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Abstract N
Gastric cancer (GC) is one of the most common cancers with high incidence and mortality worldwide. Recently, RNA-binding \
proteins (RBPs) have drawn more and more attention for its role in cancer pathophysiology. However, the function and clinical
implication of RBPs in GC have not been fully elucidated. RNA sequencing data along with the corresponding clinical information of
GC patients were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed RNA-binding proteins
(DERBPs) between tumor and normal tissues were identified by “limma” package. Functional enrichment analysis and the protein-
protein interaction (PPI) network were harnessed to explore the function and interaction of DERBPs. Next, univariate and multiple Cox
regression were applied to screen prognosis-related hub RBPs and to construct a signature for GC. Meanwhile, a nomogram was
built on the basis of the independent factors. A total of 296 DERBPs were found, and most of them mainly related to post-
transcriptional regulation of RNA and ribonucleoprotein. A PPI network of DERBPs was constructed, consisting of 262 nodes and
2567 edges. A prognostic signature was built depending on 7 prognosis-related hub RBPs that could divide GC patients into high-
risk and low-risk groups. Survival analysis showed that high-risk group had a worse prognosis compared with the low-risk group and
the time-dependent receiver operating characteristic (ROC) curves suggested that signature existed moderate predictive capacities
of survival for GC patients. Similar results were obtained from another independent set GSE62254, confirming the robustness of
signature. Besides, the genetic variation and immune heterogeneity differences were identified between the high-risk and low-risk
groups by bioinformatics methods. These findings would provide evidence of the effect of RBPs and offer a novel potential biomarker
in prognostic prediction and clinical decision for GC.

Abbreviations: AUCs = area under curves, BP = biological process, CC = cellular component, DCA = decision curve analysis,
DERBPs = differentially expressed RNA-binding proteins, ESTIMATE = estimation of stromal and immune cells in malignant tumour
tissues using expression data, GC = gastric cancer, GEO = Gene Expression Omnibus, GO = Gene Ontology, HPA = Human Protein
Atlas, IHC = immunohistochemistry, KEGG = Kyoto Encyclopedia of Genes and Genomes, MCODE = Molecular Complex
Detection, MF = molecular function, OS = overall survival, PPI = protein-protein interaction, RBPs = RNA-binding proteins, ROC =
receiver operating characteristic, SSGSEA = single-sample gene set enrichment analysis, STRING = Search Tool for the Retrieval of
Interacting Genes, TCGA = The Cancer Genome Atlas, TMB = tumor mutation burden.

Keywords: gastric cancer, overall survival, prognostic signature, RNA-binding proteins

Editor: Kamalika Mojumdar.
YW and WY contributed equally to this article.

This study was supported by the Luzhou Science and Technology Bureau (CN) (2018LZXNYD-ZK30), Affiliated Hospital of Southwest Medical University (CN) (18057)
and Incubated Thesis Capital of the People’s Hospital of Deyang City (CN) (FHS202004).

The authors report no conflicts of interest.
The datasets generated during and/or analyzed during the current study are publicly available.

2 Department of Laboratory Medicine, People’s Hospital of Deyang City, Deyang, Sichuan, China, ® Department of Gastroenterology, Luzhou People’s Hospital, Luzhou,
Sichuan, China, ©Department of Laboratory Medicine, Affiiated Hospital of Southwest Medical University, Luzhou, Sichuan, China, © Department of Blood Transfusion,
People’s Hospital of Deyang City, Deyang, Sichuan, China.

*Correspondence: Yi Zhang, People’s Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang City, Sichuan 618000, China
(e-mail: 472189926@qq.com).

Copyright © 2022 the Author(s). Published by Wolters Kluwer Health, Inc.
This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to
download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Wang Y, Ye W, Tian G, Zhang Y. Identification of a new RNA-binding proteins-based signature for prognostic prediction in gastric cancer.
Medicine 2022,;101:8(€28901).

