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Abstract

Multivariate linear mixed models (mvLMMs) are powerful tools for testing SNP associations with 

multiple correlated phenotypes while controlling for population stratification in genome-wide 

association studies. We present computationally-efficient algorithms for fitting mvLMMs and 

computing likelihood ratio tests that improve on existing approximate methods in i) computation 

speed, ii) power/p value calibration, iii) ability to deal with more than two phenotypes. We 

illustrate these features on real and simulated data.

Multivariate linear mixed models (mvLMMs)1 have been widely applied in genetics, 

including estimating cross-tissue heritability of gene expression2, assessing pleiotropy and 

genetic correlation between complex phenotypes 3-6, detecting quantitative trait loci7, 

understanding evolutionary patterns8 and assisting animal breeding programs9. Recently, 

mvLMMs have become increasingly important in genome-wide association studies 

(GWASs), both because of their effectiveness in accounting for sample relatedness3,7,10 and 

population stratification3,11-17 and because of a growing appreciation of the power gains 

from multivariate association analyses3,18-22. Indeed, 22 emphasizes that multivariate 

analyses can increase power not only to detect pleiotropic genetic variants, but also genetic 

variants that affect only one of multiple correlated phenotypes.

However, fitting mvLMMs is computationally non-trivial, involving a multi-dimensional 

optimization for a potentially non-convex function. Current algorithms for fitting a single 

mvLMM (implemented in software GCTA4,23, WOMBAT24, ASREML25) employ two 

types of optimization algorithm: an initial Expectation-Maximization-like (EM) algorithm, 

followed by a Newton-Raphson-like (NR) algorithm. This combines the benefits of the 

stability of EM (every iteration increases the likelihood) with the faster convergence of NR 

(26; Supplementary Note). Their computational complexity for n individuals and d 
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phenotypes is O(t1n3d3+t2n3d7) where t1, t2 are the maximum number of iterations of EM 

and NR respectively (Supplementary Note). Using these methods to perform the likelihood 

ratio test (LRT) in GWAS would require repeated application to the s SNPs, with resulting 

computational complexity O(s(t1n3d3+ t2n3d7)), which is impractical for GWAS with large s 

and moderate n. Consequently no existing method can perform the LRT for mvLMMs in 

GWAS settings. The only available method along these lines (MTMM3) can perform only 

an approximate LRT, and only for two phenotypes.

Here, we present a computationally-efficient algorithm, and a software implementation in 

GEMMA16,17 (Genome-wide Efficient Mixed Model Association; Supplementary Software; 

http://stephenslab.uchicago.edu/software.html), for fitting mvLMMs with one covariance 

component (in addition to the residual error term), and for performing the LRT for 

association in GWASs. The algorithm builds on linear algebra techniques previously used 

for univariate LMMs12,13,17, and, combined with several additional tricks, extends them to 

multivariate LMMs. Our algorithms very substantially reduce the computational burden of 

computing LRTs for GWAS, by avoiding repeating the expensive O(n3) operations for every 

SNP. Specifically, after an initial single O(n3) operation (eigen-decomposition of the 

relatedness matrix), our algorithms have per-SNP complexity that is O(n2), reducing the 

overall computational complexity to O(n3+n2d+s(n2+t1nd2+t2nd6)). In effect, our 

algorithms (detailed in Supplementary Note) provide the multivariate analogue of the 

univariate algorithms EMMA27, and FaSTLMM/GEMMA/CM12,13,17. Our algorithms 

provide the first computationally practical approach to computing LRTs for mvLMMs in 

reasonably large GWAS (e.g. 50,000 individuals) and modest numbers of phenotypes (e.g. 

2-10).

To illustrate the benefits of our new algorithms we used two data sets: a mouse GWAS from 

the Hybrid Mouse Diversity Panel (HMDP) with four blood lipid phenotypes and a human 

GWAS from the Northern Finland Birth Cohort 1966 (NFBC1966) with four blood 

metabolic traits (Online Methods). The HMDP data are a small GWAS with strong 

relatedness among many individuals; the NFBC1966 data are a larger GWAS with weak 

relatedness among most individuals.

