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Abstract: Congenital cytomegalovirus (CMV) infection may cause severe long-term sequelae. Recent
studies have demonstrated that early antiviral therapy for infants with symptomatic congenital CMV
(cCMV) infection may improve neurological outcomes; thus, accurate identification of newborns at
high risk of cCMV infection may contribute to improved outcomes in affected children. However,
maternal serological screening for cCMV infection by diagnosing primary infection during pregnancy,
which is a popular screening strategy, is inefficient, because the number of cCMV infections with
nonprimary causes, including reactivation of or reinfection with CMV, is larger than that of cCMV
infections with primary causes. Low levels of neutralizing antibodies against pentameric complex
and potent CMV-specific T cell-mediated immune responses are associated with an increased risk of
cCMV infection. Conversely, our prospective cohort studies revealed that the presence of maternal
fever/flu-like symptoms, threatened miscarriage/premature delivery, or actual premature delivery
are risk factors for cCMV infection among both women with normal pregnancies and those with
high-risk ones, regardless of whether the infection is primary or nonprimary. This review focused on
host immune responses to human CMV and current knowledge of potential biological and clinical
factors that are predictive of cCMV infection.

Keywords: clinical risk factor; congenital cytomegalovirus infection; neutralizing antibodies; nonprimary
infection; prediction; primary infection; screening; T cell-mediated immune response

1. Introduction

Human cytomegalovirus (CMV) is the most common congenital viral infection and
can lead to severe long-term neurological sequelae and even death in affected children.
The prevalence of congenital CMV (cCMV) infection among newborns worldwide is
estimated to be 0.7%, and 10–15% of infected fetuses have symptoms of cCMV infection
at birth. The clinical manifestations of cCMV infection, including fetal growth restriction,
low birth weight, and involvement of the central nervous system and multiple organs,
can cause major neurological sequelae in approximately 90% of surviving affected infants.
By contrast, long-term neurological sequelae, including progressive sensorineural hearing
difficulty and mental retardation, can develop in 10–15% of infants with asymptomatic
cCMV infection [1].

Recently, it has been reported that early antiviral therapies with oral valganciclovir
may improve audiologic and developmental outcomes in newborns with symptomatic
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cCMV infection [2–4]. Particularly, a recent large-scale study demonstrated that universal
neonatal screening for cCMV infection through CMV DNA polymerase chain reaction (PCR)
assay in a newborn’s urine, followed by diagnostic workup and valganciclovir therapy for
symptomatic cCMV infection, could reduce neurological sequelae in affected infants [4].
However, universal neonatal screening for cCMV infection is not yet popular anywhere
in the world. Therefore, serological tests, including maternal blood tests of CMV-specific
immunoglobulin G (IgG) and CMV-specific immunoglobulin M (IgM), are commonly used
in practice because it is conventionally thought that preexisting maternal human CMV
(HCMV) immunity can exert a protective effect against intrauterine transmission, and,
therefore, that almost all symptomatic cCMV infections in infants are caused by maternal
primary CMV infection either during or just before pregnancy. Recent studies, however,
have demonstrated that preexisting maternal HCMV immunity provides only limited
protection against transmission to the fetus [5], and also that the number and severity of
symptoms in infants with cCMV infection from pregnant women with nonprimary CMV
infection (i.e., reactivation of latent CMV or reinfection with a different strain of CMV)
was similar to or higher than those in such infants from pregnant women with primary
CMV infection [6,7]. In fact, the prevalence of cCMV infection in China (0.7%), where 96%
of pregnant women are seropositive for CMV [8], is higher than that in Finland (0.2%),
where 71% of pregnant women are seropositive [9]. These facts should be considered in the
development of not only screening methods for cCMV infection but also HCMV vaccines.
Additionally, to understand the mechanisms involved in the reactivation of latent CMV
and reinfection with a different strain of CMV, which is involved in the origin of cCMV
infection, the host immune responses to HCMV should be analyzed.

This review focuses on host immune responses to HCMV and on the current knowl-
edge of potential biological and clinical factors that are predictive of cCMV infection.