Received: 4 October 2020 / Received in final form: 3 January 2022 / Accepted: 1 February 2022
http://dx.doi.org/10.1097/MD.0000000000028901



https://orcid.org/0000-0001-7180-2738
https://orcid.org/0000-0001-7180-2738
https://orcid.org/0000-0002-0010-1915
https://orcid.org/0000-0002-0010-1915
mailto:472189926@qq.com
http://dx.doi.org/10.1097/MD.0000000000028901

Wang et al. Medicine (2022) 101:8

1. Introduction

Gastric cancer (GC), one of the most frequently occurring
digestive tract tumors, originates in the gastric mucosal
epithelium. GC is an important leading cause of cancer-
associated death worldwide, with an estimated 1,000,000 new
cases and approximately 700,000 deaths every year derived from
the cancer statistics of 2018.1! Despite the advances in the
diagnosis and treatment of GC, the prognosis for patients with
GC remains poor due to most of the diagnosis during its middle to
late stages.”®! Therefore, exploring molecular mechanisms
behind the occurrence and progression of GC and discovering
new biomarkers are urgently required for early diagnosis and
prognosis improvement of GC.

RNA-binding proteins (RBPs) are inherently pleiotropic
proteins, interacting with an assortment of types of RNAs include
mRNAs, tRNAs, miRNA, and ncRNAs."™*! RBPs play central
roles in RNA structure, localization, stability, and translatability to
regulate gene expression post-transcriptionally and other cellular
functions.®! It is well established that post-transcriptional
deregulation has emerged as a frequent pathological mechanism
in numerous diseases, which demonstrate the crucial function of
RBPs in human cellular processes.”) In order to explore the
construction and function of RBPs, we must comprehensively
identify and annotate them first. Given that rapid advances in high-
throughput sequencing technologies, over 1500 RBPs have been
found and deposited into public databases.*! Numerous studies
have indicated that RBPs play essential roles in tumor occurrence
and development.™! For example, RBP RNPC1 regulates P63
gene stability to inhibit initiation and progression.!'” RBP U2AF1
affects pre-mRNA splicing of a good deal of oncogenic drivers to
promote tumorigenesis. Overexpression of RBP LIN28A accel-
erates cell’s progress from S to G2/M to enhance colon cancer cell
proliferation.” ' A systematic study on RBPs may be conductive to
understand their contribution to tumors and help discover
potential diagnostic or prognostic biomarkers that are what we
lack on GC.

In the study, differentially expressed RNA-binding proteins
(DERBPs) were investigated between tumor and normal tissues.
Subsequently, we performed functional enrichment analysis for
DERBPs to explore the biological functions and constructed a co-
expression network to reveal the relationship between them.
Moreover, we built a model to appraise the predictive value of
RBPs for the CC survival, some of which may serve as biomarkers
for prognosis and treatment for GC in the future.

2. Methods and materials

2.1. Data collection and DERBPs analysis

RNA sequence data (fragments per kilobase million format) and
corresponding clinical information (Table 1) were downloaded
from The Cancer Genome Atlas (TCGA, https://cancergenome.
nih.gov/) database, which contained 375 GC tissue samples and
32 paracancerous tissue samples. The genes expression data
included more than 60,000 genes annotated by Ensemble gene
ID (http://www.ensembl.org/). RBPs expression levels were
extracted and recorded in a matrix. Next, “limma” package in
R software (version 4.0.0) was applied to standardize RBPs
expression and estimate DERBPs with PDR <0.05 and |[fold
change|>1 between GC tissues and adjacent non-cancerous
tissues. All data in this study were obtained from public
databases, eliminating the need for ethics approval.
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Clinical characteristics of the TCGA and GEO cohorts.
TCGA cohort (N=371) GEO cohort (N=300)

Characteristics Number Percentage Number Percentage
Age

<60 111 30% 106 35%

>60 257 70% 194 65%
Gender

Male 238 64% 101 34%

Female 133 36% 199 66%
T

-T2 96 26% 188 63%

T13-T4 267 74% 112 37%
N

NO 108 64% 38 13%

N1-N3 245 31% 262 87%
M

MO 328 93% 273 91%

M1 25 7% 27 9%
Stage

Stage |-l 161 46% 126 42%

Stage IIl-IV 187 54% 174 58%
Grade

G1-G2 144 40% NA NA

G3 218 60% NA NA

2.2. Gene ontology and pathway enrichment analysis

In order to research the most associated biological functions and
pathways for DERBPs, we performed Gene Ontology (GO) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis with “clusterProfiler” package in R version
4.0.0."27"% The GO term enrichment analysis included 3
categories: molecular function (MF), cellular component (CC),
and biological process (BP). Both P value <.05 and FDR < 0.05
were used as the screening criteria.