Even for fitting a single mvLMM, our algorithms and implementation are substantially 

faster than existing implementations of existing algorithms in software GCTA and 

WOMBAT (Table 1). For example, for the NFBC1966 data, with d=4, GEMMA takes about 

7 minutes compared with 8 hours for WOMBAT. The gains for larger d would be even 

greater.

However, the more practically important gains of our new algorithms come in GWAS 

applications. Here, no existing algorithm is practical for computing the LRT for even d=2. 

Extrapolating from Table 1 suggests that existing algorithms, if implemented in software, 

might take over 14 days for HMDP and over 18 years for NFBC1966. As far as we are 

aware, the only current practical competitor for our method is a method implemented in 

software MTMM3, which uses an approximate LRT (aLRT)11,15 to reduce per-SNP 

computation time to O(n2). Specifically, the aLRT avoids the expensive repeated 

optimization of the variance components under the alternative H1 for each SNP, by re-using 
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part of the pre-estimated variance components under the null H0 (fit using software 

ASREML). However, the aLRT is guaranteed to underestimate the LRT (Supplementary 

Note), and in the univariate setting this has been shown to produce mis-calibrated p values 

and/or loss of power13,17.

To illustrate this in the multivariate setting we performed null and alternative simulations 

using the HMDP data (Online Methods). Consistent with the univariate findings, MTMM p 

values are systematically larger than expected under the null, with the most significant p 

values being almost an order of magnitude less significant than they should be (Fig. 1a). In 

contrast, p values from the GEMMA LRT are well-calibrated (Fig. 1a). Thus, although in 

principle the mvLMM likelihood surface could be non-convex, with multiple local optima, 

and this could cause our p values to be mis-calibrated, in practice this appears not to happen. 

However, we found that obtaining well-calibrated p values requires both the EM and NR 

algorithms: use of EM only can lead to poor convergence of the LRT, resulting in 

underestimation of p values similar to MTMM (Supplementary Fig. 1). The systematic 

inflation of MTMM’s p values under the null presumably accounts for MTMM’s loss of 

power relative to GEMMA in simulations under the alternative (Fig. 1c).

We also compared GEMMA and MTMM on the real phenotypes for both datasets. Since 

MTMM is implemented only for d=2, we analyzed all pairs of traits. For these data, 

GEMMA ran 2-12 times faster than MTMM (Table 1). In particular, in the NFBC1966 data, 

GEMMA takes about four hours for a two-phenotype analysis that takes MTMM almost two 

and a half days. Consistent with the simulations, and with theory, the MTMM p values for 

HMDP are consistently less significant (up to 6 fold less significant) than p values from 

GEMMA (Fig. 1b), and in many cases are substantially less significant than would be 

expected even under the null (Supplementary Fig. 2-3). For NFBC1966 the two methods 

produce similar p values (Supplementary Fig. 4-5), consistent with univariate assessments 

that show the aLRT to work well when, as in NFBC1966, the sample size is large, 

individuals are not closely related and the marker effect size is small.

Our methods and software also make possible, for the first time, GWAS analysis using 

mvLMMs with more than two phenotypes. Here, we briefly illustrate via simulations and 

real data analysis the power and benefits of various multivariate analyses.

Figure 1b and Supplementary Figure 6 show simulation results, based on both HDMP and 

NFBC1966 data, comparing power of the multivariate LRT of all four phenotypes vs 

conducting all six two-phenotype analyses and applying a Bonferroni correction for the six 

tests performed. In these simulations the four-phenotype analysis is consistently more 

powerful (or as powerful) as the two-phenotype analyses, even when only one or two of the 

four phenotypes are truly associated with genotype (Fig. 1b and Supplementary Fig. 6). 

