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University in Toruń, 87-100 Toruń, Poland; fmonedeiro@gmail.com (F.M.); msd2501@chem.uni.torun.pl (T.L.)

2 Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń,
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Abstract: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in the world.
In Europe, it is the second most common cause of cancer-related deaths. With the advent of
metabolomics approaches, studies regarding the investigation of metabolite profiles related to CRC
have been conducted, aiming to serve as a tool for early diagnosis. In order to provide further
information about the current status of this field of research, 21 studies were systematically reviewed,
regarding their main findings and analytical aspects. A special focus was given to the employment
of matrices obtained non-invasively and the use of gas chromatography as the analytical platform.
The relationship between the reported volatile and non-volatile biomarkers and CRC-related metabolic
alterations was also explored, demonstrating that many of these metabolites are connected with
biochemical pathways proven to be involved in carcinogenesis. The most commonly reported CRC
indicators were hydrocarbons, aldehydes, amino acids and short-chain fatty acids. These potential
biomarkers can be associated with both human and bacterial pathways and the analysis based on
such species has the potential to be applied in the clinical practice as a low-cost screening method.

Keywords: colorectal cancer; VOCs; biomarker; gas chromatography; profiling; breath; urine;
feces; pathways

1. Introduction

1.1. Colorectal Cancer Background

According to data regarding cancer burden in 2018 (GLOBOCAN 2018), colorectal cancer (CRC)
is currently the third most incident cancer type in the word, with nearly 1.85 million cases and
881 thousand deaths worldwide. In Europe, it occupies the second place in the ranking of cancer
occurrence and related deaths, with approximately half a million new cases registered and almost a
quarter of a million associated deaths. Moreover, research on cancer progression predicts an increase
of 75% in CRC cases over the next 20 years [1]. The global population over time has experienced
significant changes in their habits, notably the prevalence of sedentarism, increased intake of dietary
fat and processed food, and exposure to carcinogens, all risk factors in CRC [2]. Such context presents
a complex perspective on CRC, also a from socioeconomic point of view, emphasizing the need for
prevention strategies and promotion of early diagnosis.
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It is observed that around 95% of colorectal neoplasms are adenocarcinomas and start as colonic
adenomatous polyps [3]. Then, a series of genomic and molecular alterations induce the development
of the malignancy in the colon [4]. CRC can be prevented if an intervention occurs leading to excision
of the polyps and conduction of proper treatment; therefore, approaches directed towards an early
detection of polyps and lesions, before these achieve the malignancy threshold, have substantial
importance to reduce both CRC incidence and mortality [3].

1.2. Available Diagnostic Methods

The fecal occult blood test (FOBT), also known as the guaiac test, is generally applied for CRC
screening. Nevertheless, this procedure presents relatively low sensitivity, which for this once-only
test can be 50% or lower [5,6]. Additionally, FOBT is affected by the presence of interferers, is not
specific for distal gut blood and may be insensitive to smaller bleedings. The antibody-based fecal
immunochemical test (FIT) for hemoglobin is an improved alternative to FOBT, obtaining a sensitivity
greater than 80% [6]. Notwithstanding, the verification of fecal blood can have a low impact on CRC
primary assessment and is occasionally indicative of late stage cancer [7]. Currently, colonoscopy
is described as the gold-standard screening procedure for CRC as it presents high sensitivity and
specificity. However, colonoscopy is a costly and invasive procedure, limiting a patient’s access to the
examination and resulting in poor compliance rates, aspects that hinder successful implementation of
this test in CRC prevention [8,9]. Imaging exams have great reported efficiency, although also carry
limitations regarding the cost of procedures and required exposure to radiation [10].

The group of currently available CRC biomarkers can be classified according to the affected
biological matrices related to colorectal neoplasm. The most common are tumor, blood and stool
biomarkers [11]. Moreover, molecular indicators can be grouped into three classes: prognostic,
predictive and diagnostic markers [12]. Prognostic markers indicate the possible progression of the
disease, such as: adenomatous polyposis coli (almost 100% of individuals develop CRC with this
germ line mutation) [13,14], p53 (tumor suppressor p53 expression) [12], and epidermal growth factor
receptor (EGFR; up to 80% over expression in CRC) [15]. Predictive indicators are used to foresee
treatment measures to be taken on a patient. They include, e.g., Kirsten rat sarcoma viral oncogene
(KRAS; more than 50% of CRC patients carry a mutant allele) [13,16], BRAF (a mutant KRAS gene,
which encodes protein B-Raf, found in only 30–40% of the 90% of patients not affected by anti-EGFR
therapy) [14,16], and COX-2 (Cyclooxygenase-2; the expression exhibited in 70% of CRC tumors) [12].
Risk stratification and early detection of polyps are provided by diagnostic markers, such as: insulin like
growth factor binding protein 2 (IGFBP2; elevated levels in plasma and serum of CRC patients) [12,14],
telomerase (an enzyme responsible for synthesizing DNA from chromosome ends for which an increase
in activity was noticed for 90% of colorectal tumors) [17], and pyruvate kinase M2 (PKM2; a glycolytic
pyruvate kinase isoenzyme increased in the stool of CRC subjects) [16]. Epi proColon® (Epigenomics
Inc., San Diego, CA, USA) is a commercially available test relying on the verification of methylated
Septin-9 in DNA extracted from blood, by means of polymerase chain reaction (PCR) [18]. This genetic
alteration is associated with the presence of CRC tissue. Studies showed that Epi proColon® exam
presented sensitivity and specificity ranging from 75 to 81% and from 96 to 99%, respectively [19].
Nevertheless, subsequent clinical trials demonstrated that test sensitivity was insufficient in case of
asymptomatic cases and stage I CRC. Cologuard® (Exact Sciences Corporation, Madison, WI, USA)
is a stool-based presumptive test for CRC, based on the qualitative detection of fecal DNA markers.
This exam presented to be superior to the FIT test, although its rate of detection was around 42% in
cases of advanced adenomas [8]. Apart from the displayed limitations, these screening strategies tend
to achieve wider acceptance among the population and can indicate the need for further colonoscopic
investigation, aiding a more approachable monitoring of CRC.



J. Clin. Med. 2020, 9, 3191 3 of 32

1.3. Metabolomics Studies on CRC

Metabolomics science emerged as a new approach to study biological systems [20]. In a metabolomics
workflow, biological samples are processed and comprehensively analyzed in terms of total metabolites,
which can belong to a specific chemical class depending on the envisioned approach and the
methodologies selected for sample preparation and pre-concentration. Measurements can involve
different analytical platforms, with emphasis given to chromatographic techniques—able to resolve
complex mixtures—coupled to mass spectrometry [21], such as gas chromatography-mass spectrometry
(GC-MS) and liquid chromatography-mass spectrometry (LC-MS) [22–24].

