Tu et al. Stem Cell Research & Therapy (2018) 9:215
https://doi.org/10.1186/s13287-018-0955-5

Stem Cell Research & Therapy

RESEARCH Open Access

The legacy effects of electromagnetic fields ® e
on bone marrow mesenchymal stem cell
self-renewal and multiple differentiation

potential

Chang Tu', Yifan Xiao’, Yongzhuang Ma', Hua Wu'" and Mingyu Song®

Abstract

effects of EMF remain poorly investigated.

after 2, 4, and 6 weeks.

scores were observed in the EMF group.

Background: The effects of electromagnetic fields (EMF) on bone nonunion have been reported for many years.
Many studies and randomized controlled trials have demonstrated that EMF exhibited benefits in curing delayed
union and nonunion of long bone fractures. Most of them focused on the immediate effects, while the legacy

Methods: In this study, rat bone marrow mesenchymal stem cells (BMSCs) were treated with EMF, and after a
period of time the BMSC proliferation and differentiation were detected. Additionally, BMSC sheets with or without
EMF treatment were transplanted into the rat tibia fracture nonunion models. The bone formation was evaluated

Results: Our results showed that the proliferation capacity of BMSCs was heightened after EMF pretreatment. Over
a period of time of EMF pretreatment, the capacities of osteogenic and chondrogenic differentiation were enhanced,
while adipogenic differentiation was weakened. BMSC sheets pretreated with EMF could better promote the healing of
tibia fracture in rats, compared to BMSC sheets alone. Furthermore, significantly higher values of radiographic grading

Conclusions: EMF has lasting effects on the proliferation and differentiation of BMSCs, and together with cell sheet
technology can provide a new method for the treatment of fracture nonunion.

Keywords: Electromagnetic fields, Legacy effects, Mesenchymal stem cells, Proliferation, Differentiation, Cell sheets

Background

Bone nonunion is a clinical challenge with an incidence
of 5-10% [1]. Electromagnetic fields (EMF) have been
studied for bone disorders for many years [2, 3]. Several
research studies have shown that EMF with different
parameters had various effects on bone problems [4—6].
However, the current study mainly focuses on the im-
mediate effect of EMFE, namely detection and comparison
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immediately after the end of the stimulation with EMF; a
continuous impact of EMF on bone-related incidences has
been reported rarely. It has been reported that patients
with osteoporosis still receive therapeutic benefits after
the end of treatment with EMF [7, 8]. Moreover, EMF
exposure was revealed to induce epigenetic changes on
somatic cells, providing an efficient tool for epigenetic
reprogramming [9]. Prolonged exposure to EMF induces
persistent changes in neuronal activity [10]. Therefore, it
is high time for us to explore the legacy effects of EMF
treatment.

Tissue-engineered bone combined with stem cells has
great potential in the treatment of bone nonunion [11].
Due to the unsatisfactory biocompatibility of graft materials
[12, 13], it is of vital importance to find an alternative
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approach. The cell sheet is a technique based on culturing
cells in hyperconfluency until they form an intact cell
sheet [14]. This technique avoids enzymatic digestion of
cells, preserving intercellular connections and extracel-
lular matrix [15]. A fabricated single cell sheet has been
applied into skin, cornea, periodontal ligament, or mucosa
reconstruction [15, 16]. In a rat bone nonunion model, a
BMSC sheet as a scaffold-free graft can obviously promote
fracture healing [17, 18]. However, due to the limita-
tions of the cell sheet source and the uncontrollable
cell differentiation, various studies seek to explore regu-
latory approaches including vitamin C treatment, elec-
tropathy, a pH change-induced method, and magnetic
treatment [19, 20].

Bone marrow mesenchymal stem cells (BMSCs) are
multipotent progenitors with self-replication and multili-
neage differentiation capacity [21]. In bone tissue engin-
eering or bone-related disease models, BMSCs are often
used for research. To value the effects of EMF in vitro,
lots of studies combined EMF treatment with BMSCs,
and the proliferation and differentiation capacity were
explored [22]. Because of their limited source, BMSCs
should be expanded in vitro before application. However,
during long-term in-vitro culture, the cell morphology
changes and the expression of BMSC specific surface
antigen is reduced [23]. Moreover, the self-replication
and multidirectional differentiation capacity of BMSCs
decreases over time [24]. This will lead to a reduction in
the therapeutic effect of BMSCs and hinder their clinical
application. Many stimuli including EMF had been
unearthed to solve this problem, and if EMF exposure
can have a lasting effect on the proliferation and differ-
entiation of BMSCs, the current problem will be par-
tially answered.

