 shows the effect of cycloheximide on
the splicing outcome of variant ¢.8948_8953+5del. Changes in band
intensities (transcripts) and the presence of a new one were al-
ready visualized in agarose gels (Fig. 3A, left), but these were even
more pronounced in CE electropherograms (Fig. 3A, right). Thus,
in the absence of cycloheximide ¢.8948_8953+5del generated four
isoforms: intron 22-dell1 retention, exon 22del7, exon 22 skipping
and exon 22del31, whereas NMD inhibition enabled the detection
of a new transcript (exon 22del41) and modified their relative pro-
portions (Fig. 3B).

Mapping of splicing enhancers

Efficient exon recognition depends on additional regulatory se-
quences besides the canonical splice sites. Density of active ESEs is
highest near splice sites (~50 nt at both exon ends) with a maximum
between 10 and 20 nucleotides from the natural donor and acceptor
sites within each exon [Fairbrother et al., 2004] so DNA variants
in these regions have higher likelihood of disrupting ESEs. Theo-
retically, disruptions of active enhancers would trigger anomalous
splicing reactions. To map functional ESEs we introduced 34 30-nt
microdeletions of the 5 and 3’ ends of each exon by mutagenesis,
two on each exon end that overlapped 5 nucleotides, except for the
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Figure 2. Capillary electrophoresis of fluorescent RT-PCR products from wild-type MGBR2_ex19-27 and derived mutant minigenes. RT-PCR
products were amplified with one FAM-primer forward (priming on exon V1) or reverse (V2) of the pSAD vector and one exonic BRCA2 primer. All
samples were run on an ABI3130 sequencer with Genescan LIZ1200 (“orange/faint”peaks) as size standard. Screenshots of electropherograms
visualized with the Peak Scanner software are shown. Fragment sizes and relative fluorescent units are indicated on the x- and y-axes, respectively.
wt designates the expected canonical transcript with each primer pair. A: Analysis of exons 19 and 20 (primers RTpSAD-FW and RTBR2_ex22-RV);
B: exons 21 and 22 (RTpSAD-FW and RTBR2_ex23-RV); C: exons 23 and 24 (RTpSAD-FW and RTBR2_ex25-RV); D: exon 25 (RTBR2_ex24-FW and
RTpSAD-RV); E: exons 26 and 27 (RTBR2_ex25-FW and RTpSAD-RV). The exon composition and the splicing reaction of the different isoforms are
shown on the right. Transcripts that were not fully characterized (ins23 or 436-nt) are not represented.

final exon 27 where only two deletions were made on its 5 end.
All these microdeletions would cover the critical ESE-containing re-
gions of the nine exons. Two microdeletions, c.8334_8363del (exon
19), ¢.8490_8519del (exon 20), clearly affected the splicing pro-
cess (Fig. 4). Faint abnormal bands were observed in deletions
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¢.8359_8388del (exon 19), c.8575_8604del (exon 20), c.8697__8726del
and ¢.8722_8751del (exon 21), ¢.8956_8985del and ¢.8981_9010del
(exon 23) that revealed weak effects (data not shown). These results
suggest that the deleted sequences contain supplementary regulatory
elements that would promote exon recognition.
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Discussion variants of these exons recorded at the BIC database. However, this

The clinical classification of DNA variants in disease genes poses
a challenge for medical geneticists as it provides essential informa-
tion for clinical management of patients and asymptomatic car-
riers. Despite most of the disease-causing variants are assumed
to impair the protein function there has been found that a high
fraction of them can actually disrupt the splicing pattern of the
responsible gene [Acedo et al., 2012]. However, the identification
of genomic variants that trigger aberrant splicing is not as simple.
The ideal manner to study it is on patient RNA but this is often
difficult to obtain. Hence, it is required a reliable and straight-
forward substitute methodology to assess splicing. Precisely, ex
vivo assays of DNA variants with splicing reporter minigenes have
emerged to circumvent this problem. Indeed, pSAD is an efficient
splicing vector, as it allowed the construction of the largest mini-
gene with nine exons reported so far. Remarkably, the new mini-
gene was genetically engineered to construct a chimeric last exon
27-V2 preserving the necessary sequences to anneal the specific
V2 RT-PCR primer that only amplifies RNA synthesized by the
minigene.

The wt minigene MGBR2_ex19-27 mostly expressed the full-
length transcript (2,174 nucleotides) confirming its stability and
robustness. This minigene also allowed us to identify 18 out of 40
variants that induce splicing anomalies. Until now we have func-
tionally assayed 139 reported variants from 22 BRCA1/2 exons, 63 of
which disrupted splicing (45.3%), accounting for 7% (63/905) of all

may be even underrated taking into account a previous comprehen-
sive estimation [Mucaki et al., 2011] and that silencer and enhancer
alterations have notbeen included, supporting that variants with im-
pact on splicing constitute a prevalent etiopathogenic mechanism
in HBOC. In any case, BRCA minigenes, such as MGBR2_ex19-27,
are powerful tools to establish the exact proportion of spliceogenic
variants. Indeed, current ongoing projects of our laboratory are
developing large pSAD-minigenes to cover all the BRCAI-BRCA2
exons.