Among the small metabolites, volatile organic compounds (VOCs) are metabolic products that
can elicit diversified patterns that may represent very specific biochemical ongoing processes in the
organism. Volatiles’ profiles have been studied in the context of several diseases, especially in exhaled
breath, using GC-based analyses [25–28]. In this context, GC analysis is extremely relevant, because it
encompasses the group of VOC metabolites, which cannot be properly assessed by LC.

Research on global molecular metabolites as potential markers of diseases is a very interesting
approach for the design of methods directed towards the early diagnosis and evaluation of patient’s
response to therapeutic intervention [20,29]. Molecular profiling presents promising perspectives
towards clinical applications. The assessment of a set of metabolites has the possibility to provide
information regarding simultaneous metabolic alterations, potentially offering a more accurate and
detailed diagnosis, thus, it represents a great advance in personalized medicine [30].

Although contemporary, metabolomics-based methods still face several challenges, such as: the
existence of a large body of variables that may impact the metabolic profile; the lack of standardization
in workflow protocol and irreproducibility between studies that lead to varied panels of potential
biomarkers. Therefore, a deeper inspection is required in order to compare the results reported so
far by different research groups concerning the metabolomic investigation in CRC, listing the main
developments made to date, and thus offering insights into new aspects to be studied regarding
CRC characterization.

This review aims to compile data obtained from different GC-based investigations on molecular
metabolites of CRC in biological samples obtained non-invasively (breath, urine and feces).
Considering this, the analytical aspects involved in the profiling studies and their main findings are
described. Furthermore, candidate CRC biomarkers and their related origins are discussed from the
point of view of cancer physiopathology. In this sense, the present review is directed to researchers
working in the medical and metabolomics fields aiming to have an overview of explored analytical
protocols and to consult the main contribution of such metabolic patterns on the elucidation of
CRC-related mechanisms and their potential regarding disease diagnosis.

2. Studies on Colorectal Cancer Metabolic Biomarkers

2.1. Applied Methodologies

A critical matter involving metabolomics studies is the employment of varied protocols covering
sample collection, processing and analysis. In this sense, the selection of specific analytical parameters
can deeply influence the set of acquired metabolites, turning valid the discussion on the main aspects
prevalent in sample pre-treatment, extraction procedure and analysis in GC-based metabolomics
directed towards CRC markers investigation. Several techniques have been employed for the extraction
and pre-concentration of the metabolites of interest in different biological samples. The particular
characteristics of each matrix determine which sample preparation techniques are required, which in
turn, have associated advantages and limitations to be observed by the analyst. Fundamental aspects
regarding the selection of biological matrix are the concentration range of the target analytes in the
sample, window of detection provided, matrix complexity and involved distribution mechanisms.
Sample preparation techniques to be used should be chosen based on their ability to pre-concentrate
the analyte, the availability of specific materials, required processing time and involved costs.
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Data concerning sample preparations details, study design and statistical approaches employed
by the reviewed studies are summarized in Table 1.

Table 1. Table summarizing all 21 studies regarding investigation of biomarkers of CRC in urine, feces,
and breath samples.

Reference Subjects Sample Preparation and
Analytical Technique Main Analytes Type of GC Column Statistical Approach

URINE SAMPLES

Qiu et al., 2010 [31]

• 60 CRC:
â stage I: 7
â stage II: 23
â stage III: 21
â stage IV: 9

• 63 HC

solvent extraction with
chloroform and
derivatization with ECF
+ GC-MS

SNM: amino acids;
organic acids

DB-5MS capillary
column (30 m × 250 µm
i.d., 0.25-µm film
thickness)

PCA, OPLS-DA

Silva et al.,
2011 [32]

• 12 CRC
• HC

HS-SPME with CAR/PDMS
(75 µm)
+ GC-MS

SVM: hydrocarbons;
aldehydes; sulfur
compounds

30 m × 0.25 mm ID ×
0.25 µm film thickness
BP-20

one-way ANOVA, LSD,
PCA

Cheng et al.,
2012 [33]

• 103 CRC:
â stage I: 24
â stage II: 45
â stage III: 27
â stage IV: 5

• 101 HC

solvent extraction with
methanol and derivatization
with methoxyamine (in
pyridine) and BSTFA
(1% TMCS)
+ GC-TOFMS

SNM: amino acids;
organic acids;
saccharides

DB-5MS capillary
column (30 m × 250 µm
I.D., 0.25-µm film
thickness; (5%-phenyl)
methyl-polysiloxane
bonded and cross-linked

PCA, OPLS-DA, ROC
curve, Student’s t-test,
Wilcoxon−Mann−Whitney
test

Arasaradnam et al.,
2014 [34]

• 83 CRC
• 50 HC

ITEX
+ GC-MS

SVM: ketones;
aldehydes; nitrogen
compounds

Rxi-624Sil column (20 m
length, 0.18 mm ID,
1.0 µm df)

FDA, KNN method

Liesenfeld et al.,
2015 [35]

Total for GC-MS and
1H-NMR is 199 CRC:
• CRC pre-surgery:

â s0: 5; sI: 12;
sII: 40; sIII: 22;
sIV: 18

• CRC post-surgery:

â sI: 4; sII: 4;
sIII: 2; sIV: 2

• CRC 6
months follow-up:

â sI: 12; sII: 17;
sIII: 15; sIV: 8

• CRC 12
months follow-up:

â sI: 7; sII: 13;
sIII: 14; sIV: 4

solvent extraction with
methanol and derivatization
with methoxyamine (in
pyridine) and BSTFA
(1% TMCS)
+ GC-MS

SNM: alcohols;
amino acids; organic
acids; saccharides

HP-5 MS fused silica
column (30 m × 0.25 mm;
0.25 µm film thickness of
the 5% phenyl 95%
dimethylpolysiloxane
stationary phase

Wilcoxon–Mann–Whitney
tests, PLS-DA, one-way
ANOVA, ROC curve

Delphan et al.,
2018 [36]

• 163
CRC pre-surgery:
â stage I/II: 76;

stage III/IV: 87
• 83 with 6

months follow-up:

â stage I/II: 36;
stage III/IV: 47

• 54 with 12
months follow-up:

â stage I/II: 32;
stage III/IV: 25

solvent extraction with
methanol and derivatization
with methoxyamine (in
pyridine) and BSTFA
(1% TMCS)
+ GC-MS

SNM: amino acids

HP-5 MS fused silica
column (30 m × 0.25 mm;
0.25 µm film thickness of
the 5% phenyl 95%
dimethylpolysiloxane
stationary phase

one-way ANOVA,
Pearson Chi-squared
test, Pearson’s partial
correlation coefficients,
Cox proportional hazard
models

Mozdiak et al.,
2019 [37]

• 12 CRC
• 80 adenoma
• 14 diverticular

disease
• 5 haemorrhoids
• 14 inflammatory

bowel disease
• 1 excluded
• 37 HC

not specified
+ GC-IMS undetermined not specified

ROC curve, Sparse
logistic regression,
Random Forest,
Gaussian process
classifier, Support vector
machine, Neural
network

FECAL SAMPLES

Weir et al.,
2013 [38]

• 10 CRC
• 11 HC

solvent extraction with
isopropanol:acetonitrile:water
and derivatization with
methoxyamine (in pyridine)
and MSTFA (1% TMCS)
+ GC-MS

SNM: amino acids;
organic acids; lipids;
steroids

TG-5MS column (30 m,
0.25 mm i.d., 0.25 µm
film thickness),
SCFA determination:
TG-WAX-A column (30
m, 0.25 mm ID, 0.25 µm
film thickness)

AMOVA, Student’ t test,
ANOVA, Pearson
correlation, PLS-DA
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Table 1. Cont.