In this study, sinusoidal EMF (SEMF) (15 Hz, 1 mT,
4 h/day) were selected as a stimulus. The legacy effects
of EMF on BMSC proliferation and differentiation were
explored in vitro. In vivo, BMSC sheets with or without
pretreatment with EMF were used to be implanted into
the defects and the bone formation was evaluated. We
expected to explore a new method for bone nonunion
treatment.

Methods

Reagents

TRIzol reagent was procured from Invitrogen (Carlsbad,
CA, USA). Dulbecco’s modified Eagle’s medium F12
(DMEM/F12) was purchased from HyClone (Grand Island,
NY, USA). MSC osteogenic differential medium, adipogenic
differential medium, and chondrogenic differential medium
were obtained from Cyagen Biosciences Inc. (USA). Anti-
bodies against OPN, SOX9, AIPOQ, and PPARy2 were
purchased from Abcam (Cambridge, UK). Antibody spe-
cific for Col2 was obtained from Cell Signaling Technology
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(Beverly, MA, USA). Antibodies against GAPDH, RUNX2,
secondary antibodies, and cell counting kit-8 (CCK-8) were
provided by Boster (Wuhan, China).

BMSC culture and BMSC sheet preparation
Sprague-Dawley rats 6-8 weeks old (male, 60-100 g)
were obtained from the Laboratory Animal Center of
Tongji Hospital of Hubei province in China. All experi-
mental procedures followed the Guidelines of Animal
Care and Use Committee for Teaching and Research of
Huazhong University of Science and Technology. Rat
BMSCs were isolated according to the process described
previously [25]. Briefly, BMSCs were collected by flushing
the bone marrow outside the femurs and tibias of rats with
an 18-gauge sterile needle. The bone marrow was sus-
pended in growth medium (GM) consisting of DMEM/F12
medium supplemented with 10% fetal bovine serum
(FBS; Gibco, NY, USA), 100 U/ml penicillin, and 100 U/ml
streptomycin (Sigma-Aldrich, St. Louis, MO, USA). The iso-
lated cells were then washed twice with phosphate-buffered
saline (PBS, pH 7.4), resuspended in GM, plated at a density
of 1x10° cells/cm? in 25-cm? flasks, and cultured at 37 °C
in 5% CO,. After every passage, nonadherent cells were
removed. The second or third passage was used for
subsequent experiments.

For osteogenic differentiation, adipogenic differentiation,
and chondrogenic differentiation, BMSCs were cultured
with inductive medium respectively according to the proto-
col from Cyagen Biosciences.

For BMSC sheet harvest, third-passage cells were seeded
at 1x10* cells/cm® onto 10-cm dishes. Cells were cul-
tured with GM and the GM was refreshed every 3 days.
After approximately 14 days, the cells reached hypercon-
fluence and were lifted as a cell sheet using a scraper.

EMF exposure

The EMF facility was designed and manufactured by
Naval Engineering University of China (Fig. 1). Briefly,
the device was composed of a waveform generator, an
amplifier, an oscilloscope, and Helmholtz coils. Signals
were emitted by the waveform generator. With the help
of an amplifier and oscilloscope, the signals were trans-
ferred to the coils. The coils producing EMF were placed
in a 5% CO, incubator. In our study, we used sinusoidal
EMF (SEMF) and the parameters were 1 mT, 15 Hz,
4 h/day. The temperatures were measured daily inside
the incubators with or without the EMF device with a
hydro-thermometer (AR827; Smart Sensor, Hong Kong,
China), and the differences were within 0.2-0.8 °C. Dur-
ing exposure, BMSCs cultured in flasks or plates were
placed in the center of the coils. Control samples were
kept in the same conditions without exposure to SEMF.
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Cell proliferation assay

For the EMF group, rat BMSCs of passage 2 were treated
with SEMF (1 mT, 15 Hz, 4 h/day) for 7 days. After EMF
exposure, cells were seeded in 96-well plates at a density
of 1.5 x 10? cells/well. Cell proliferation was analyzed with
a cell counting kit-8 (CCK-8; Boster) according to the
standard protocol. Briefly, 10 pul CCK-8 solution with 100
ul GM was added into each well. After incubation for 2 h,
the optical density (OD) value was read by a microplate
reader (Bio-TEK Instruments, Winooski, VT, USA) at
450 nm. The assay was performed from day O to day 6.
For the Control group, BMSCs were cultured for the same
duration as the EMF group without EMF exposure.