While it may seem counter-intuitive that a four-phenotype analysis is more powerful than a 

two-phenotype analysis even when exactly two phenotypes are associated with genotype, 

this is actually expected, for reasons discussed in22: including unassociated phenotypes in 

the multivariate analysis can increase power if these unassociated phenotypes are correlated 

with the associated phenotypes.
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We also applied four-phenotype, two-phenotype, and univariate analyses to the NFBC1966 

data. In total, 45 SNPs from 14 genetic regions pass a significance level of 0.05 after 

Bonferroni correction (both for the number of SNPs and, in univariate and two-phenotype 

analyses, for the number of tests) in either the four-phenotype, two-phenotype, or univariate 

analyses. As expected, some SNPs show stronger signals in the four-phenotype analysis, 

whereas others show stronger signals in a two-phenotype or univariate analysis. Comparing 

the four-phenotype analysis with the univariate analysis (Supplementary Table 1 and 

Supplementary Fig. 7), 16 SNPs were significant in the four-phenotype analysis and not the 

univariate analysis; whereas 3 SNPs were significant only in the univariate analysis. 

Comparing the four-phenotype analysis with the two-phenotype analysis (Supplementary 

Table 2 and Supplementary Fig. 7), 1 SNP was significant in the four-phenotype analysis 

and not the two-phenotype analysis, whereas no SNP was significant only in the two-

phenotype analysis.

These results support the idea that multivariate tests can be more powerful than multiple 

univariate or pairwise tests. However, it is also clear that in a GWAS setting no single test 

will be the most powerful to detect the many different types of genetic effects that could 

occur. Indeed, it is possible to manufacture simulations so that any given test is most 

powerful22. Thus different multivariate and univariate tests should be viewed as 

complementary to one another, rather than competing.

Our algorithms are not without limitations. Perhaps the most fundamental is that, like its 

univariate counter-parts, our algorithms only apply to mvLMMs with one variance 

component (in addition to the residual error term). However, with additional assumptions 

our algorithms may be extended to more variance components28. Our methods also require 

complete phenotypes – this can be dealt with by imputing missing phenotypes before 

association tests (Supplementary Note and Supplementary Fig. 8). Finally, although our 

implementation of the EM algorithm scales only quadratically with the number of 

phenotypes, d, and so could be applied to reasonably large d, in practice there could remain 

both computational and statistical barriers to applying these methods to even quite modest 

values of d (e.g. d≈10). Computationally, the number of iterations required to converge for 

larger d will inevitably increase, and ultimately this could be the main barrier to application 

for large d. Statistically, the number of parameters in the mvLMM is also quadratic in the 

number of phenotypes (d(d+1) parameters in the two variance components). Therefore, with 

moderate sample size, it may be desirable to assume structure for the variance components, 

or incorporate additional prior information (e.g. 29 and references therein).

The most computationally expensive part of our method, as in the univariate case, is an 

initial eigen-decomposition. This not only requires a large amount of physical memory, but 

also becomes computationally intractable in practice for large n (e.g. >50,000). Low rank 

approximations to the relatedness matrix12,17,30 can alleviate both computation and memory 

requirements, and could allow mvLMMs to be applied to very large GWASs.
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Online Methods

Software

GEMMA software is available as Supplementary Software and at http://

stephenslab.uchicago.edu/software.html.

Genotype and Phenotype Data

We analyzed two data sets: the Hybrid Mouse Diversity Panel (HMDP)31 and the Northern 

Finland Birth Cohort 1966 (NFBC1966) Study32.