Reference Subjects Sample Preparation and
Analytical Technique Main Analytes Type of GC Column Statistical Approach

FECAL SAMPLES

Phua et al.,
2014 [39]

• 11 CRC:

â sB: 6; sC: 5

• 10 HC

solvent extraction with
methanol:water and
derivatization with
methoxyamine (in pyridine)
and MSTFA (1% TMCS)
+ GC-TOFMS

SNM: lipids;
saccharides

DB-1 (30 min × 250 µm
i.d.) fused silica capillary
column with 0.25 µm
film thickness

PCA, OPLS-DA, ROC
curve, Welch t test

Bond et al.,
2016 [40]

• 21 CRC
• 56 with

adenomatous
polyp/s

• 60 HC

HS-SPME
+ GC-MS SVM not specified

Student’s t test, Fisher’s
exact test, ANOVA, false
discovery rate correction,
PLS-DA, factor analysis,
ROC curve

Wang et al.,
2017 [41]

• 15 CRC:

â sII: 4; sIII: 6;
sIV: 5

• 12 HC

solvent extraction with
isopropanol:acetonitrile:water
and derivatization with
pyridine-methoxy amino
acid salt solution,
SCFA determination:
solvent extraction and
derivatization with sulfuric
acid solution (50%) and
diethyl ether
+ GC-MS

SNM: amino acids;
organic acids; lipids;
steroids

30-m TG-5MS column Student’s t-test, Pearson
correlation

Song et al.,
2018 [42]

• 26 CRC:

â sI: 3; sIIa: 5;
sIIc: 1; sIIIb: 11;
sIIIc: 3; sIVa: 3

• 28 HC

Analysis of Long-Chain
Fatty Acids: solvent
extraction with
chloroform:methanol (Folch
method) and derivatization
with BCl3–MeOH
Analysis of Short-Chain
Fatty Acids:
solvent extraction with HCl
and diethyl ether and
derivatization with PFBB in
acetonitrile and EDIPA
+ GC-MS

lipids HP-5 MS 30 m × 250 µm
× 0.25 µm column

Chi-square test, Fisher’s
exact test,
Mann–Whitney U test

Bond et al.,
2019 [43]

• 21 CRC
• 56 with

adenomatous
polyp/s

• 60 HC

HS-SPME with CAR/PDMS
+ GC-MS SVM: esters; alcohols

60 m long Zebron ZB-624
capillary column with an
inner diameter of 0.25
mm. The column was
lined with a 1.4 µm film
of 94% dimethyl
polysiloxane and 6%
cyanopropylphenyl

Student’s t test,
Mann-Whitey tests,
Fisher’s exact test,
ANOVA,
false discovery rate
correction, PLS-DA,
factor analysis, ROC
curve

BREATH SAMPLES

Haines et al.
1977 [44]

• 30 CRC
• 64 with

non-malignant
large-bowel disorders

• 208 without known
large-bowel disorders

direct gas sampling by
means of:
either a modified
Haldane–Priestley tube’ or a
3-bag collecting system in
which one bag contains
sample which can then be
transferred to a syringe or
evacuated aerosol can for
later analysis
+ GC

gases not specified p value

Piqué et al.
1984 [45]

• 47 CRC
• 156 HC

direct gas sampling by
means of a 3-bag collecting
system in which one bag
contains sample which can
then be transferred to a
syringe or evacuated aerosol
can for later analysis
+ GC-FID

gases not specified p value

Peng et al.,
2010 [46]

• 26 CRC:

â sI: 3; sII: 7;
sIII: 7; sIV: 7

• 22 HC

HS-SPME with PDMS/DVB
+ GC-MS SVM: hydrocarbons

H5-5MS 5% phenyl
methyl siloxane (30 m
length, 0.25 mm i.d.,
0.25 µm thickness)

PCA

Altomare et al.,
2013 [47]

• 37 CRC
• 41 HC

adsorption of VOCs on to
sorbent cartridges and
thermal desorption
+ GC-MS

SVM: hydrocarbons

SUPELCOWAX,
polyethylene glycol 30 m
× 0.25 mm ID. × 0.25 µm
stationary phase
thickness

PNN, ROC curve

Depalma et al.,
2014 [48]

• 15 CRC
• 20 with

colonoscopic
diagnosis of
colonic polyps

• 15 HC

adsorption of VOCs on to
sorbent cartridges and
thermal desorption
+ GC-MS

undetermined not specified LDA
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Table 1. Cont.

Reference Subjects Sample Preparation and
Analytical Technique Main Analytes Type of GC Column Statistical Approach

BREATH SAMPLES

Wang et al.,
2014 [49]

• 20 CRC
• 20 HC

HS-SPME with CAR/PDMS
(75 µm)
+ GC-MS

SVM: alcohols;
hydrocarbons

DB-5MS (length 30 m ×
inner diameter (ID) 0.250
mm × film thickness
0.25 µm)

PCA, PLS-DA,
Kruskal–Wallis rank sum
test

Altomare et al.,
2015 [50]

• 48 CRC
• 55 HC

adsorption of VOCs on to
sorbent cartridges and
thermal desorption
+ GC-MS

SVM: hydrocarbons

HP-5MS, 95%
polydimethylsiloxane,
5% polydiphenylsiloxane,
30 m × 0.25 mm ID,
0.25 µm stationary phase
thickness

Mann–Whitney U test,
chi-square test, Student’s
t test, PNN, ROC curve

Amal et al.,
2016 [51]

• 65 CRC
• 22 with advanced

or nonadvanced
adenomas

• 122 HC

adsorption of VOCs on to
sorbent cartridges and
thermal desorption
+ GC-MS

SVM: hydrocarbons;
ketones; esters;
alcohols

SLB-5ms capillary
column (with 5% phenyl
methyl siloxane; 30 m
length; 0.25 mm internal
diameter; 0.5 µm
thicknesses)