Fibroblastic colony-forming assay

For the EMF group, rat BMSCs of passage 2 were
treated by SEMF (1 mT, 15 Hz, 4 h/day) for 7 days. After
EMF exposure, 4 x 10> cells were seeded onto a 3.5-cm
dish containing GM. The medium was half exchanged
every 3 days. After culturing for 7 days, the dishes were
washed with PBS and the BMSCs were fixed with 4%
paraformaldehyde (Sigma-Aldrich). Then, the cells were
stained by 0.1% toluidine blue solution (Sigma-Aldrich).
Colonies containing more than 50 cells were counted
and the colony-forming ratio was calculated as colony
number/400. For the Control group, cells were con-
trolled to the same passage and same culturing duration
without EMF treatment.

Alizarin Red S staining

For the EMF group, BMSCs of passage 3 were seeded in
3.5-cm plastic dishes with GM. The cells were treated
with SEMF (1 mT, 15 Hz, 4 h/day) for 7 days. After

EMF treatment, the GM was replaced by osteogenic
differential medium. Then the BMSCs were cultured
for another 14 days. The inductive medium was refreshed
following the protocol provided by Cyagen Biosciences.
When the culturing was finished, cells were rinsed with
PBS, fixed with 4% paraformaldehyde, and washed with de-
ionized water. We stained the cells with 40 mM Alizarin
Red S (Sigma-Aldrich) and photographed the cell staining.
For the Control group, BMSCs were kept in the same con-
ditions except for the EMF exposure.

Alcian Blue staining

For the EMF groups, BMSCs of passage 3 were seeded
in 3.5-cm plastic dishes with GM. The cells were treated
with SEMF (1 mT, 15 Hz, 4 h/day) for 7 days. The GM
was replaced by chondrogenic differential medium after
the EMF exposure. Then the cells were cultured for
another 14 days. The inductive medium was refreshed
according to the process from Cyagen Biosciences. When
finishing culturing, cells were washed with PBS, fixed with
4% paraformaldehyde, and rinsed with distilled water. In-
duced cells were stained with Alcian Blue solution (pH 2.5;
Sigma-Aldrich) and the cell staining was photographed. For
the Control groups, BMSCs were controlled to the same
conditions without EMF treatment.

Oil Red O staining

For the EMF group, third-passage BMSCs were seeded in
3.5-cm plastic dishes with GM. After treatment of SEMF (1
mT, 15 Hz, 4 h/day) for 7 days, the GM was replaced by
adipogenic differential medium. We cultured the cells for
another 14 days, and the inductive medium was refreshed
following the process from Cyagen Biosciences. When the
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culturing was finished, cells were rinsed with PBS, fixed
with 4% paraformaldehyde, and washed with distilled water
and 60% isopropanol. Induced cells were stained with
filtered Oil Red O (Sigma-Aldrich) at a ratio of 60% Oil
Red O stock solution to 40% distilled water. After staining,
we took the photographs with an inverted microscope
(Nikon). For the Control group, culturing conditions were
kept the same except for the EMF exposure.

Quantitative real-time PCR

Total RNA was extracted by TRIzol reagent following
the manufacturer’s instructions. RNA sample purity and
concentration were determined spectroscopically. Then
3ug RNA was reverse-transcribed to ¢cDNA with an
EasyScript First-Strand c¢cDNA Synthesis SuperMix kit
(TransGen Biotech, Beijing, China) and used for RT-PCR.
The expression of mRNA was evaluated by a Bio-Rad
myiQ2 thermal cycler (Bio-Rad, Hercules, CA, USA).
GAPDH was used as the internal control for target mRNA.
RT-qPCR primers used in this study are presented in
Table 1. All primers were synthesized by Invitrogen. qPCR
cycling conditions was 95 °C for 30 s followed by 40 cycles
of 94.°C for 5 s and 60 °C for 35 s. The 27°°“* method was
used to analyze the relative expression of targeted mRNA
expression. Compared to the Control group, the EMF