2. The Struggle between HCMV and Host Immunity
2.1. Innate Immune Cells

Innate immune response is the first defense against HCMV infection. Myeloid cells
(i.e., monocytes, macrophages, and dendritic cells) play a key role in sensing HCMV infec-
tion and producing cytokines. These cells not only possess direct antiviral activities but
also play important roles in inducing adaptive immune responses [10]. However, HCMV
can evade innate immune responses, for example, by impairing the antigen-presenting
ability of myeloid cells by downregulation of major histocompatibility complex (MHC)
proteins and costimulatory molecules. Concretely, during the early phase of viral repli-
cation, HCMV gene product U3 inhibits intracellular transport of MHC class I molecules
toward the cell surface. US2 and US11 dislocate newly generated MHC class I molecules
from the endoplasmic reticulum (ER) to the cytoplasm, where they are degraded by the
proteasome [11].

Natural killer (NK) cells are also involved in the innate immune response to HCMV
infection. NK cells can produce cytokines that stimulate other immune cells, as well as
directly killing HCMV-infected cells [12]. HCMV can infect polymorphonuclear leukocytes
and monocytes; conversely, however, the virus cannot infect NK cells but can affect their
function. A balance of signals generated by activating and inhibitory receptors decides
whether NK cells do or do not kill the infected cells. NKG2D is one of the activating NK
cell receptors in humans, and its ligands include MHC class I chain-related protein A
(MICA), MHC class I chain-related protein B (MICB), and UL 16-binding protein 1 (ULBP1)
to ULBP6. Expression of these ligands on the infected cells induces NK cell cytotoxicity.
In contrast, the UL 16 and UL 142 glycoprotein of HCMV downregulate ULBPs, MICA,
and MICB by causing intracellular retention of these ligand proteins [13–15]. On the other
hand, US 18 and US 20 downregulate MICA by targeting the ligand protein for lysosomal
degradation [16]. Thus, HCMV evades NK cell attack by downregulation of the ligands of
activating NK cell receptors.
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Meanwhile, the cytotoxic activity of decidual NK cells is poorer than that of NK
cells in the peripheral blood. However, decidual NK cells are thought to be important in
preventing CMV transmission to fetuses in early pregnancy because these cells can exert
cytotoxic activity when exposed to HCMV-infected decidual fibroblasts [17].

2.2. Adaptive Immune Response

T cells play major roles in the adaptive immune response. They recognize exogenous
antigen peptides presented by MHC molecules on infected cells or by professional antigen-
presenting cells. CD4+ T cells not only help antigen-specific B cells activate and produce
antibodies but also help CD8+ T cells activate and exert direct cytotoxic effects against
infected cells. In addition, it has been recently shown that CD4+ T cells exhibit antiviral
activity, which is independent of their helper function, through the production of cytokines
IFN-γ and TNF, and through direct cytolytic actions via perforin-dependent and Fas-
dependent killing [18]. Indeed, both CD4+ and CD8+ T cells were shown to play crucial
roles in the resolution of acute CMV infection in adult mouse models [19].

Previous studies have demonstrated that maternal neutralizing antibodies with high
avidity to HCMV, which are produced by antigen-specific B cells activated by helper CD4+

T cells, can decrease the risk of cCMV infection [20].
Conversely, fetal HCMV infection was reported to induce a strong a CD8+ T cell

response as early as 22 gestational weeks [21], and that depletion of CD8+ T cells led to
fatal outcomes in a mouse model of cCMV infection [22]. These results demonstrated that
both humoral immunity, in which CD4+ T cells and B cells play crucial roles, and cellular
immunity, in which CD8+ T cells play a major role, are important in preventing the mother-
to-fetus transmission of HCMV infection.

Thus, several researchers have attempted to investigate predictors of cCMV infection
by measuring neutralizing antibodies (this issue is described in Section 3.2) or by evaluating
the magnitude of CD4+ and CD8+ T cell responses (this issue is described in Section 4).

2.3. The Establishment of Latency and Reactivation of HCMV

Polymorphonuclear leukocytes and monocytes take up HCMV virus particles and
express immediate early (IE) antigens. The results of previous studies lead to the hy-
pothesis that abortively infected polymorphonuclear leukocytes and monocytes transport
internalized HCMV virions into the blood to disseminate HCMV to various organs. In the
bone marrow, HCMV infects hematopoietic progenitor cells and establishes latent infection
in these cells. However, latent HCMV is detectable only in monocytes in the blood.