Student’s t test, DFA,
ROC curve

VOC—volatile organic compound; CRC—colorectal cancer; HC—healthy controls; s—stage of cancer;
ITEX—in-tube extraction; 1H-NMR—proton nuclear magnetic resonance; GC-MS—gas chromatography-mass
spectrometry; HS-SPME—headspace-solid-phase microextraction; CAR/PDMS—Carboxen/Polydimethylsiloxane;
PDMS/DVB—Polydimethylsiloxane/Divinylbenzene; GC-FID—gas chromatography with flame ionization
detection; GC-IMS—gas chromatography coupled with ion mobility spectrometry; GC-TOFMS—gas
chromatography/time-of-flight mass spectrometry; PCA—principal component analysis; OPLS-DA—orthogonal
partial least squares discriminant analysis; ANOVA—analysis of variance; AMOVA—analysis of molecular
variance; LSD—least significant difference; ROC—receiver operating characteristic; FDA—Fisher discriminant
analysis; KNN—k-nearest neighbors algorithm; PLS-DA—partial least squares discriminant analysis;
PNN—probabilistic neural network; LDA—linear discriminant analysis; DFA—discriminant function analysis;
MSTFA—N-methyl-N-(trimethylsilyl)trifluoroacetamide; SCFA—short-chain fatty acid; PFBB—pentafluorobenzyl
bromide; BSTFA—N,O-bis(trimethylsilyl)trifluoroacetamide; TMCS—trimethylsilyl chloride; ECF—ethyl
chloroformate; EDIPA—3’-O-ethyl-N,N-diisopropylphosphoramidite; SNM—screening of nonvolatile metabolites;
SVM—screening of volatile metabolites.

2.2. General Analytical Platforms Available for Metabolomics Studies

There are many analytical platforms for molecular biomarker analysis, such as nuclear
magnetic resonance (NMR), high performance liquid chromatography-mass spectrometry (HPLC-MS),
ultrahigh performance liquid chromatography-mass spectrometry (UHPLC-MS), supercritical fluid
chromatography-mass spectrometry (SFC-MS), capillary electrophoresis-mass spectrometry (CE-MS)
and GC-MS [52,53]. NMR is highly reproducible technique which requires low amounts of the sample,
enables quantitation without standards and allows for the identification of both polar and nonpolar
compounds. The main disadvantage of NMR compared with MS is poor sensitivity, limiting analyses
to low-abundant metabolites [52]. UHPLC-MS is more sensitive than HPLC-MS and requires smaller
sample volume for injection. Recent UHPLC-MS are using porous particles with internal diameters
smaller than 2 µm, which provide higher peak capacity, increased specificity and high-throughput
capabilities as compared to HPLC columns [53]. The difficulty is that electrospray ionization (ESI) mass
spectral libraries are not standardized like in the case of GC-MS [54]. SFC-MS is a promising tool in the
field of metabolomics, next to GC and LC. It can analyze both polar and nonpolar compounds using
“green” and rather cheap CO2 as the mobile phase [52]. CE-MS has low sensitivity and enables the
analysis of polar compounds. CE-MS offers high-analyte resolution and a small volume of sample for
injection (1–20 nL) [52,53]. GC-MS is a gold standard for the analysis of volatiles and it is, relatively, a
simpler technique than LC-MS, more cost effective and with reduced matrix effect enabling to quantify
compounds in picograms and identification using easy-accessible reference libraries [27–29]. It is also
possible to separate and analyze semi-volatiles, for example when using solvent extraction as the
sample preparation technique. However, most compounds require a chemical derivatization step at
room or elevated temperatures to provide necessary volatility and thermal stability [54]. GC-MS is one
of most important methods to analyze VOCs from various matrices like breath, saliva, urine, feces and
blood for metabolomic purposes [55].
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2.3. Search Strategy

On 20 May 2020, a literature search was performed in the electronic database Web of Science Core
Collection (from Clarivate Analytics; Philadelphia, PA, USA), as well as Google Scholar. The used search
terms were: colorectal cancer, volatile organic compounds, gas chromatography, breath, urine and
feces, with time span from 2010 to 2020. Due to the historical relevance, two older articles involving
breath samples (from 1977 and 1984) were also included.

Studies that were included met the following criteria; (i) at least two patient groups; one group with
colon or digestive tract cancer in any stage and another group without cancer; (ii) analytical platform
based on GC coupled with MS or other commonly used detectors; (iii) detection and identification of
chemicals or gases in breath, urine and feces.

The following information was gathered from the articles, per type of matrix: author, year of
publication, analytical method, method of data analysis, sample preparation technique, type of used
GC column, patient groups and number of volunteers, degree of validation of the method and its level
of sensitivity, specificity, accuracy and other statistical parameters.

Twenty-one studies on CRC molecular markers were reviewed, all of them employing gas
chromatography as the analytical technique and comprising the investigation of urine, breath or fecal
samples as sources of metabolites. Data regarding candidate CRC biomarkers and studied biological
matrices are presented in Table 2—these compounds are referred to as being the most relevant for being
reported as possible markers by more than one study and/or for the possibility of being addressed to
formerly described biochemical mechanisms. Table S1 (Supplementary Materials) is a full, extended
version of Table 2.

Table 2. List of the most relevant compounds reported as potential biomarkers of CRC.

Compound CAS Number Code Matrix Reference

ALCOHOLS, POLYOLS AND PHENOLS

1-octanol 111-87-5 M1 Urine↓ Silva et al., 2011 [32]

hexen-1-ol 928-95-0 M2 Urine Arasaradnam et al., 2014 [34]

2-propanol 67-63-0 M3 Feces↑ Bond et al., 2019 [43]

4-methylphenol (p-cresol) 106-44-5 M4

Urine↑
Urine↑

Urine↓post
Urine↓
Urine↑

Silva et al., 2011 [32]
Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

-Cheng et al., 2012 [33]
Liesenfeld et al., 2015 [35]

ethanol 64-17-5 M5 Breath↓ Amal et al., 2016 [51]

glycerol (glycerin) 56-81-5 M6 Feces↓
Feces↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]

monoacyl glycerol - M7 Feces↓ Wang et al., 2017 [41]

phenol 108-95-2 M8 Urine↓ Cheng et al., 2012 [33]

guaiacol 90-05-1 M9 Urine↓ Liesenfeld et al., 2015 [35]

2,3-butanediol 513-85-9 M10 Urine↓ Liesenfeld et al., 2015 [35]

ALDEHYDES

acetaldehyde 75-07-0 M11 Urine Arasaradnam et al., 2014 [34]

decanal 112-31-2 M12 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

heptanal 111-71-7 M13 Urine↓ Silva et al., 2011 [32]

hexanal 66-25-1 M14 Urine↓
Urine

Silva et al., 2011 [32]
Arasaradnam et al., 2014 [34]

nonanal 124-19-6 M15 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]
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Table 2. Cont.