Table 1 Specific primers used in this study

Gene Primer sequences
GAPDH Forward: 5-AACGACCCCTTCATTGACCTC-3'
Reverse: 5-CCTTGACTGTGCCGTTGAACT-3'
RUNX2 Forward: 5-CTACTCTGCCGAGCTACGAAAT-3'
Reverse: 5-TCTGTCTGTGCCTTCTTGGTTC-3"
OPN Forward: 5-CAAGGACCAACTACAACCA-3'
Reverse: 5-GGAGACAGGAGGCAAGG-3'
ALP Forward: 5-CAAGGACCAACTACAACCA-3'
Reverse: 5-AGGGAAGGGTCAGTCAGGTT-3'
OCN Forward: 5-GGAGGGCAGTAAGGTGGTGA-3'
Reverse: 5-GAAGCCAATGTGGTCCGC-3'
Sox9 Forward: 5-AACAAGCCACACGTCAAGCG-3'

Reverse: 5-GCAGATGCGGGTACTGGTCT-3"
Col2 Forward: 5-GCCCAGATGGCTGGAGGATT-3'
Reverse: 5-CCCATGGGACCAGAGACACC-3'

Aggrecan Forward: 5-ACATCCCAGAAAACTTCTTT-3'
Reverse: 5-CGGCTTCGTCAGCAAAGCCA-3'
PPARy2 Forward: 5-CCTTTACCACGGTTGATTTCTC-3'

Reverse: 5-GGCTCTACTTTGATCGCACTTT-3"
AP2 Forward: 5-GCGTAGAAGGGGACTTGGTC-3'
Reverse:5-TTCCTGTCATCTGGGGTGATT-3'
Forward: 5-TGGTGGATGAGCAGTGGGT-3'
Reverse: 5-AGGGTTCAGGACTGGACAGG-3'

ADIPOQ
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group was pretreated with EMF for 7 days before culturing
in inductive medium.

Western blot analysis

Cells were washed with PBS three times and lysed with
RIPA containing 1 mM protease inhibitor cocktail and
1 mM phosphatase inhibitor cocktail (Boster). Then 30 pg
protein samples were separated by SDS-polyacrylamide
gels and transferred to PVDF membranes. The mem-
branes were then blocked with 5% bone serum albumin
for 1 h and incubated with appropriate antibodies at 4 °C
overnight. Subsequently, blots were incubated with horse-
radish peroxidase (HRP)-conjugated secondary antibodies
for 1 h at room temperature. The bands were detected by
the Western ECL Substrate Kit (Thermo Pierce, USA).
Protein expressions were determined by mormalizing to
GAPDH, and representative bands are shown. Compared
to the Control group, the EMF group was treated with
EMEF for 7 days before culturing in inductive medium.

Experiment design of tibial nonunion

Seventy-eight 12—13-week-old male SD rats (about 280—
320 g) were supplied by the Laboratory Animal Center
of Tongji Hospital and were approved by the Committee.
Rats were anesthetized by pentobarbital (3.5 mg/100 g
weight) administered intraperitoneally. Briefly, an incision
was made over the anterior of the right tibia, and muscle
was separated by blunt dissection. After conducting a
transverse osteotomy of the tibia shaft with an oscillating
mini saw, a 21-gauge needle was inserted into the intra-
medullary tibia shaft from the tibia platform to the distal
ankle. Finally, periosteum of 0.5 cm around the fracture
was removed, and the nonunion model was finished.

The rats were divided into three groups. For the Control
group, the rats were left only tibia nonunions without any
treatment. For the Sheet group, osteotomy sites were
wrapped with normal cell sheets. For the EMF group,
bone fractures were implanted with cell sheets pretreated
with SEMF (1 mT, 15 Hz, 4 h/day) for 14 days. At 2, 4,
and 6 weeks, six animals from each group were anesthe-
tized, and X-ray photographs were taken to evaluate the
bone formation. The X-ray images were scored following
the Lane—Sandhu radiographic criteria [26].