2.3. Establishment of protein-protein interaction (PPI)
network and modules selection

Search Tool for the Retrieval of Interacting Genes (STRING) is a
public database that contains interactions between known and
predicted proteins (http://www.string-db.org/)."'*! DERBPs were
uploaded to STRING database to provide a global perspective for
the interactive relationship of them. Protein-protein interaction
(PPI) network was constructed and visualized using Cytoscape
software (version 3.7.0), and the most important modules
that both Molecular Complex Detection (MCODE) score >4 and
>6 nodes were selected by the MCODE plug.!"®! A P value of less
than .05 was considered statistically significant.

2.4. Construction and validation of overall survival (OS)
risk prognostic model

Identification of candidate prognostic RBPs was performed from
DERBPs in the PPI network by the univariate Cox regression
analysis. Multiple Cox regression was executed to identify hub
prognostic RBPs further based on the results from the univariate
Cox regression analysis. Later, a multiple stepwise Cox
regression model was built based on the above hub prognostic
RBPs. Risk score for every patient was calculated using the
following formula: Risk score value=EXP1*g1+EXP2*32 . . .

+EXPx*Bx, EXP presents the expression levels of each RBP and
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B presents the regression coefficient from the multivariate Cox
proportional hazards regression model. The patients were
assigned to high-risk and low-risk groups according to the
median risk score as the cutoff value. The time-dependent receiver
operating characteristic (ROC) curve was applied to evaluate the
model prognostic power. In addition, the other cohort GSE62254
includes 300 patients from Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE62254), which was used to justify whether the prognostic
value of the model was credible. Statistical significance was
judged with P <.05. The clinicopathological characteristics of the
patients in the GEO cohort are summarized in Table 1.

2.5. Somatic mutation and immune infiltration analysis

This study used the “maftools” package for calculating and
visualizing the mutation data in the TCGA set. Tumor mutation
burden (TMB) was identified as the total number of somatic non-
synonymous mutations in the coding regions. For each sample,
mutation detection was done using the preprocessed and
annotated MAF data files generated by the varscan platform
for the calculation of the TMB. The estimation of stromal and
immune cells in malignant tumor tissues using expression data
(ESTIMATE) was an algorithm to evaluate the levels of immune
cell infiltration (immune score), the stromal content (stromal
score), the stromal-immune comprehensive score (ESTIMATE
score), and tumor cells (tumor purity) based on expression data
for each GC sample in the TCGA set.!'”! A single-sample gene set
enrichment analysis (ssGSEA) algorithm transforms marker gene
expression patterns into quantities of immune cell populations in
individual tumor samples."®! ssGSEA was used to quantify the
infiltration of each immune cell type each GC sample using the R
package “GSVA.” The marker gene set for 24 types of immune
cells was obtained from a previous study.'”!

2.6. Establishment of the nomogram

The clinicopathological parameters of GC patients were added in
univariate and multivariate Cox regression analyses for the
verification of the independence of the risk score based on the
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survival-related APA signature. Afterward, a nomogram signa-
ture was constructed using all independent prognostic factors to
develop a scoring system to evaluate the OS of patients at 1-year,
3-year, and S5-year. To demonstrate the effectiveness of the
system, the calibration curves and time-ROC curves were used
for the evaluation of the recognition performance of the system.
The decision curve analysis (DCA) was used to assess the clinical
applicability of the scoring system.

2.7. Verifying expression and prognostic value of the hub
RBPs

Kaplan—Meier Plotter (https:/kmplot.com/), which is an online
database that contains data from 1440 GC patients and
combined with OS data, was used to assess the prognostic value
of hub RBPs in GC.2Y! The Human Protein Atlas (HPA) is the
largest and most comprehensive database (http://www.proteinat
las.org/) for evaluating protein distribution in human tissues and
cells.*!! In this study, the immunohistochemical staining results
was analyzed for the hub RBPs in both tumor and normal tissues.