Compound CAS Number Code Matrix Reference

KETONES

2-hexanone 591-78-6 M16 Feces↑ Bond et al., 2019 [43]

3-heptanone 106-35-4 M17 Urine↑
Urine

Silva et al., 2011 [32]
Arasaradnam et al., 2014 [34]

4-heptanone 123-19-3 M18 Urine Arasaradnam et al., 2014 [34]

4-methyl-2-pentanone 108-10-1 M19 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

2-pentanone 107-87-9 M20 Urine Arasaradnam et al., 2014 [34]

acetone 67-64-1 M21 Breath↑
Urine

Amal et al., 2016 [51]
Arasaradnam et al., 2014 [34]

2,3-butanedione 431-03-8 M22 Urine Arasaradnam et al., 2014 [34]

ESTERS

phenyl acetate 122-79-2 M23 Urine↑
Urine↓post

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

ETHERS

anisole 100-66-3 M24 Urine↑ Silva et al., 2011 [32]

HYDROCARBONS

methane 74-82-8 M25 Breath
Breath

Haines et al. 1977 [44]
Piqué et al. 1984 [45]

1,2-pentadiene 591-95-7 M26 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

1,3-dimethylbenzene 108-38-3 M27
Breath↑
Breath↓
Breath↑

Altomare et al., 2013 [47]
Peng et al., 2010 [46]

Altomare et al., 2015 [50]

1,4-dimethylbenzene
(1,4-xylene) 106-42-3 M28

Breath↑
Breath↑
Feces↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

Bond et al., 2019 [43]

1-octene 111-66-0 M29 Breath↑ Altomare et al., 2015 [50]

2-methylbutane 78-78-4 M30 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

2-methylpentane 107-83-5 M31 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

3-methylpentane 96-14-0 M32 Breath↑ Altomare et al., 2013 [47]

octane 111-65-9 M33 Breath↑ Altomare et al., 2015 [50]

undecane 1120-21-4 M34 Breath↑ Altomare et al., 2015 [50]

4-methyloctane 2216-34-4 M35 Breath↑
Breath↓

Altomare et al., 2013 [47]
Amal et al., 2016 [51]

cyclohexane 110-82-7 M36 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

dodecane 112-40-3 M37 Breath↑
Breath↑

Wang et al., 2014 [49]
Altomare et al., 2015 [50]

heptane 142-82-5 M38 Breath↑ Altomare et al., 2015 [50]

methylcyclohexane 108-87-2 M39 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

methylcyclopentane 96-37-7 M40 Breath↑
Breath↑

Altomare et al., 2013 [47]
Altomare et al., 2015 [50]

p-cymene 99-87-6 M41 Urine↑ Silva et al., 2011 [32]

γ-terpinene 99-85-4 M42 Urine↑ Silva et al., 2011 [32]

beta-pinene 127-91-3 M43 Breath↑ Altomare et al., 2015 [50]
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Table 2. Cont.

Compound CAS Number Code Matrix Reference

ACIDS

acetic acid 64-19-7 M44 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

benzeneacetic acid
(phenylacetic acid) 103-82-2 M45 Feces↑

Feces↑
Weir et al., 2013 [38]

Wang et al., 2017 [41]

butyric acid 107-92-6 M46 Feces↓
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

citric acid 77-92-9 M47

Urine↓
Urine↓post

Urine↓
Urine↑

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

Cheng et al., 2012 [33]
Liesenfeld et al., 2015 [35]

elaidic acid 112-79-8 M48 Feces↓
Feces↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]

isobutyric acid 79-31-2 M49 Feces↑
Feces↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]

2-hydroxyisobutyric acid 594-61-6 M50 Urine↑ Liesenfeld et al., 2015 [35]

isocitric acid 320-77-4 M51 Urine↓ Qiu et al., 2010 [31]

isovaleric acid 503-74-2 M52 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

3-hydroxybutanoic acid 300-85-6 M53 Urine↑ Liesenfeld et al., 2015 [35]

lactic acid 50-21-5 M54 Urine↑ Liesenfeld et al., 2015 [35]

linoleic acid 60-33-3 M55

Feces↓
Feces↓

Feces↑m

Feces↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Song et al., 2018 [42]
Phua et al., 2014 [39]

myristic acid 544-63-8 M56
Feces↑
Feces↓
Urine↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Cheng et al., 2012 [33]

oleic acid 2027-47-6 M57
Feces↓
Feces↓

Feces↑m

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Song et al., 2018 [42]

oxalic acid 6153-56-6 M58 Urine
Urine↓

Arasaradnam et al., 2014 [34]
Liesenfeld et al., 2015 [35]

propionic acid 79-09-4 M59 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

pyruvic acid 127-17-3 M60 Urine↓ Cheng et al., 2012 [33]

succinic acid 110-15-6 M61 Urine↓ Qiu et al., 2010 [31]

valeric acid 109-52-4 M62 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

fumaric acid 110-17-8 M63 Urine↑ Cheng et al., 2012 [33]

SULFUR-CONTAINING COMPOUNDS

2-methoxythiophene 16839-97-7 M64 Urine↑ Silva et al., 2011 [32]

dimethyl disulfide 624-92-0 M65 Urine↓ Silva et al., 2011 [32]

NITROGEN-CONTAINING COMPOUNDS

putrescine 110-60-1 M66 Urine↑ Cheng et al., 2012 [33]

dimethyl-thiourea 534-13-4 M67 Urine Arasaradnam et al., 2014 [34]

allyl isothiocyanate 57-06-7 M68 Urine Arasaradnam et al., 2014 [34]

AMINO ACIDS AND THEIR DERIVATIVES

2-aminobutyric acid 1492-24-6 M69 Urine↑ Cheng et al., 2012 [33]

hippuric acid 495-69-2 M70 Urine↓post
Urine↓

Qiu et al., 2010 [31]
Cheng et al., 2012 [33]
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Table 2. Cont.

Compound CAS Number Code Matrix Reference

AMINO ACIDS AND THEIR DERIVATIVES

5-oxoproline 149-87-1 M71 Urine↑
Urine↑post

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

alanine 56-41-7 M72
Feces↑
Urine↓
Urine↓

Weir et al., 2013 [38]
Cheng et al., 2012 [33]

Liesenfeld et al., 2015 [35]

aspartic acid 56-84-8 M73 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

glutamic acid 617-65-2 M74

Feces↑
Feces↑
Urine↑
Urine↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Qiu et al., 2010 [31]

Liesenfeld et al., 2015 [35]

glutamine 56-85-9 M75 Urine↓ Liesenfeld et al., 2015 [35]

glycine 56-40-6 M76 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

histidine 71-00-1 M77
Urine↓

Urine↑post
Urine↓

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

Liesenfeld et al., 2015 [35]

isoleucine 73-32-5 M78 Urine↑post Qiu et al., 2010 [31]

leucine 61-90-5 M79
Feces↑
Feces↑

Urine↑post

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Qiu et al., 2010 [31]

lysine 70-54-2 M80
Feces↑

Urine↑post
Urine↓

Weir et al., 2013 [38]
Qiu et al., 2010 [31]

Liesenfeld et al., 2015 [35]

phenylacetylglutamine 28047-15-6 M81 Urine↑
Urine↓post

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

phenylalanine 150-30-1 M82
Feces↑
Feces↑
Urine↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]