Histological evaluation

At 2, 4, and 6 weeks after X-ray evaluation, six rats from
each group were sacrificed. The tibias were harvested
and intramedullary pins were removed. Then the speci-
mens were fixed in 4% paraformaldehyde, decalcified,
and embedded in paraffin. The tibias were cut longitu-
dinally, stained with hematoxylin and eosin (HE), and
prepared for histological evaluation.
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Three-point bending test

At 6 weeks after surgery, six samples from each group
were harvested for biomechanical analysis. Tibias from six
normal 18-week-old SD rats were introduced as the nor-
mal control. A three-point bending test was conducted by
an Instron 5566 device (Instron Corporation, Norwood,
MA, USA) following the manufacturer’s instructions.
Briefly, after extracting the intramedullary pins, the bone
was placed horizontally onto the machine with a span dis-
tance of 20 mm between the two support points. The
pressing force was directed vertically to the bone healing
part and applied at 2 mm/min until failure occurred. The
ultimate force (F), load—time curve, load—displacement
curve, and ultimate stress (o) were obtained.

Statistical analysis

Values were displayed as the mean + standard deviation
(SD). The proliferation curve of the two groups evalu-
ated at multiple time points was analyzed with two-way
analysis of variance (ANOVA) followed by Bonferroni’s
multiple comparison test. Other data comparisons were
analyzed by one-way ANOVA or Student’s ¢ test. Signifi-
cance was confirmed at p < 0.05. All experiments were
at least performed three times.

Results

Legacy effects of EMF on BMSC proliferation

To explore the legacy effects of EMF on BMSC prolif-
eration, we used a CCK-8 assay and conducted a
colony-forming assay. In the CCK-8 assay, BMSCs of
the EMF group were treated with EMF for 7 days and
seeded in 96-well plates for subsequent 6-day culture.
In the colony-forming assay, BMSCs of the EMF group
were seeded onto a 3.5-cm dish for 7-day culture after
7 days of EMF exposure. For the Control group of the
two assays, cells were cultured for the same duration
without EMF exposure. Compared with the Control
group, BMSCs pretreated with EMF exhibited a higher
proliferation level (Fig. 2a). Furthermore, significantly
higher formation of colony-forming units was ob-
served in the EMF group (Fig. 2b).We calculated the
colony ratio of the two groups, and the EMF group ra-
tio was almost twice as high as that of the Control
group (Fig. 2c).

BMSCs pretreated with EMF showed stronger osteogenic
differentiation capacity

To determine the lasting effects of EMF on the osteogenic
differentiation capacity of BMSCs in vitro, we first exam-
ined the expression of osteogenesis-related genes in two
groups by RT-PCR. In contrast to the Control group, the
EMF group was pretreated with EMF for 7 days before
culturing in inductive medium. After 7 days of culture in
inductive medium, BMSCs of the EMF group showed
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an increased expression of RUNX2 (nearly 1-fold), ALP
(0.7-fold), and OPN (0.74-fold). No significant differ-
ence was seen in the expression level of OCN (Fig. 3a).
To further verify the continuous effects of the EMF
treatment, western blot analysis was used to measure
the osteogenesis-related protein expressions. Compared
to the Control group, BMSCs of the EMF group were
pretreated with EMF for 7 days before culturing in induct-
ive medium for the subsequent 7 days. Accordingly, the
levels of RUNX2 and OPN were boosted after EMF pre-
treatment (Fig. 3b). We conducted the Alizarin Red S
staining, and BMSCs with or without 7 days of EMF ex-
posure were cultured with inductive medium for 14 days.
The EMF group exhibited more plaques of calcified extra-
cellular matrix in the microscopic view (Fig. 3¢c). The cor-
responding positive staining area of the two groups was
analyzed, and same tendency was observed (Fig. 3d).

The lasting effects of EMF on BMSC chondrogenic
differentiation potential

To confirm the legacy effects of EMF on the chondrogenic
differentiation potential of BMSCs, we introduced q-PCR
to evaluate the expression of chondrogenesis-related genes
of the two groups. Compared with the Control group,
BMSCs of the EMF group were pretreated with EMF for
7 days before culturing in inductive medium. After 7 days
of culture in inductive medium, BMSCs of the EMF group
exhibited an increased expression of Sox9 (almost 1-fold),
CoL2 (nearly 14-fold), and Aggrecan (3.2-fold) (Fig. 4a).
Furthermore, western blot analysis was conducted to detect
the lasting effects of EMF on BMSC chondrogenic differen-
tiation capacity. In contrast to the Control group, the EMF
group was pretreated with EMF for 7 days before culturing
in inductive medium for the subsequent 7 days. Here, we
found that the protein expressions of Sox9 and Col2 were
boosted in the EMF group (Fig. 4b). For Alcian Blue stain-
ing, BMSCs with or without 7 days of EMF pretreatment
were cultured with inductive medium for 14 days. Deeper
staining was seen in the EMF group (Fig. 4c). The positive
staining area of the two groups was measured, and a similar
tendency was observed (Fig. 4d).