3. Results
3.1. Identification of DERBPs in GC

In total, 296 DERBPs were found between tumor and para-
cancerous tissue using “limma” package at the threshold of P
value <.01 and |fold change| > 1, among which 160 RBPs were
upregulated and 133 RBPs were downregulated (Fig. 1A). The
volcano plot shows the distribution of DERBPs (Fig. 1B).

3.2. Functional and pathway enrichment analysis of
DERBPs

To research the function and potential mechanism of DERBPs,
GO and KEGG analysis was done using “clusterProfiler”
package in R software. The results suggest that DERBPs in BP
terms primarily enriched in ncRNA processing, rRNA metabolic
process, rRNA processing, ribosome biogenesis, and regulation
of translation (Fig. 2A). Within the molecular function, DERBPs
were notably enriched in catalytic activity on RNA, mRNA 3’-
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Figure 1. The significantly altered RBPs in GC samples. (A) Heatmap. (B) Volcano plot. GC=gastric cancer, RBP =RNA-binding proteins.
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Figure 2. Functions and pathways analysis of differentially expressed RBPs. (A) Significant enriched GO terms of differentially expressed RBPs. (B) Significant
enriched KEGG pathways of differentially expressed RBPs. GO=Gene Ontology, KEGG =Kyoto Encyclopedia of Genes and Genomes, RBPs=RNA-binding

proteins.

UTR binding, translation regulator activity, ribonuclease activi-
ty, and single-stranded RNA binding (Fig. 2A). At the cellular
component level, DERBPs were mostly enriched in cytoplasmic
ribonucleoprotein granule, ribonucleoprotein granule, preribo-
some, nucleolar part, and small-subunit processome (Fig. 2A).
Moreover, we found that DERBPs were significantly enriched in
ribosome biogenesis in eukaryotes, RNA transport, RNA
degradation, mRNA surveillance pathway, and spliceosome
(Fig. 2B).

3.3. PPI network analysis and identification of key module

PPI network could reflect direct physical interactions and
potential molecular functions between genes. We built a PPI
network of DERBPs using the STRING database and Cytoscape

software, consisting of 262 nodes and 2567 edges (Fig. 3A).
Subsequently, MCODE plug-in was used to screen the vital
cluster modules from the PPI network and the key modules were
chosen, which incorporated 76 nodes and 1071 edges (Fig. 3B).
According to the results of enrichment analysis, the RBPs in the
top module were commonly involved in ribosome biogenesis,
rRNA processing, preribosome, small-subunit processome,
snoRNA binding, RNA helicase activity, and ribosome biogene-
sis in eukaryotes (Table 2).

3.4. Construction and validation of the prognostic
signature

We carried out univariate Cox regression analysis for key RBPs in
the PPI network to find out prognosis-related RBPs, and attained

Figure 3. PPl network construction and significant modules filter. (A) PPI network of the differentially expressed RBPs. (B) The key modules from PPI network. Red
nodes represent upregulated RBPs and green nodes represent downregulated RBPs. PPI=protein-protein interaction, RBPs =RNA-binding proteins.
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GO annotation and KEGG pathway analysis of RBPs in the top
module.

ID Description Counts P

G0:0042254 ribosome biogenesis 33 1.24E-53
(G0:0006364 rRNA processing 31 1.80E-53
G0:0034470 ncRNA processing 34 3.50E-52
(G0:0016072 rRNA metabolic process 31 4.58E-51
G0:0030684 preribosome 18 6.34E-33
G0:0032040 small-subunit processome 12 1.04E-23
G0:0044452 nucleolar part 15 3.23E-20
G0:0030686 90S preribosome 7 4,99E-13
G0:0030515 snoRNA binding 7 2.67E-13
(0:0140098 catalytic activity, acting on RNA 12 1.47E-10
(0:0003724 RNA helicase activity 7 9.74E-10
(0:0004386 helicase activity 7 1.67E-07
hsa03008 Ribosome biogenesis in eukaryotes 15 9.75E-29