Liesenfeld et al., 2015 [35]

proline 609-36-9 M83 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

salicyluric acid
(2-hydroxyhippuric acid) 487-54-7 M84

Urine↑
Urine↓post

Urine↓

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

Liesenfeld et al., 2015 [35]

serine 56-45-1 M85
Feces↑
Feces↑

Urine↑post

Weir et al., 2013 [38]
Wang et al., 2017 [41]
Qiu et al., 2010 [31]

threonine 72-19-5 M86
Feces↑

Urine↑post
Urine↓

Weir et al., 2013 [38]
Qiu et al., 2010 [31]

Liesenfeld et al., 2015 [35]

tyrosine 60-18-4 M87 Urine↑post
Urine↓

Qiu et al., 2010 [31]
Liesenfeld et al., 2015 [35]

tryptophan 54-12-6 M88 Urine↑
Urine↑post

Qiu et al., 2010 [31]
Qiu et al., 2010 [31]

valine 516-06-3 M89 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

SUGARS AND THEIR DERIVATIVES

fructose 7660-25-5 M90 Feces↓
Urine↓

Phua et al., 2014 [39]
Liesenfeld et al., 2015 [35]

xylose 58-86-6 M91 Urine↓ Cheng et al., 2012 [33]

sorbose 87-79-6 M92 Urine↓ Cheng et al., 2012 [33]

arabitol 7643-75-6 M93 Urine↓ Cheng et al., 2012 [33]

arabinose 147-81-9 M94 Urine↓ Liesenfeld et al., 2015 [35]
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Table 2. Cont.

Compound CAS Number Code Matrix Reference

SUGARS AND THEIR DERIVATIVES

mannitol 69-65-8 M95 Urine↓ Liesenfeld et al., 2015 [35]

glucuronic acid 6556-12-3 M96 Urine↓ Cheng et al., 2012 [33]

gluconic acid 526-95-4 M97 Urine↓ Liesenfeld et al., 2015 [35]

threonic acid 3909-12-4 M98 Urine↓ Cheng et al., 2012 [33]

3-phosphoglyceric acid 820-11-1 M99 Urine↓ Liesenfeld et al., 2015 [35]

COMPLEX NITROGEN COMPOUNDS AND THEIR DERIVATIVES

uracil 66-22-8 M100 Urine↓ Cheng et al., 2012 [33]

xanthine 69-89-6 M101 Urine↑ Liesenfeld et al., 2015 [35]

STEROIDS AND THEIR DERIVATIVES

cholesterol derivative - M102 Feces↑
Feces↑

Weir et al., 2013 [38]
Wang et al., 2017 [41]

ursodeoxycholic acid 128-13-2 M103 Feces↓
Feces↓

Weir et al., 2013 [38]
Wang et al., 2017 [41]

OTHERS

pantothenic acid (vitamin
B5) 599-54-2 M104 Feces↑

Feces↓
Weir et al., 2013 [38]

Wang et al., 2017 [41]

where: ↑—concentration elevated in comparison of healthy controls; ↓—concentration decreased in comparison
of healthy controls; post—index regarding postoperative samples; m—index regarding only male samples; no
arrows—changes in concentration of compound not mentioned by authors. Code—reference used for further
discussions in Section 3.

2.4. CRC Biomarkers in Urine

Qiu et al., 2010 profiled urine samples from the same group of patients (60 CRC diseased
individuals with different stage of cancer) from previous serum experiments and 63 healthy volunteers.
Patients were also examined before and after surgical operation in order to evaluate changes in
volatile profiles. The postoperative urine specimens were collected on the seventh day after surgery.
Authors used GC-MS with solvent extraction and derivatization (using ethyl chloroformate) of
samples. In a predictive model, 187 volatile metabolites were found in 90% of samples allowing
discrimination of CRC patients from the healthy controls in the predictive component. 16 potential
biomarkers of disease between preoperative CRC patients and healthy controls were identified
including decreasing compounds, e.g., 3-methylhistidine, histidine, citric acid, and increasing
volatiles such as 5-hydroxytryptophan, 5-oxoproline, p-cresol and phenyl acetate. Four compounds,
5-hydroxytryptophan, 2-hydroxyhippuric acid, succinic acid and phenylacetylglutamine, demonstrated
recovering tendency to healthy controls in the postoperative samples. Different CRC stages could
be distinguished by six metabolites with characteristic expression levels. Levels of indoleacetic acid
were elevated for stage I patients, p-hydroxyphenylacetic acid for stage II and 5-hydroxyindoleacetic
acid for stage III. The highest concentration of 2-methylpropanoic acid was found for stage II with a
sharp decrease for stage IV patients. A continuous increase in glutamic acid levels was observed until
stage IV. Finally, stage I was characterized by proportionally large amount of leucine. Twenty-one
VOCs, mostly amino acids and phenyl-containing constituents, allowed for discrimination between
preoperative and postoperative states of patients and they are likely related to the metabolic changes
resulting from the surgical operation [31].

Volatile metabolites from urine of 54 subjects were investigated in a study by Silva et al., 2011.
Thirty-three cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and
21 healthy (cancer-free) volunteers were enrolled in the experiment. Positive rates of 16 volatiles among
the 82 detected were found to be statistically different (p < 0.05). They used an optimized technique
relying on dynamic solid-phase microextraction in headspace mode (dHS-SPME), in combination with



J. Clin. Med. 2020, 9, 3191 12 of 32

GC-MS-based metabolomics. Prior optimization concerned extraction time and extraction temperature
and selection of SPME fiber. Oncological groups were characterized with the predominance of benzene
derivatives, terpenoids and phenols. Levels of p-cymene, anisole, γ-terpinene, bornylene, dimethyl
disulfide, 4-methylphenol, 1,2-dihydro-1,1,6-trimethylnaphthalene, 1,4,5-trimethylnaphthalene and
2,7-dimethylquinoline were elevated in colorectal patients than in lymphoma and leukaemia patients.
Decreasing concentrations for CRC patients were observed for e.g., 1-octanol, heptanal, hexanal and
dimethyl disulfide in comparison to healthy controls; 4-methyl-2-heptanone was only identified in
colorectal patients [32].

Solvent extraction and derivatization combined with GC- time-of flight mass spectrometry
(TOFMS) was used by Cheng et al., 2012, to find metabolite markers of colorectal cancer. A cohort
of 103 CRC patients and 101 healthy subjects participated in the study. From the total 163 volatiles
detected, 19 metabolites were selected as potential biomarkers based on statistical analysis by uni- and
multivariate statistical methods. Using a set of seven metabolites, citric acid, hippuric acid, p-cresol,
2-aminobutyric acid, myristic acid, putrescine, and kynurenate, it was possible to discriminate CRC
subjects from healthy volunteers, presenting AUROC (area under the receiver operating characteristic
curve) of 0.993, sensitivity of 97.5% and specificity of 97.6% for the training set, and an area under the
curve (AUC ) of 0.998, sensitivity of 97.5% and specificity of 100% for the testing set [33].