EMF treatment had a continuous impact on BMSC
adipogenic differentiation capacity

To manifest the continuous impact of EMF on BMSC
adipogenic differentiation potential, RT-PCR was con-
ducted to detect the expression of adipogenesis-related
genes in two groups. Compared to the Control group,
the EMF group was pretreated with EMF for 7 days before
culturing in inductive medium. After 7 days of culture in
inductive medium, BMSCs of the EMF group showed a
decreased gene expression of PPARy2 (0.43-fold), AP2
(0.38-fold), and ADIPOQ (0.41-fold) (Fig. 5a). To further
confirm the legacy effects of EMF on BMSC adipogenic
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Fig. 2 Lasting effects of EMF on BMSC proliferation. a BMSCs with or without EMF pretreatment were seeded in 96-well plates, and proliferation
of both groups detected from day 0 to day 6 (n = 3). b Representative gross observation of colony-forming unit formation of both groups after
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differentiation capacity, we introduced western blot ana-
lysis to verify the adipogenesis-related proteins. Compared
with the Control group, the EMF group was pretreated
with EMF for 7 days before culturing in inductive medium
for the subsequent 7 days. Accordingly, the expressions of
PPARY2 and ADIPOQ were reduced in the EMF group
(Fig. 5b). We performed Oil Red O staining, and BMSCs
with or without 7 days of EMF exposure were cultured
with inductive medium for 14 days. The EMF group
showed fewer lipid droplets (Fig. 5c). The lipid droplet

area among the two groups was compared, and same ten-
dency was observed (Fig. 5d).

EMF exposure had a significant lasting therapeutic effect
on rat tibia nonunion combined with BMSC sheets

To evaluate the legacy therapeutic effects of EMF in vivo,
we constructed a rat tibia nonunion model combined with
using BMSC sheets (Fig. 6). BMSC sheets of the EMF
group were pretreated with EMF for 14 days, and the cell
sheets of the other two groups were kept in the same
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Fig. 6 Application of BMSC sheets onto fracture sites in rat tibia nonunion model. a Macroscopic image of BMSC sheets detached from 10-cm
dishes by scraper. b Transverse osteotomy of tibia shaft conducted using oscillating mini saw. ¢ Fracture fixed by 21-guage needle and periosteum of

conditions without EMF treatment. All rats recovered
from the operation and no infections or complications
were observed.

For gross study of the three groups, we introduced
X-ray photographs. Little callus was seen in the Control
group after 6 weeks. Fracture bone formation increased
time-dependently in the Sheet group and the EMF group.
At 6 weeks, the fracture line was not visible in the EMF
group (Fig. 7a). Following the Lane—Sandhu radiographic
criteria, we scored the X-ray images in each group during
different periods. Significantly higher values of radio-
graphic grading scores were observed in the EMF group at
4 weeks and 6 weeks (Fig. 7b).

For histological evaluation, samples of each group at 2,
4, and 6 weeks were stained by HE. Nearly no new bone
formation was seen in the Control group after 6 weeks.
Newly formed bone increased time-dependently in the
Sheet group and the EMF group. In contrast to the Sheet
group, more extensive new bone formation was observed
especially at 4 and 6 weeks in the EMF group (Fig. 7c).

For biomechanical evaluation, we performed the
three-point bending test. At 6 weeks after surgery, re-
sults showed that tibias of the EMF group had greater
ultimate force and ultimate stress compared to the other
two groups (Fig. 7d).