The mechanisms by which HCMV establishes latent infection in myeloid cells remain
largely unknown. Some potential mechanisms for establishing latent infection are as fol-
lows: (1) viral proteins, such as UL 138 and US 28, may indirectly alter histone modification
in the major immediate-early promoter (MIEP) to maintain repression of viral genes; (2) US
28 inhibits activation of c-fos and NF-κb, which activate the MIEP; (3) HCMV-encoded
microRNA (miRNA) achieves transcriptional repression; (4) HCMV genome may include
binding sites for myeloid-specific repressive transcription factors, such as KRAB-associated
protein 1, and they recruit co-repressor complexed to suppress viral gene expression;
(5) HCMV RNA contains binding sites for cellular miRNAs which suppress viral genome
expression, etc.

On the other hand, the MIEP is thought to be a major regulator of HCMV latent
infection and reactivation. In the cells latently infected with HCMV, the MIEP is hete-
rochromatinized and is occupied by chromatin repressor complexes. Inflammation, DNA
damage, and oxidative stress, etc. can activate the MIEP by triggering the replacement of
these repressors by activating transcription factors (e.g., NF-κb, AP-1, CREB), co-activators,
and histones with activating modification before latent HCMV finally achieves reactiva-
tion [23].
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3. Prediction of cCMV Infection by Serological Assays
3.1. CMV-Specific Antibody Tests and CMV-Specific IgG Avidity Measurements

It is conventionally thought that the majority of symptomatic cases of cCMV dis-
ease are caused by primary infection either during or just before pregnancy [24]. Thus,
serological tests for detecting primary CMV infection, including maternal blood tests of
CMV-specific IgG and CMV-specific IgM, have been widely used in pregnant women.
However, positive results for CMV-specific IgM are 20–25% sensitive, and the false-positive
rate for detecting primary CMV infection is 15–20% because CMV-specific IgM may persist
in serum for 6–9 months after primary CMV infection. Thus, the serum CMV-specific IgG
avidity index is used to confirm primary CMV infection [25]. Because the CMV-specific IgG
avidity index increases over time, a low CMV-specific IgG avidity index, which indicates a
recent CMV infection, was reported to be a significant predictor of cCMV infection [26].

Indeed, 40% of fetuses whose mothers have primary CMV infection during pregnancy
will have cCMV infection. Nevertheless, preexisting maternal HCMV immunity provides
only limited protection against intrauterine HCMV transmission [5]. Furthermore, the ma-
jority of cases of cCMV disease are caused by nonprimary maternal CMV infection [6,7];
for example, 75% of cases of cCMV disease that occur annually in the United States are
caused by nonprimary maternal infection [27]. Thus, the utility of serological tests in
predicting cCMV infection is limited.

3.2. Epitope-Specific Antibody Detection

The major targets of HCMV-specific antibodies are viral glycoproteins on the surface
of the virions, including gB, the gM/gN complex, the gH/gL complex, and a pentameric
complex, gH/gL/UL128/UL130/UL131A. Particularly, antibodies against the pentameric
complex possess potent neutralizing activities. A delay in the production of maternal
antibodies against the pentameric complex during primary infection is associated with an
increased risk of cCMV infection [28]. Conversely, both antibodies against the pentameric
complex and a higher CMV-specific IgG avidity index are correlated with decreased risk
of cCMV infection [29], as described in Section 2.2. Additionally, competitive enzyme-
linked immunosorbent (ELISA) assay (inhibition of monoclonal antibody binding assay)
helped detect neutralizing antibodies in 10 pentameric complex epitopes (sites 1–10), which
showed that an early potent antibody response to antigenic site 7 in the pentameric complex
was associated with a decreased risk of cCMV infection [28]. Therefore, the pentameric
complex is a major target of vaccines being developed to prevent cCMV infection, and the
measurements of antibodies against the pentameric complex may improve risk assessment
for cCMV infection.

Conversely, the results of previous studies suggested that the fetuses of pregnant
women who were reinfected with different strains of HCMV were at a higher risk of cCMV
infection [30]. To identify reinfection with different strains of CMV, Novak et al. developed
an ELISA method that was based on defined heterogeneity in the antibody binding epitopes
on envelopes gB and gH of laboratory (AD169 and Towne) strains of CMV [31]. They used
this ELISA assay to measure serum levels of strain-specific antibodies in 96 seropositive
women and found that 58 (60%) were positive for at least one of the antibodies against
the four antigens, while 18 (19%) were positive for two or more antibodies. These results
indicated that this ELISA method may be useful for identifying reinfection with different
strains. However, this assay could not identify reinfection with any strains of HCMV except
for the AD169 and Towne strains, or with the two strains that had different polymorphic
epitopes on gB and gH.