The HMDP data includes 100 inbred strains with four phenotypes (high-density lipoprotein, 

HDL; total cholesterol, TC; triglycerides, TG; unesterified cholesterol, UC) and four million 

high quality fully imputed SNPs (SNPs are downloaded from http://mouse.cs.ucla.edu/

mousehapmap/full.html). We excluded mice with missing phenotypes for any of these four 

phenotypes. We excluded non-polymorphic SNPs, and SNPs with a minor allele frequency 

less than 5%. For SNPs that have identical genotypes, we tried to retain only one of them 

(by using “--indep-pairwise 100 5 0.999999” option in PLINK33). This left us with 98 

strains, 656 individuals and 108,562 SNPs. We quantile transformed each phenotype to a 

standard normal distribution to guard against model mis-specification. We used the product 

of centered genotype matrix as an estimate of relatedness16,17,34,35. Note that the sample 

size used here is smaller than the original study31, and the phenotypes are quantile-

transformed instead of log transformed for robustness.

The NFBC1966 data contains 5402 individuals with multiple metabolic traits measured and 

364,590 SNPs typed. We selected four phenotypes (high-density lipoprotein, HDL; low-

density lipoprotein, LDL; triglycerides, TG; C-reactive protein, CRP) among them, 

following previous studies3. We selected individuals and SNPs following previous 

studies11,32 with the software PLINK33. Specifically, we excluded individuals with missing 

phenotypes for any of these four phenotypes or having discrepancies between reported sex 

and sex determined from the X chromosome. We excluded SNPs with a minor allele 

frequency less than 1%, having missing values in more than 1% of the individuals, or with a 

Hardy-Weinberg equilibrium p value below 0.0001. This left us with 5,255 individuals and 

319,111 SNPs. For each phenotype, we quantile transformed the phenotypic values to a 

standard normal distribution, regressed out sex, oral contraceptives and pregnancy status 

effects32, and quantile transformed the residuals to a standard normal distribution again. We 

replaced the missing genotypes for a given SNP with its mean genotype value. We used the 

product of centered and scaled genotype matrix as an estimate of relatedness11,17,34,35.

In both data sets, we quantile transformed each single phenotype to a standard normal 

distribution to guard against model misspecification. Although this strategy does not 

guarantee that the transformed phenotypes follow a multivariate normal distribution jointly, 

it often works well in practice when the number of phenotypes is small (see, e.g. 22). For 

both data sets, we used a standard mvLMM with an intercept term (without any other 

covariates), and test each SNP in turn. Because the software MTMM relies on the 

commercial software ASREML to estimate the variance components in the null model, we 
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modified the MTMM source code so that it can read in the estimated variance components 

from GEMMA.

Simulations

To check if GEMMA and MTMM produce calibrated p values, we randomly selected 

100,000 real genotypes in the HMDP data. We simulated 10,000 phenotypes under the null, 

based on the real relatedness matrix and the estimated genetic and environmental covariance 

matrices (for HDL and TG). We calculated p values for each SNP-phenotype pair in turn 

(one billion pairs). We did not perform comparisons based on the NFBC1966 data, partly 

because GEMMA and MTMM produce identical p values there, and partly because the 

sample size in NFBC1966 makes it computationally impractical to perform billions of 

association tests to check for the type I error at the genome-wide significance level.

To compare power between GEMMA and MTMM, we used real genotypes from the HMDP 

and NFBC1966 data, and we simulated phenotypes by adding genotype effects back to the 

original phenotypes15,17. Specifically, we first identified SNPs unassociated with the four 

phenotypes based on one-phenotype, two-phenotype and four-phenotype analyses (LRT p 

value > 0.1 in any of the 11 tests). We ordered the SNPs (76,780 in HMDP and 208,145 in 

NFBC1966) satisfying these criteria by their genomic location, and selected from them 

10,000 evenly spaced SNPs to act as causal SNPs. For each causal SNP, we specified its 

effect size for the first trait (HDL) to explain a particular percentage of the phenotypic 

variance (proportion of variance explained, or PVE). Afterwards, we specified its effect for 

the second trait (TG) so that the proportion of variance in the second trait explained by the 

SNP equals to either 20% or 80% of the PVE in the first trait. We considered effect sizes for 

the two traits to be either in the same direction or in the opposite directions, and we added 

the simulated effects back to the original phenotypes to form the new simulated phenotypes. 