In this sense, it is also worth mentioning the simplicity of the
minigene test where insert cloning can be considered the rate-
limiting step. This process might be accelerated through gene
synthesis of the complete construct (vector + exons), although
this would significantly increase the final costs. Once the mini-
gene is assembled, it can be used as a template to introduce any
change. Moreover, many candidate splice variant from these nine
exons (MGBR2_ex19-27) can be tested in parallel by a simple and
rapid assay consisting of site-directed mutagenesis—transfection—
RT-PCR—electrophoresis/sequencing in only 2—-3 weeks. In addi-
tion, fluorescent-CE is a highly sensitive technique that is able to
detect very rare RT-PCR products and to discriminate isoforms that
differ in size by a few nucleotides [Acedo et al., 2012; Whiley et al.,
2014]. CE has been proposed by the ENIGMA (Evidence-based Net-
work for the Interpretation of Germline Mutant Alleles) consortium
to detect low-abundance transcripts [Whiley et al., 2014]. The use
of NMD inhibitors still improves the detection and quantification
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of transcripts that are critical to evaluate their contribution to the
disease.

Genomic Context and Splicing Outcomes of DNA Variants

The ultimate goal of constructing of large minigenes such as
MGBR2_ex19-27 was to imitate utmost the natural genomic con-
text where the splicing reactions take place as it constitutes a critical
factor influencing pre-mRNA processing. This effect is well illus-
trated by exon 37 processing of the NFI gene, which is only effi-
ciently recognized in minigenes with at least exons 34-38 [Buratti
etal., 2006; Baralle et al., 2006]. Interestingly, one variant of exon 37
(c.6792C>G) only replicated the in vivo splicing pattern of patient
when it was assayed in a minigene with exons 31-38. Similarly, we
previously observed that variant ¢.8488-1G>A principally induced
exon 20 skipping in a two-exon minigene (19 and 20), whereas in
MGBR2_ex19-27 produced five different aberrant transcripts, be-
ing intron 19 retention the most abundant isoform like in patient
RNA [Acedo et al., 2012]. Moreover, study of the impact of variant
€.7806-14T>C on two naturally occurring splicing events (A17,18
and A 18) that were upregulated in carriers of allele C showed almost
identical results in lymphocytes and a pSAD-minigene with exons
16-20 [de Garibay et al., 2014]. Therefore, the restoration of the
genomic background is a key issue to replicate the in vivo pattern,
so any tested exon of a minigene should be flanked by their natural 5’
and 3’ exons. In this regard, large genes, such as TTN with 364 exons
and a mRNA over 100 kb long [Chauveau et al., 2014], represent an
interesting technical challenge for the construction and validation
of reliable minigenes to assay potential spliceogenic variants.

We further compared our results with other previous studies with
minigenes or patient RNA. Variants c.8754+4A>G, ¢.8754+5G>A
(46-nt insertion of intron 21, also ¢.8754+1G>A and c.8754+4A>G
nottested here), c.9117G>A (exon 23 skipping), ¢.9256+1G>A (exon
24 skipping), and ¢.9501+3A>T (partial exon 25 skipping) were pre-
viously reported to display the same splicing patterns in lymphocytes
[Claes et al., 2003; Bonatti et al., 2006; Bonnet et al., 2008; Hansen
etal., 2008; Vreeswijk et al., 2009; Thomassen et al., 2012]. Also, vari-
ant ¢.8486A>G, in the same position that c.8486A>T tested by us
(Table 2), was reported to have the same outcome (exon 19 skipping)
[Houdayer et al., 2012]. Therefore, a total of seven variants from ex-
ons 19 to 27 yield the same or similar results in patient and minigene
assays, supporting the reproducibility of MGBR2_ex19-27 results.
On the other hand, genetic variants c.8755-1G>A, ¢.8953+1G>T,
and ¢.9257-1G>C were reported with different splicing profiles
[Machackova et al., 2008; Whiley et al., 2011]. In the two latter
cases, this may be because of the use of NMD inhibitors that could
modify the number and amount of RNA isoforms so both results
are not comparable.

Clinical Classification of DNA Variants

The clinical interpretation of the splicing results of a genetic
variant is a particularly complex task. Identification of spliceogenic
variants will aid in breast cancer prediction, prevention and surveil-
lance, and will contribute to elucidate the BC predisposition spec-
trum. It is accepted that a variant would be considered pathogenic
when it causes major or total splicing aberrations and generates
a PTC or an in-frame deletion of a known functional domain.
This matches class C5 of the previously reported five-tiered classi-
fication scheme of variants [Spurdle et al., 2008]. Fifteen variants
induced major aberrant transcripts of which 14 fulfilled these crite-
ria of pathogenicity: c.8486A>T, ¢.8488-1G>A, ¢.8633-24_8634del,

c.8754G>A, c.8754+4A>G, c.8754+5G>A, ¢.8754+5G>T, ¢.8755-
1G>A, c.8948_8953+5del, ¢.8953+1G>T, c.9117G>A, c.9256+1G>A,
and ¢.9502-2A>C.