Additionally, these assays for detecting epitope-specific antibodies are not commonly
available because they are nonstandardized in-house assays, and data interpretation is complex.

4. Assays for Measuring CMV-Specific T Cell-Mediated Immunity

The results of previous studies have suggested that CMV-specific T cell-mediated im-
mune responses play a crucial role in controlling viral replication and the severity of CMV
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disease. Interferon-γ (IFN-γ) release assays, including the enzyme-linked immunosor-
bent spot (ELISpot) assay and the QuantiFERON assays (QIAGEN, Hilden, Germany),
are commonly used to evaluate T cell-mediated immunity. In the CMV ELISpot assay,
the amount of IFN-γ secreted by both CD4+ and CD8+ T cells is measured after these cells
are stimulated with a mixture of peptides derived from the CMV antigens IE-1 and pp65 in
purified peripheral blood lymphocytes. In the CMV QuantiFERON assay, the amount of
IFN-γ secreted is measured after stimulation of CD8+ T cells with a cocktail of peptides
from various CMV proteins that bind to a range of different human leukocyte antigen class
I haplotypes in whole blood.

Because strong cellular immunity can reduce the severity of CMV disease as described
in Section 2.2, the CMV ELISpot assay is used to predict the risk of reactivation of CMV
infection or infection with CMV in recipients of hematopoietic cell transplants [32]. Con-
versely, Saldan et al. measured the CMV IgG avidity index and performed CMV ELISpot
assays in 80 pregnant women, including 57 with primary and 23 with nonprimary CMV
infection [33]. Contrary to expectations, they found that higher CMV ELISpot levels were
associated with an increased risk of cCMV infection in the fetus, especially among pregnant
women with CMV IgG avidity indexes of <25% (i.e., pregnant women with primary CMV
infection). For example, among pregnant women, when the CMV IgG avidity index was
<25% and the CMV ELISpot result was 445 spots per 2 × 105 mononuclear cells in periph-
eral blood, the prevalence of cCMV infection reached 50% [33]. The authors hypothesized
that strong T cell-mediated immune responses might induce proinflammatory status in the
placenta, and that such a condition might induce the expression of atypical molecules or
receptors that enhance the passage of the virus across the placenta. Additionally, Forner
et al. found that CMV ELISpot levels and maternal viremia and viruria were positively
associated with the incidence of cCMV infection, but CMV QuantiFERON levels were
not [34]. They speculated that an altered CMV-specific CD4+ T cell response that was re-
vealed by the CMV ELISpot assay but not by the CMV QuantiFERON assay might promote
the occurrence of cCMV infection [34]. However, interpreting the results of these assays is
sometimes difficult.

5. Clinical Factors Associated with the Occurrence of Congenital CMV Infection

Recent studies have demonstrated that the number and severity of symptoms in
congenitally infected infants of women with nonprimary CMV infection were similar or su-
perior to those in congenitally infected infants of women with primary CMV infection [6,7].
However, presently, laboratory or biological tests that predict cCMV infection in the fetuses
of pregnant women with nonprimary CMV infection are not yet available.

Thus, screening methods that can predict cCMV infection on the basis of clinical
information that is easily obtained in daily practice may be accessible and economically
advantageous. Leruez-Ville et al. assessed the clinical risk factors of cCMV infection
among both pregnant women with primary and nonprimary CMV infection in a large-scale
study including 11,715 newborns who were screened by CMV-DNA PCR assays for saliva.
They found that the clinical risk factors of cCMV infection among pregnant women with
primary CMV infection were younger maternal age, parous, women born in high resources
countries, and women from higher income groups. They also found that the clinical risk
factors in pregnant women with nonprimary infection were younger maternal age and
unemployment [35].

Our research group conducted two prospective cohort studies to determine the clinical
factors predictive of cCMV infection in different populations.