Discussion

Current strategies for treating bone nonunion faced with
unmet achievement [27]. EMF treatment as a noninva-
sive means has been applied clinically and approved by
the US Food and Drug Administration (FDA) [5, 28].
Compared with other treatments, EMF therapy is more
convenient and affordable. To uncover the EMF therapy
effects, various studies have detected the BMSC prolifera-
tion and differentiation capacity combined with the EMF
stimulation [6, 29, 30]. However, these research studies
mainly focus on the immediate phenomenon after EMF
treatment, leaving the legacy effects poorly unraveled. We
previously found instantaneous SEMF (15 Hz, 1 mT,

4 h/day) exposure could promote BMSC proliferation
and differentiation and we continued to use this param-
eter [31]. In an in-vitro study, we treated the BMSCs with
EME, and after a period of time the CCK-8 test and
colony-forming assay suggested that BMSCs showed en-
hanced proliferation capacity. For the EMF legacy effects
on BMSC multiple differentiation potential, data from
RT-PCR, western blot analysis, and corresponding dyeing
techniques indicated that BMSCs pretreated with EMF ex-
hibited stronger osteogenic and chondrogenic differenti-
ation potential and weaker adipogenesis capacity.

Although, at present, autologous bone/allograft bone
graft with appropriate internal fixation or (and) external
fixation is the standard procedure for the treatment of
nonunion of fracture [32, 33], many limitations affect
the therapeutic effect. These include the limitation of
the origin of autogenous bone transplantation, the rejec-
tion of allograft, the possibility of spreading disease, and
the slow graft absorption. Tissue engineering is a promis-
ing approach comprising regulatory factors, seeded cells,
appropriate carrier, and adequate blood supply [34, 35].
However, an in-vivo study controlling the morphology, lo-
cation, and distribution of seeded cells is a challenge [36].
The cell sheet technique, as a scaffold-free graft, guaran-
teed maximum seeding efficacy and exhibited a unique
advantage [15]. Ueyama et al. [37] used osteogenic matrix
cell sheets to regenerate maxillofacial defects. Nakamura
et al. [17] performed the cell sheet transplantation to treat
femur nonunion. Finally, they all achieved remarkable suc-
cess. Therefore, in our present study, BMSC sheets were
selectively applied as the grafts for in-vivo experiment.

To uncover the continuous effects of EMF on BMSCs,
in-vitro study is far from enough. It is reported that the
BMSC differentiation potential weakened with increasing
passage number [38]. Moreover, BMSCs lost stemness dur-
ing long-term passage [39]. It is easy to assume that BMSCs
as grafts would lose efficiency after implantation. Mean-
while, BMSCs should be expanded before application,
which restricts their source. We hypothesized that the EMF
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Fig. 7 EMF exposure had continuous therapeutic effect on rat tibia nonunion combined with BMSC sheets. a Representative X-ray evaluation of
tibia fractures in different groups taken 2, 4 and 6 weeks after surgery. b X-ray scores of radiographs in different groups at each time (n=6). c
Longitudinal H&E-stained osteotomy sites in different groups at 2, 4 and 6 weeks after BMSC sheet implantation. Black arrows indicate bone end
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analysis of tibias, comparison of ultimate force and ultimate stress of tibias in different groups at 6 weeks after BMSC sheet implantation (n =6).
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had a lasting effect on BMSCs. We believe that once
the hypothesis is true, deficiency of the source of BMSCs
in the clinic and difficulties to regulate the differentiation
of grafted BMSCs will be partially handled. Accordingly,
we performed the in-vivo experiments. We constructed
the EMF pretreated cell sheet and used it as a graft to re-
pair the rat tibial fracture. The X-ray images and radio-
graphic scores indicated that BMSC sheets pretreated
with EMF exhibited bigger effects on promoting nonunion
healing. Results from the histological evaluation further
confirmed the therapeutic effects of EMF pretreatment. In
the meantime, the three-point bending test was conducted
to evaluate the biomechanical properties of the samples,
and tibias of the EMF group showed the greatest tough-
ness. All of these results indicated that the legacy effects
of EMF in vivo were significant.

However, EMF with multiple parameters including differ-
ent durations or various frequencies have diverse effects.

We adopted one parameter and more conditions remain to
be explored. Furthermore, EMF have been reported to
affect the biological process by changing transmembrane
ion channels, influencing signal transduction, generating
ROS in the cell, and regulating gene expression [22]. The
mechanism behind the legacy effects of EMF remains un-
clear, and further work is needed.

Conclusions

Besides the immediate effects of EMF on BMSCs, our
results suggest that EMF had a lasting impact on BMSCs.
Furthermore, a BMSC sheet combined with EMF pretreat-
ment might be a promising way to promote bone non-
union healing, shedding light on clinical strategies. This
will give a more complete picture of the EMF biological
effects and provide economic benefits for patients with
bone disorders.
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