For each pre-specified PVE (ranged from 2% to 20% in HMDP and 0.04% to 0.4% in 

NFBC1966), we simulated 10,000 sets of phenotypes, one for each causal SNP, and 

calculated the p value for each SNP-phenotype pair. We calculated statistical power as the 

proportion of p values exceeding the genome-wide significance level at the conventional 

0.05 level after Bonferroni correction (p=4.6×10−7 for HDMP and p=1.6×10−7 for 

NFBC1966). Notice that we simulated phenotypes based on HDL and TG in both data sets, 

and the two phenotypes are positively correlated in HMDP but negatively correlated in 

NFBC1966.

Our algorithms rely on fully observed phenotypes. To make the method more widely 

applicable, we developed a phenotype imputation scheme to impute missing phenotypes 

where necessary (Supplementary Note). To show the power gain of our imputation scheme 

versus simply dropping individuals with partially missing phenotypes, we performed a 

simulation study. Specifically, we used the same set of simulated phenotypes described 

above, but randomly made 2.5%, 5% or 10% of the individuals to have one phenotype 

missing. We calculated p values for each SNP-phenotype pair from the two approaches 

using GEMMA, and calculated statistical power at the conventional 0.05 level after 

Bonferroni correction.
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Finally, we performed a power comparison between the four-phenotype analysis and the 

two-phenotype analysis using GEMMA, using simulations based on the two data sets. 

Specifically, we used the same set of 10,000 SNPs described above to act as causal SNPs, 

and we simulated phenotypes by adding genotype effects to the observed phenotypes, as 

above. For each causal SNP, we made it to affect either one, two, three or four phenotypes. 

When the causal SNP affected two or four phenotypes, its effects on randomly selected half 

of the traits were in the opposite direction as its effects on the other half. When the causal 

SNP affected three phenotypes, its effects on randomly selected two traits were in the 

opposite direction as its effect on the third trait. The SNP effect size for each affected 

phenotype was simulated independently to account for a pre-specified PVE of that 

phenotype (ranged from 0.5% to 5% in HMDP and 0.04% to 0.4% in NFBC1966), which 

was further scaled with a random factor draw from a uniform distribution U(0.8, 1). The 

simulated effects were added back to the original phenotypes to form the new simulated 

phenotypes. For the four-phenotype analysis, we calculated the p value for each SNP-

phenotype pair and we calculated statistical power at the conventional 0.05 level after 

Bonferroni correction (p=4.6×10−7 for HDMP and p=1.6×10−7 for NFBC1966). For the 

two-phenotype analysis, we obtained the minimal p value from the six pair-wise analyses for 

each SNP, and calculated statistical power as the proportion of these p values exceeding 

either the same significance level (p=4.6×10−7 for HDMP and p=1.6×10−7 for NFBC1966), 

or a significance level that was further adjusted to account for the six tests performed 

(p=7.6×10−8 for HDMP and p= 2.6×10−8 for NFBC1966).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of the statistical benefits of our new algorithms implemented in GEMMA. (a) A 

QQ-plot showing the improved calibration of GEMMA p values compared with those from 

MTMM for simulated null data. Gray shaded area indicates 0.025 and 0.975 point-wise 

quantiles of the ordered p values under the null distribution. (b) GEMMA p values are 

consistently more significant than MTMM p values for the HMDP data. (c) Gain in power 

for GEMMA compared with MTMM in four different simulation scenarios based on the 

HMDP data. x-axis in shows the proportion of phenotypic variance in the first phenotype 

explained (PVE) by the SNP, while the point symbol and line type indicate the SNP effect 

direction (compared with its effect on the first phenotype) and size (quantified by PVE) on 

the second phenotype (+: opposite direction, 0.8PVE; ×: opposite direction, 0.2PVE; o: 

same direction, 0.8PVE; Δ: same direction, 0.2PVE). (d) Simulation results illustrating the 

potential gain in power from four-phenotype vs two-phenotype analyses.
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