The first prospective cohort study included 4125 pregnant women who delivered
live-born infants in a primary maternity hospital between 2009 and 2017; for all infants
born at the hospital, PCR was performed to analyze their urine for CMV DNA, and 9 new-
borns (0.22%) were diagnosed with cCMV infection (1 symptomatic, 8 asymptomatic) [36].
The clinical data were prospectively collected. Univariable and multivariable logistic re-
gression analyses revealed that the presence of maternal fever/flu-like symptoms (odds
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ratio [OR], 17.9; 95% confidence interval [CI], 3.7–86.7; p < 0.001) and threatened mis-
carriage/premature labor in the second trimester (OR, 6.0; 95% CI, 1.6–22.8; p < 0.01)
were clinical factors associated with cCMV infection among the women in the study who
had normal or low-risk pregnancies. Notably, the combination of the presence of mater-
nal fever/flu-like symptoms or threatened miscarriage/premature labor in the second
trimester had 100% sensitivity, 53.2% specificity, 0.5% positive predictive value, and 100%
negative predictive value (Youden index = 0.85). Additionally, the proportion of infants
who had abnormal AABR test results was significantly higher among those with cCMV
infection (11.1%) than among those without cCMV infection (0.5%; p < 0.05) [36].

The second prospective cohort study included 4380 pregnant women who delivered
at a tertiary perinatal medical center between 2010 and 2019 [37]. cCMV infection was
diagnosed in 32 infants (0.73%) by universal screening based on CMV-DNA PCR assays
for newborns’ urine (20 symptomatic, 12 asymptomatic). The clinical data were prospec-
tively collected. Univariable and multivariable logistic regression analyses revealed that
a maternal age of <25 years (OR, 2.7; 95% CI, 1.1–6.6; p < 0.05), the presence of maternal
fever/flu-like symptoms (OR, 5.4; 95% CI, 2.6–11.2; p < 0.01), fetal abnormalities found
on ultrasonography (OR, 12.7; 95% CI, 5.8–27.7; p < 0.01), and preterm delivery at less
than 34 gestational weeks (OR, 2.6; 95% CI, 1.1–6.0; p < 0.05) were independent clinical
factors associated with cCMV infection among the women with high-risk pregnancies in
this study. The combination of the presence of maternal fever/flu-like symptoms, fetal
abnormalities found on ultrasonography, or preterm delivery at less than 34 gestational
weeks had 90.6% sensitivity, 66.4% specificity, 1.9% positive predictive value, and 99.9%
negative predictive value (Youden index = 0.57). Additionally, the proportion of low-birth
weight infants, i.e., those infants whose birth weight was <2500 g, was significantly higher
among the infants with cCMV infection (59.4%) than among those without cCMV infection
(30.0%; p < 0.01) [37]. Here, we speculated that maternal fever/flu-like symptoms may
have been caused by primary CMV infection, reinfection with a different strain of CMV,
or reactivation of a latent CMV infection. Additionally, we proposed two hypotheses on
the association between threatened miscarriage/premature labor or actual premature labor
and the occurrence of cCMV infection: First, intrauterine CMV infection may itself cause
threatened miscarriage/premature delivery. Second, inflammatory conditions underlying
threatened miscarriage/premature delivery might induce differentiation of latently CMV
infected monocytes, and CMV infection might be reactivated and transmitted to a fetus via
the placenta [38].

The biological and clinical factors associated with increased risk of cCMV infection
are summarized in Table 1 [26,28,29,34–37].

Table 1. Summary of biological and clinical factors associated with increased risk of congenital CMV infection.

Factors References

Biological factors
A low CMV-specific IgG avidity index Sonoyama et al., 2012 [26]

A delay in the production of antibodies against pentameric complex
during primary infection Lilleri et al., 2013 [28]

An absence of antibodies against pentameric complex and
a low CMV-specific IgG avidity index Kaneko et al., 2017 [29]

High CMV levels on ELISpot, viremia/viruria, and low CMV IgG avidity index Forner et al., 2016 [34]
Clinical factors

Younger age and multiparity in high-resource countries after primary infection
Higher incomes after primary infection

Younger age and unemployment after nonprimary infection
Leruez-Ville et al., 2017 [35]

Fever/flu-like symptoms and threatened miscarriage/premature labor
in the second trimester in low-risk populations Uchida et al., 2020 [36]

Younger age, fever/flu-like symptoms, fetal ultrasound abnormalities,
and preterm delivery at <34 gestational weeks in high-risk populations Imafuku et al., 2020 [37]

Abbreviations: CMV, cytomegalovirus; ELISpot, enzyme-linked immunosorbent spot; IgG, immunoglobulin G.
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6. An Example of Potential Screening and Therapeutic Strategies for Improving
Outcomes of Infants with Symptomatic cCMV Infection