19 candidate RBPs, which was associated with GC prognosis
(Fig. 4A). Then, the above 19 candidate RBPs were analyzed by
multiple Cox regression to identify the independent predictors for
GC patients. As a result, 7 hub prognostic RBPs were found, and
all of them were used to build a signature for GC by multiple
stepwise Cox regression (Fig. 4B). GC patients were ranked
according to risk score value and split into high and low-risk
groups using the median risk score value as the cutoff point
(Fig. SA). Kaplan—Meier survival plot revealed that the low-risk
group had a higher OS than the high-risk group (Fig. 5C). Also, a
time-dependent ROC curve demonstrated that area under curves
(AUCs) of the 7-RBPs signature of OS for 5 years was 0.692
(Fig. SE). To determine whether the 7-RBPs signature has similar
prognostic value in another GC cohort, we built the model by
applying the same formula for the GSE62254 set (Fig. 5B).
Kaplan—Meier curve and log-rank test indicated that the low-risk
group had longer survival time than the high-risk group in the
GSE62254 set (Fig. 5SD). Unfortunately, the AUC of time-
dependent ROC curve at 5 years was 0.623 (Fig. 5F).

3.5. TMB and immune infiltration analysis

We analyzed and visualized somatic mutation data in GC patients
by distinguishing between the high-risk and low-risk groups. The
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top 10 drive genes with the highest variation frequency in the 2
risk groups are shown in Figure 6A, B. TMB of the 2 risk groups
was calculated on the basis of somatic mutation data. The result
indicated that the TMB of the low-risk group was higher than
that of the high-risk group and the risk score was negatively
correlated with TMB (Fig. 6C, D). We then identified whether
TMB was a prognostic biomarker for GC patients. GC patients
are split into high-TMB and low-TMB groups as per the median
TMB value. According to the finding, the TMB can used alone for
predicting patient outcomes (Fig. 6E). Besides, when TMB was
combined with the risk score, they could also effectively predict
GC patient outcomes (Fig. 6F). The materials and methods
mentioned in the algorithm were used to assess the immune status
of each GC patient, as shown in the heatmap (Fig. 7A).
Moreover, the Wilcoxon test was performed for the comparison
of the differences in individual cell markers among the high-risk
and low-risk groups. The results indicated that stromal, immune,
and ESTIMATE scores in the high-risk group were substantially
increased, but tumor purity was decreased when compared with
those in the low-risk group (Fig. 7B-E). Concerning the immune
cells infiltration, the DC, iDC, macrophages, mast cells, NK cells,
Th1 cells, Th2 cells were significantly different (P <.001) between
low-risk and high-risk groups (Fig. 7F, G).

3.6. Establishment of nomogram

To ascertain whether the 7-RBPs signature was an independent
prognostic factor, we explored univariate and multivariate Cox
regression analyses for the prognostic value of 7-RBPs signature
and clinical factors. Univariate Cox regression analysis found
that age, stage, pN, and the risk score were obviously related to
OS (Table 3). However, only age and risk score were remarkably
related to OS after multivariate Cox regression analysis of GC
(Table 3). Subsequently, a nomogram was created on the basis of
outcomes of independent factors, including age and risk score.
The OS was calculated for all patients and was predicted at 1, 3,
and 5-year (Fig. 8A). Importantly, calibration plots showed that
the nomogram performed well with the ideal model for predicting
GC outcomes (Fig. 8B). As shown in Figure 9C, the nomogram
had better predictive power that other independent factors
(Fig. 8C). Furthermore, the nomogram could offer the net benefit
over the “treat-all” or “treat-none” strategy in clinical (Fig. 8D).

pvalue Hazard ratio 1
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Figure 4. COX regression analysis of the RBPs. (A) Univariate Cox regression analysis to screen prognostic candidate RBPs. (B) Multivariate Cox regression

analysis to identity hub RBPs for building model. RBPs=RNA-binding proteins.
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signature. OS=overall survival, TMB=tumor mutational burden.

3.7. Validation for hub RBPs prognosis and expression

For examining the association of hub RBPs with the survival of
GC patients, we performed log-rank test for hub RBPs through
an online Kaplan—-Meier plotter database (http://kmplot.com/
analysis/). It was shown that all the hub RBPs were significantly
correlated with OS of GC except for SETD7 (Fig. 9). To verify
whether the protein of the hub RBPs genes can be detected in GC,
immunohistochemistry (IHC) data were retrieved from HPA web
portal. The results of IHC revealed that SETD7 protein
expression was increased in GC tissue, and MSI2, RNASE1,
and RNASE3 protein expression were decreased in GC tissue
(Fig. 10). However, BOLL protein expression did not exhibit
differential expression in GC and normal tissues (Fig. 10).