In contrast, variant c.9257-1G>C and ¢.9502-2A>C induced iso-
forms that were predicted to cause in-frame deletions of 9 (exon
25-del27) and 49 codons (exon 26 skipping), respectively. The first
one was predicted to delete amino acids 3,086 to 3,094 of which
Tyr3092 is conserved across species and Gly3086 in vertebrates.
Exon 26 skipping constitutes 33% of aberrant transcripts induced by
€.9502-2A>C (Table 2). It is expected to delete 49 amino acids from
Asn3168 to Leu3216 and involves 35 amino acids (3168-3192) of
the C-terminal end of the oligonucleotide/oligosaccharide-binding
fold (OB3;amino acids 3051-3192) that also binds p53 [Rajagopalan
et al., 2010] where only Leu3180 is conserved among vertebrates.
Therefore, both variants require further studies to classify them as
neutral or deleterious.

Only three DNA changes produced weak effects (<15% of abnor-
mal isoforms): ¢.9502—-12T>G (polypyrimidine tract of intron 25),
¢.9501+3A>T (intron 25), and c.9698G>T (exon 27). Thus, their role
in BC is questionable but they might constitute low-penetrance or
disease-modifier alleles as it was demonstrated in CFTR related dis-
orders or Menkes disease [Steiner et al., 2004; Douglas and Wood,
2011]. These variants might provide low-penetrance alleles that
might interact synergistically with other protector and risk alleles to
modify the overall BC risk. The integration of all these data into a
single model to calculate BC risk would improve disease prediction
and prevention.

Splicing Regulatory Sequences

Seventeen variants affected the splice junctions and only one cre-
ated splicing silencers (c.9698G>T). The splice site software was
accurate to determine variants with impact on splicing, as previ-
ously reported [Houdayer et al., 2008], but the splicing outcomes
(exon skipping, use of cryptic sites, etc.) were unpredictable rein-
forcing the need for a confirmatory functional test. Interestingly,
¢.9698G>T had a weak/partial effect such as other enhancer/silencer
alterations (BRCA1 ¢.5123C>A or BRCA2 ¢.8257_8259del) [Bonnet
et al., 2008; Millevoi et al., 2010], in contrast to BRCAI-c.5434C>G
[Gaildrat et al., 2010], or BRCA2-¢c.145G>T [Sanz et al., 2010] as-
sociated with total disruptions. ESE/ESS predictions programs have
shown low accuracy as these elements are constituted by short-
degenerate motifs. Combined computational and experimental ap-
proaches are expected to ultimately yield a full map of functional
cis-acting elements operating at the RNA level that guide physiologi-
cal or pathological alternative splicing events. Indeed, the functional
ESE mapping by exonic microdeletions has been revealed as a helpful
approach to specifically delimitate enhancer-containing sequences
(Fig. 4) where only predicted ESE-disrupting variants would be
chosen and assayed. Thus, three previously characterized SRE vari-
ants, c.8378G>A (exon 19), c.8969G>A (exon 23), and c.9006A>T
(exon 23) [Acedo et al., 2012], are placed within the positive mi-
crodeletions c.8359_8388del, c.8956_8985del, and c.8981-9010del,
respectively, which strengthens the utility of this strategy to locate
putative ESE-variants. The ESE motifs involved in exon recognition
can be finely mapped with subsequent smaller deletions of the 30-nt
positive segment. To identify the specific splicing factors that bind
such motifs, novel experiments of inhibition with siRNAs or in vitro
binding experiments would be required [Goina et al., 2008].

We can therefore conclude that splicing impairment signifi-
cantly contributes to the inherited susceptibility of HBOC. Fur-
thermore, the pSAD plasmid and their derived minigenes are useful
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tools for molecular diagnostics and genetic counseling of hered-
itary breast/ovarian cancer as well as the basic research of the
splicing process. Summarizing, splicing reporter minigenes such as
MGBR2_ex19-27 have the following advantages: (i) no need of pa-
tient RNA; (ii) straightforward laboratory protocol; (iii) systematic
analysis and functional classification of DNA variants from several
exons with a single minigene; (iv) analysis and quantification of
the splicing outcome of a single mutant allele without the interfer-
ence of the wt one; (v) high reproducibility of results; (vi) assay of
any human disease gene in pSAD and hence it is a valuable way to
functionally evaluate whichever candidate DNA variants detected,
for example, in next-generation sequencing projects. Finally, a clear
understanding of disease-causing events will allow the development
of individualized treatments.
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