At present, neither maternal nor neonatal universal screening for cCMV infection are
recommended because there are no established fetal and neonatal therapies for affected fe-
tuses and infants. However, as described previously, it has been recently demonstrated that
early antiviral therapies with oral valganciclovir may improve neurological outcomes in
newborns with symptomatic cCMV infection [2–4]. In addition, some previous clinical trials
showed the effectiveness of fetal therapies for symptomatic cCMV infection, e.g., hyper-
immunoglobulin injection into maternal blood [39] or into the fetal peritoneal cavity [40],
or oral administration of high-dosage valacyclovir to mothers [41], etc. Furthermore, a re-
cent clinical trial showed that the combination of fetal therapy with immunoglobulin and of
neonatal therapies with antiviral drugs might be more effective in improving neurological
outcomes in newborns with symptomatic cCMV infection as compared to neonatal therapy
alone [42].

Neither established neonatal nor fetal therapies for cCMV infection were present.
An example of a flow algorithm of potential screening and treatment for cCMV infection
based on our recent research findings is shown in Figure 1. Because a larger number of
infants with cCMV infection are born to mothers with non-primary CMV infection than
those with primary infection, maternal serological CMV screening by CMV IgG/IgM
or CMV IgG avidity measurements for identifying pregnant women who have primary
CMV infection during pregnancy may be unnecessary. In addition, because the risk
assessment of cCMV infection based on complex biological assays, including epitope-
specific antibody detection assays (described in the Section 3.2) and CMV ELISpot assays
(described in the Section 4), are not commonly available, we made a flow algorithm which
was mainly comprised of the clinical risk factors of cCMV infection. Not only CMV-
seronegative pregnant women but also seropositive ones may have to receive educational
intervention to prevent primary CMV infection or reinfection with different strains of
CMV during pregnancy. Fetal therapies might be considered against fetuses who are
prenatally diagnosed with symptomatic cCMV infection based on positive CMV DNA PCR
results in the amniotic fluid and on ultrasound fetal abnormalities associated with cCMV
infection, if the pregnant woman in question and her family desire. On the other hand,
all infants who are born to mothers who have risk factors of cCMV infection, including
fever of flu-like symptoms, fetal abnormalities found on ultrasonography, threatened
miscarriage/premature labor, preterm labor at less than 34 gestational weeks, and all infants
with risk factors, including low birth weight and abnormal AABR test results, should
probably undergo CMV DNA PCR analysis in newborn urine to confirm the presence of
cCMV infection. Newborns with positive PCR results in their urine should be worked
up to identify the symptoms of cCMV infection, including physical and neurological
examinations, cerebral ultrasound, auditory brain-stem response test, ophthalmoscopy,
and head computed tomography/magnetic resonance imaging. Neonatal treatment with
valganciclovir against symptomatic cCMV infection might be considered against infants
with symptomatic cCMV infection. However, further investigations are needed to estimate
the utility of our strategies shown in Figure 1, and also to establish implementable screening
and therapeutic strategies for cCMV infection.
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Figure 1. An example of a flow algorithm of potential screening and treatment for congenital CMV infection based on our
recent researches.

Methods for screening or diagnosis of congenital CMV infection are indicated in
gray. A final diagnosis of congenital CMV infection is indicated in red. Interventions
for treating symptomatic congenital CMV infection are indicated in blue. Abbreviations:
CMV, cytomegalovirus; GW, gestational weeks; IgG, immunoglobulin G; NAbs, neutral-
izing antibodies; PCR, polymerase chain reaction; AABR, automated auditory brainstem
response; ABR, auditory brainstem response; CT, computed tomography; MRI, magnetic
resonance imaging.

7. Approved Antiviral Drugs and Candidate Vaccines against HCMV

The development of effective and safe antiviral drugs and vaccines against HCMV
has been desired.