4. Discussion

GC is one of the most commonly diagnosed cancers with high
heterogeneity in the world, seriously endangering human health
and life.*?! TNM staging is the most commonly used index for
evaluating the progression and prognosis of GC patients.*”!
However, GC patients at the same TNM stage and receiving
similar treatment regimens can experience different clinical
outcomes,**> implying that this indicator provides incomplete
prognostic information. Therefore, exploring the molecular
mechanism is critical to understand the pathogenesis and help
improve the prognosis and treatment of GC. RBPs participate in
almost all the steps of the post-transcriptional regulatory layer,
regulating the expression and function of each transcript in the
cell and ensuring stable maintenance of intracellular environ-

ments. In view of the central role of RBPs in the gene expression,
dysregulation of RBPs may lead to several diseases, including
cancers.?®?7! Several studies have provided some evidence that
RBPs dysregulation is common in various cancers.[*8730!
However, fewer papers have explored the expression and specific
functional role for RBPs in GC. In this study, we investigated to
identify the DERBPs between GC tissue and adjacent tissues from
TCGA database. We implemented gene ontology and pathway
enrichment and constructed a PPI network for DERBPs after that.
In addition, we utilized univariate and multiple Cox regression
analysis to screen relevant prognostic hub RBPs and applied
multiple stepwise Cox regression to build a 7-RBPs signature for
predicting the survival time of GC patients. Meanwhile, log-rank
test analysis and time-dependent ROC analysis were applied to
evaluate the discriminating value of the 7-RBPs signature. These
findings may provide potential biomarkers and contribute to
enlighten the pathological mechanism of GC.

GO and KEGG analysis indicated that DERBPs mainly enriched
in ncRNA processing, rRNA metabolic process, rRNA processing,
catalytic activity on RNA, mRNA 3’-UTR binding, translation
regulator activity, cytoplasmic ribonucleoprotein granule, ribonu-
cleoprotein granule, preribosome, ribosome biogenesis in eukar-
yotes, RNA transport, RNA degradation, mRNA surveillance
pathway, and spliceosome. Post-transcriptional regulation, in-
cluding RNA processing, RNA degradation, and translation, is an
essential aspect of the regulation of gene expression. Previous
studies demonstrated that the disorder of post-transcriptional
regulation is associated with the occurrence and development of
various cancers.”*'=**! Many RBPs bind to sequence-specific motifs
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Figure 7. Estimation of the immune status and response to |mmunotherapy based on the signature in the high-risk and low-risk groups for the whole set. (A)
Heatmap of the immune scores, stromal scores, tumor purity, ESTIMATE scores, and immune-infiltrating cells in the 2 groups. (B- E) Violin plots for the tumor purity,
immune scores, stromal scores, and ESTIMATE scores. (F) The fraction variations of tumor-infiltrating immune cells in 2 groups. ( P<.05; "P<.01; P <.001; ns,
not significantly different). ESTIMATE =estimation of stromal and immune cells in malignant tumor tissues using expression data.

COX regression analysis of the 7-RBPs signature with OS in the TCGA set.

Univariate COX Multivariate COX

Parameters HR (95% Cl) P HR (95% Cl) P

Age 1.032 (1.008-1.056) .008 1.043 (1.017-1.070) .001
Gender 1.225 (0.735-2.040) 436 1.068 (0.628-1.816) .809
Grade 1.264 (0.775-2.060) .348 1.212 (0.698-2.105) 495
Stage 1.419 (1.076-1.870) .013 1.295 (0.741-2.261) .364
T 1.187 (0.870-1.620) .280 1.021 (0.662-1.574) 927
M 1.446 (0.658-3.178) .358 1.433 (0.552-3.720) 460
N 1.373 (1.104-1.708) .004 0.327 (0.846-1.605) 327
Risks core 1.244 (1.146-1.351) <.001 1.245 (1.138-1.362) <.001

The significance of bold values is the analysis results of these variables are statistically different (P<0.05).