A field asymmetric ion mobility spectrometer (FAIMS) was used by Arasaradnam et al., 2014,
for analyses of urine samples from 83 CRC patients and 50 healthy controls. Data analysis for FAIMS
results was performed using fisher discriminant analysis. The sensitivity and specificity of FAIMS
was 88% and 60%, respectively, for CRC and this technique allowed for the differentiation between
CRC patients and healthy ones. The author conducted a parallel in-tube extraction (ITEX)-GC-MS
experiment with the same samples. No unique chemical was identified in those with CRC compared
with healthy volunteers. According to the incorporated table, they found nine different volatiles
associated with colorectal cancer and they could be assigned to 26 NIST library targets for these peaks.
There was no information if concentrations of these compounds changed, nevertheless they were
included to Table 2 [34].

Liesenfeld et al., 2015, investigated urine samples from a cohort of 170 subjects divided in four
groups: pre-surgery (79), post-surgery within few days (9), after 6 months follow-up (46) and after
12 months follow-up (36) CRC patients. A total of 82 VOCs detected by GC-MS were significant and
allowed to distinguish pre- from post-surgery CRC patients. However, only 49 metabolites were
included in Table 2, since the remaining VOCs were unknown (level three or four identification).
Liesenfeld et al., 2015, attributed the origin of many significant metabolites to alternations of the
gut microbiome affected by CRC surgery, such as 2,3-butanediol, pyrogallol, hydroquinone and
maleamic acid. A total of 10 compounds (four identified) were highlighted as metabolites significant
to discriminate pre-surgery CRC patients by disease stage. Levels of a dipeptide of hydroxyproline
(Hyp-Hyp) and p-cresol-β-O-glucuronide were considerably elevated for intermediate (stage II–III)
stage patients. For early (stage zero to 1) stage both mentioned compounds and hippuric acid
and p-cresol were moderately elevated, while for late-stage CRC patients, their concentrations were
diminished. The authors constructed a multivariate model containing 20 marker metabolites to
differentiate the metabolite profiles of CRC patients prior to surgery from those at any post-surgery
timepoint (AUCROC curve = 0.89; 95% CI:0.84–0.95) [35].

Delphan et al., 2018, used the same techniques as Liesenfeld et al., 2015, to obtain urine profiles
from 163 CRC pre-surgery patients, 83 with 6 months follow-up and 54 with 12 months follow-up.
The GC-MS and 1H-NMR experiments identified six compounds of interest: isoleucine, leucine, valine,
(2Z)-3-methylglutaconic acid, 2-ethylhydracrylic acid and 2-methyl-3-hydroxybutyric acid. Elevated
concentrations of 2-ethylhydracrylic acid and 2-methyl-3-hydroxybutyric acid were significantly
associated with overall survival after 24 months of follow-up, independent of stage of CRC [36].

The FAIMS technique was used once again for development of VOC-based screening tool for
CRC and adenomas (Mozdiak et al., 2019). Moreover, gas chromatography coupled with ion mobility
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spectrometry (GC–IMS) was also employed. A total of 163 patients were enrolled in the study.
For patients grouped into categories according to diagnosis, FAIMS analysis revealed high sensitivity
and specificity between CRC vs. normal control: 1.0 (95% CI 0.74–1) and 0.92 (95% 0.62–1), respectively.
For GC-IMS study, the corresponding values showed a high degree of separation with a sensitivity of
0.80 (95% CI 0.44–0.97) and specificity of 0.83 (95% CI 0.63–0.95). However, when considering CRC cases
grouped with adenomas and compared with other groups, the accuracy dropped significantly. Hence,
urinary VOC profiles from CRC patients in combination with other (non-neoplastic) gastrointestinal
disorders, are not sufficiently distinct to allow correct classification. No unique VOC biomarkers
were found using GC-IMS. Summarizing, VOC signatures enabled correct classification of malignant
patients from pre-malignant ones with higher test uptake and superior sensitivity than FOBT used for
bowel cancer screening [37].

2.5. CRC Biomarkers in Feces

In studies regarding fecal samples, profiling of gut microflora is recurrent, in order to establish
correlations between fecal metabolites and human microbiota. Previous evidence demonstrates
differences between the microbial composition found in samples of heathy and CRC patients,
supporting the existence of oncogenic bacteria, which potentially promote CRC initiation and tumor
development [56]. Hence, the detection of specific bacterial metabolites, especially in feces, presented
to be relevant in the assessment of CRC risk.

Feces samples were investigated by Weir et al., 2013, from healthy adults (n = 10) and colorectal
cancer patients (n = 11). Using solvent extraction combined with GC-MS, they examined stool samples
to find overall metabolite profiles and to extract short chain fatty acids (SCFAs). Microbial diversity in
stool biota from CRC subjects and controls were identified using amplification of the V4 region of the
bacterial 16S rRNA gene and pyrosequencing. Fourteen bacterial species (mostly butyrate-producing)
were significantly more abundant in the stool of healthy individuals compared to CRC patients. On the
other hand, four bacterial species were significantly over-represented in stool samples from CRC
patients. The last mucin-degrading bacteria, Akkermansia muciniphila, was observed in significantly
greater proportion in CRC stool samples. SCFA analysis resulted in finding six bacterially produced
fatty acids that differed significantly between stool of healthy adults and subjects with CRC. Levels of
acetic acid, propionic acid, valeric acid, and particularly isobutyric acid and isovaleric acid were
significantly elevated for CRC samples. Butyric acid concentrations were higher in samples from
controls. Independently, Weir et al., 2013, detected 27 global stool metabolites which they proposed
as cancer biomarkers. Eleven of them were amino acids demonstrating a 41–80% increase in fecal
samples from CRC patients, originating possibly from degradation of dietary proteins and intestinal
mucins, which is consistent with the presence of bacteria A. muciniphila. Higher levels of glycerol,
several unsaturated fatty acids and ursodeoxycholic acid (UDCA) were observed for healthy adults.
Pearson’s correlations between groups of metabolites and bacterial genera/species revealed strong
correlations between Bacteroides finegoldii, two Dialister spp., and Pseudobutyrivibrio ruminis and increased
stool free fatty acids and glycerol, as well as between Ruminococcus spp. and UDCA. A strong correlation
existed also between bacterial genera Phascolarctobacterium and Acidiminobacter (noteworthy for CRC
samples) and amino acids phenylalanine and glutamic acid [38].