At present, five anti-HCMV drugs have been approved. These antiviral drugs are
categorized into 2 groups: (1) drugs inhibiting the synthesis of viral DNA by targeting
the viral DNA polymerase, including ganciclovir (GCV), valganciclovir (VGCV), cidofovir
(CDV), and foscarnet (FOS); (2) drugs inhibiting the packaging of viral DNA into capsids
by terminase complex, including letermovir (LTV). VGCV is a prodrug of GCV, and GCV
and VGCV were approved for the treatment of HCMV diseases in immunocompromised
hosts or infants with cCMV infection, and for the prophylaxis of HCMV diseases. CDV
was approved for the treatment of HCMV retinitis in patients infected with human im-
munodeficiency virus. FOS was approved for the treatment of HCMV diseases, and this
drug is especially useful for the treatment of GCV-resistant HCMV infection. LTV is a
new class of approved drugs for the prophylaxis of HCMV infection in allogenic stem cell
transplant recipients. As mentioned above, at present, antiviral drugs that were reported
to be safe and effective for treatment of infants with symptomatic cCMV infection are GCV
and VGCV only [43].
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The main candidate vaccines developed up to now are as follows: (1) live-attenuated
vaccines, e.g., V160, which is composed by an attenuated AD169 strain where the PC
expression is restored; (2) subunit vaccines, e.g., gB/MF59, which is generated by comb-
ing gB with an adjuvant (MF59); (3) virus vectored vaccines, e.g., Triplex, which is an
attenuated poxvirus modified Vaccinia Ankara encoding pp65, IE1-exon4, and IE2-exon5;
(4) chimeric peptidic vaccines, e.g., CMVPepVax, which is a pp65 fused to either pan
DR helper T lymphocyte epitope or natural tetanus sequence; (5) vaccine based on en-
veloped virus-like particles, e.g.,VBI-1501, which expresses the extracellular domain of gB
fused with the transmembrane and cytoplasmic domains from vesicular stomatitis virus
G protein; (6) plasmid-based DNA vaccines, e.g., VCL-CB01, which is a bivalent HCMV
DNA vaccine that contains two plasmids, VCL-6368 and VCL-6365, encoding pp65 and gB;
(7) RNA-based vaccines, e.g., mRNA-1647, which is composed of 1 mRNA encoding gB
and 5 mRNAs encoding PC; and (8) peptide vaccines, e.g., a CMV pp65 peptide vaccine.
Regarding clinical trials of vaccines enrolling women of childbearing age, phase 2 clinical
trials of live-attenuated vaccines (V160), subunit vaccines (gB/MF59), and RNA-based
vaccines (mRNA-1647) were conducted. In the phase 2 clinical trials of gB/MF59, vaccine
efficacies were reported to be 43–53%. Meanwhile, the results of the phase 2 clinical trials
of V160 and mRNA-1647 are not yet available [44].

8. Conclusions

Early antiviral therapies for newborns with symptomatic cCMV infection may im-
prove neurological outcomes in affected children [2–4]. Conversely, at present, there is
no evidence of the benefit of antiviral therapies for infants with asymptomatic cCMV
infection. Furthermore, antiviral therapies for newborns with mildly symptomatic cCMV
infection or affected newborns more than 30 days old are not recommend because of the
lack of evidence [45]. However, Andrea et al. demonstrated that 56% (19/34) of newborns
who seemed to have asymptomatic cCMV infection by normal physical examinations had
abnormalities on laboratory or imaging examinations [46]. Therefore, newborns at high
risk of cCMV infection, including cases who have no obvious morphological abnormalities
associated with cCMV infection, should be identified.

Nevertheless, both primary CMV infection and nonprimary CMV infection during
pregnancy, including reinfection and reactivation, can cause severe symptomatic cCMV
infection in the infant. Understanding host immunity against CMV and how CMV evades
host immunity is important both for elucidating the mechanism whereby both primary
and nonprimary CMV infection can cause cCMV infection and for developing preventive
HCMV vaccines.

Previous investigators developed ELISA methods for detecting epitope-specific anti-
bodies against the pentameric complex on HCMV or against epitopes on several different
strains of HCMV, finding associations between the quantities of these antibodies and
susceptibility to cCMV infection. Other investigators have suggested that CMV-specific
T cell-mediated immune responses measured by CMV ELISpot assay may be useful for
predicting cCMV infection. However, these assays are nonstandardized and not commonly
available in daily practice, and interpretation of the data is often complex.

Consequently, screening for cCMV infection that is based on clinical risk factors
that are easily obtained in daily practice—such as the presence of maternal fever/flu-
like symptoms, threatened miscarriage/premature labor, fetal abnormalities found on
ultrasonography that are associated with cCMV infection, premature deliveries, low birth
weight, or abnormal AABR test results—may be clinically and economically advantageous.
Our previous studies, including a total of 21 symptomatic and 20 asymptomatic infected
newborns, implied that screening strategies for cCMV infection based on clinical risk
factors could identify not only symptomatic newborns but also asymptomatic ones with a
high sensitivity of 92.7% (38/41) [36,37]. A prospective cohort study to assess the utility of
such screening strategies is now ongoing.
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