8



Wang et al. Medicine (2022) 101:8

www.md-journal.com

Points P W 0 o B W N S W e A T2 oy
@ e O T
— 3-year
; ISR SN —— 5-~year
AgE 35 45 55 65 75 8BS ye
2.
@ | "
. o
Riskscore ] 2 4 [} 8 10 12 14 16 18 20 2 24 //
Total Points 0 10 20 30 40 50 80 T0 80 °0 100 110 120 § © "
&= &
7]
Linear Predictor o
1 05 0 05 1 15 2 26 3 35 4 45 6 b
£
$ <
1-year survival Probability 8 <1
yE Gt'] oa 07 06 05040302 01 0
3-year survival Prohabilipﬁm‘
: : o
o
5-year survival thahilim|
=
& 7.
T T T T T T
A B 0.0 02 04 0.6 0.8 10
Nomogram-prediced OS (%)
o | =
= = Pt
— Age All(1-year OS)
g . Nomogram(1-year OS)
All{3-year OS)
P - Nomogram(3-year OS)
- % All(5-year OS)
g 3 - Nomogram(5-year OS)
- 2
- |
©
o ¥
YRR
\J
w | -
o - -
T T
T T T T T T T T 08 10
1 2 3 4 5 6 L 8
C D Threshold probability

time t
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operator characteristics.

or RNA secondary structures through unique modular arrange-
ments of individual RNA-binding domains to play the roles in the
homeostatic regulation of gene expression,****! which influence
the progression of many diseases. For example, RBP MSI2a
expression alleviates triple-negative breast cancer invasive abilities
through stabilizing TPS3INP1 mRNA and inhibiting ERK1/2
activity.**' RBP CASC9 interacts with hnRNPL form a complex to
regulate DNA damage signal and PI3K/AKT signaling pathway,
influencing tumor cell proliferation and apoptosis in vivo.!*”!
Ribonucleoprotein is the underlying basis for synthesizing all
cellular proteins in all living organisms. Some research findings
have shown that ribonucleoprotein also is involved in tumor
initiation and progression.*®>*! The PPI network was constructed
on DERBPs by Cytoscape software and employed MCODE tool to
select key modules. The functional and pathway enrichment
analysis showed that the key module was related to ribosome
biogenesis, rRNA processing, preribosome, small-subunit
processome, snoRNA binding, and ribosome biogenesis in
eukaryotes.

In addition, 7 hub prognostic RBPs were screened by
univariate and multiple Cox regression analysis. Compared
with single biomarkers, integrating multiple biomarkers into a
single model may considerably increase the predictive accura-
cy.*% Therefore, we built a signature based on 7 hub prognostic
RBPs using multivariate stepwise Cox proportional hazards
regression analysis for useful and sensitive prognosis of GC
patients. The 7-RBPs signature is capable of discriminating the
GC patients from high-risk and low-risk groups and may serve as
an independent prognostic factor in GC. However, the AUC
values of time-ROC curves in the 2 cohorts were not high enough
and may be affected by other clinical features. More importantly,
the risk stratification capability of 7-RBPs signature was
confirmed in another independent set. Besides, the 3 clinico-
pathological parameters (age, stage, and pN) as well as the risk
score were obviously related to prognosis of GC, and only age
and risk score were identified as independent factors. Next, a
nomogram based on the independent factors was drawn to
quantitatively predict survival time for clinical use. Importantly,
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Figure 9. Validation of prognosis value of the hub RBPs in GC. (A) RNASET. (B) BOLL. (C) ADARB1. (D) PPARGC1B. (E) MSI2. (F) RNASES. (G) SETD7. GC=

gastric cancer, RBPs=RNA-binding proteins.

the performance of nomogram is better than the single index (age
and 7-RBPs signature) in both the predictive power and clinical
benefit possibly because of calibrating other clinical parameters.
Kaplan—-Meier plotter explored that most of 7 hub RBPs are
associated with the survival of GC patients. The protein
expression levels of 7 hub RBPs genes in human tissues were
obtained from HPA database, and the results indicated that the
majority of RBPs were differently expressed between tumor and
normal tissues.

In the present study, the 7-RBPs signature has been proven to
be significantly connected with OS of GC patients. Among these
hub RBPs, many of them have proved to be closely related to
tumor occurrence and development. SETD7 is the only lysine
methyltransferases 7 family members, which can methylate

10

transcription factors.*!! SETD7 could be used as a prognostic
indicator for breast cancer, downregulation of it suppressed
expression of antioxidant enzymes and destabilized the redox
status.'**! SETD7 and ISL1 may combine to form a complex on
the ZEB1 promoter to promote tumorigenesis in GC cells.!*?!
BOLL, an ancestral gene of the deleted in azoospermia family,
maintains normal functions of sperm.***' BOLL functions as an
oncogene because of enhancing proliferation and migration
activities in the colon cancer cells, and BOLL protein expression
was upregulated in colorectal cancer tissue.*®! ADARB1 was
expressed at high levels in endometrial cancer, and observed a
positive correlation between increased expression and invasion
degree.*”! Another study reported that ADARB1 could inhibit
glioblastoma cell growth via regulation of the CDC14B/Skp2/
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p21/p27 axis.[*8 MSI2 is a popular molecule in digestive system
tumors. MSI2 promoted hepatocellular carcinoma progression
via the Wnt/B-catenin signaling pathway and may serve as an
indicator to predict outcome of patients with hepatocellular
carcinoma.®! MSI2 expression levels were upregulated in GC
tissues and associated with poor prognosis of GC. Furthermore,
MSI2 induced migration, invasion, and angiogenesis to increase
proliferation and invasiveness of GC cells.l*”!

A number of studies have demonstrated that somatic mutation
and the tumor immune microenvironment are significantly
related to tumor growth, tumor progression, and drug resistance
in individuals with GC.®'*2! Therefore, the analysis of somatic
mutation and tumor infiltrating cells may help understand the
potential mechanisms of GCs and may provide new selection for
treatment strategies. TMB refers to the total number of somatic
mutations in specific regions of a tumor genomel®*! and have been
regarded as a biomarker of immunotherapeutic responses.>*! To
our surprise, the somatic mutation frequency and TMB level in
the low-risk patients was higher than that of the high-risk
patients, and TMB were negatively correlated with risk score.
Furthermore, whether applied alone or combined with risk score,
TMB could assist with differentiating GC patients with good
prognosis from those with poor prognosis. It was widely known
that the immune microenvironment can profoundly interfere
with the efficiency of immunotherapy,®” so we measured
immune status in different risk groups. The infiltration
abundance of immune cells was significantly different between
the low-risk and high-risk groups in this study. We found that
high-risk group had higher immune score, stromal score,
ESTIMATE score, but lower tumor purity compared with the
low-risk group. Besides, most of the immune cells were highly
infiltrated in the high-risk patients, while the abundance of Th
cells was higher in the low-risk group. Su et al®® reported that
GC tissue or peripheral blood mononuclear cell populations are
characterized by an increase in Th1 cell responses, predominantly
in patients with metastasized lymph nodes, suggesting that GC
development and metastasis may be influenced by Th1l cell
infiltration. These findings may provide potential novel targets
and promote individualized immunotherapy for GC patients, but
the exact mechanisms of how these seven RBPs function together
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to influence tumorigenesis and the immune system remains
unclear and further studies are demanded.

However, several limitations in this study should not be
ignored. On the one hand, this study is a retrospective design;
prospective clinical experimental and clinical data are needed to
confirm these funding. On the other hand, some proverbial
potentially significant clinical information, such as treatment
plan and perioperative data, were not provided in the TCGA and
GEO database. Therefore, we failed to explore the question that
the signature predicts response rate in GC patients. Finally, the
population in the database mainly came from western countries,
and this might present observation bias.

5. Conclusion

All in all, we comprehensively analyzed the expression, function,
interaction, and prognostic value for RBPs in GC through
bioinformatic analysis. In addition, our research not only
established an RBPs-based signature but also generated a
nomogram to predict prognosis of GC patients. Our funding
may provide new insights into the roles of RBPs in GC and
develop potential markers for guiding treatment and prognosis.
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