In the study of Phua et al., 2014, GC-TOFMS was employed for the metabolic profiling
of fecal samples from 11 CRC patients and 10 healthy subjects and to find metabolite markers
from tumor specimens against their matched normal mucosae from eight CRC patients and
10 controls. The discrimination between CRC patients and healthy controls was evident based
on fecal profiles (orthogonal partial least squares discriminant analysis (OPLS-DA), one predictive and
three Y-orthogonal components, R2X = 0.373, R2Y = 0.995, Q2 (cumulative) = 0.215). The robustness of
the OPLS-DA model was demonstrated by an AUROC of one. GC-TOFMS profiling also enabled the
separation of tumor tissue from matched normal mucosae and to assign nine potential biomarkers of
CRC. Glucose, galactose, 3-phosphoglycerate, citric acid, inosine, and creatinine were lower in CRC
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while uracil, uridine, and proline were significantly higher in tumor tissue. Three fecal markers were
found to be also lower compared to healthy stool samples, namely nicotinic acid, fructose and linoleic
acid. Authors pointed out that the conducted study revealed the ability to differentiate CRC subjects
from healthy subjects regardless of the presence of samples containing blood beyond 1 mg Hb/g
stool [39].

Bond et al., 2016, used SPME-GC-MS to analyze volatiles in stool samples of 137 participants,
consisting of 60 controls, 56 patients with adenomatous polyp/s and 21 CRC patients. Four compounds
were assigned as biomarkers, however their names were not mentioned due to alleged potential future
intellectual property. After a tenfold cross validation, an AUC of 0.82 with a sensitivity of 87.9% and a
specificity of 84.6% was measured [40].

Wang et al., 2017, applied very similar approach to Weir et al., 2013. A total of 27 subjects (15 CRC
patients and 12 controls) were enrolled in the study. Cancer group consisted of stage II in four cases,
stage III in six cases and stage IV in five clinical cases. Two parallel experiments involving GC-MS
were conducted: global metabolite profiling and SCFA analysis. Bacterial species present in stool
samples were identified using pyrosequencing for specific detection of the V4 region of bacterial 16S
ribosomal RNA on the isolated genomic DNA. Eighteen bacteria obtained from gut flora differed
significantly between CRC and control group. VOC profiling revealed 24 volatiles being proposed
as markers of disease. Among them, the levels of four SCFAs (acetic acid, valeric acid, butyric acid
and isovaleric acid) were elevated for CRC patients, while the concentration of isobutyric acid was
diminished for the cancer group. Compounds with decreased levels for CRC samples included fatty
acids (oleic acid, elaidic acid, linoleic acid and myristic acid), ursodeoxycholic acid and pantothenic
acid (vitamin B5). The largest group of increased species were amino acids, represented by i.e., glutamic
acid, leucine, serine, valine and phenylalanine. High positive correlations were observed between
bacterial species and volatiles, including: Bacteroides, Dialister and Pseudobutyrivibrio—free fatty acids;
Ruminococcus—ursodeoxycholic acid; Phascolarctobacterium and Acidiminobacter—phenylalanine and
glutamic acid [41].

Fecal fatty acids acid profiles of CRC patients and healthy controls were analyzed by Song et al.,
2018. A total of 54 subjects (26 CRC patients and 28 controls) participated in the study. Fecal samples
were dedicated for two independent experiments, consisting in profiling of long- and short-chain fatty
acids by solvent extraction with GC-MS. The most predominant saturated fatty acids among both
gender groups were palmitic acid (C16:0), stearic acid (C18:0), and myristic acid (C14:0). The significant
changes between profiles were observed only for the male group, no difference was estimated between
CRC patients and healthy controls in the female group. The levels of total monounsaturated fatty acid
(MUFA) and total omega-6 polyunsaturated fatty acids (PUFAs) were higher in the male CRC group
than healthy controls. The differences were especially significant for two compounds, namely oleic acid
(C18:1ω-9) and linoleic acid (C18:2ω-6). The levels of four SCFAs, acetic acid, butyric acid, propionic
acid and valeric acid, were not considerably distinct between the controls and positive cohort [42].

HS-SPME-GC-MS was used by Bond et al., 2019, to identify volatiles from feces of 21 CRC
patients, 56 subjects with adenomatous polyp(s) and 60 healthy controls. A total of 162 compounds
were identified in whole sample set with eight volatiles proposed as CRC biomarkers. Seven were
positively associated with CRC, namely propan-2-ol, hexan-2-one, ethyl 3-methylbutanoate, propan-2-yl
butanoate, propan-2-yl pentanoate, 1,4-xylene, and propan-2-yl propanoate. Only one compound was
negatively correlated with CRC—5-methyl-2-propan-2-yl-cyclohexan-1-ol (other name: dl-menthol).
Propan-2-ol was pointed out as the most valuable single biomarker of disease with an AUROC of
0.76, a sensitivity of 83%, and a specificity of 71%. Meanwhile, 3-methylbutanoic acid and propan-2-ol
in combination gave the best results: AUROC was 0.86, sensitivity 87.9% (95% CI 0.87–0.99) and
specificity 84.6% (95% CI 0.65–1.0). Finally, a panel of three VOCs (propan-2-ol, hexan-2-one and ethyl
3-methylbutanoate) was evaluated as a key predictor of cancer using logistic regression analysis with
value of AUROC equal to 0.73. The presence of all three mentioned VOCs indicates a person with CRC
with six times bigger probability of having the disease [43].
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2.6. CRC Biomarkers in Exhaled Breath

The first studies concerning colorectal cancer biomarkers in exhaled breath involved the
determination of methane levels in obtained samples. Haines et al. 1977 enrolled three groups
of subjects: 30 patients with CRC (19 with carcinoma of the rectum and 11 with carcinoma of the
colon), 64 patients with non-malignant large-bowel disorders, and 208 subjects without known
large-bowel disorders. Paired end-expiratory breath-samples were taken using one of two similar
methods, by means of either a modified Haldane–Priestley tube or a three-bag collecting system
in which one bag contains sample which can then be transferred to a syringe or evacuated aerosol
can for later analysis. Determination of methane was carried out using GC. A total of 14 out of
19 patients with rectal carcinoma produced methane, as well as 10 out of 11 patients with colonic
carcinoma. In the group of 30 CRC patients, 24 (80%) had significant levels of methane in their breath
(mean: 28.8 ± 20.9 ppm), compared with 25 (39%) of 64 patients with non-malignant large-bowel
disorders (mean: 16.8 ± 12.7 ppm) and 83 (40%) of 208 subjects without large-bowel affliction (mean:
16.7 ± 13.8 ppm) [44].

Direct gas sampling combined with GC-flame ionization detector (FID) was again used to measure
methane concentrations in breath of 270 subjects (Piqué et al. 1984). End-expiratory breath samples
were collected using a modification of the Haldane–Priestley tube and stored in 50-mL plastic syringes.
Sixty-seven (42.9%) of the 156 healthy controls were CH4 producers and forty-three (91.4%) of the
47 patients with CRC were CH4 producers (the percentage was significantly higher; p < 0.001).
In 36 patients in whom the cancer was resected, the incidence of methane producers fell to 47.2%.
The percentage of methane producers in patients operated on, but with unresectable cancer, remained
very high (87.7%). A significantly higher proportion of patients with extensive ulcerative colitis and
colonic polyposis produced CH4 than patients suffering ulcerative proctosigmoiditis, benign diseases
of the colon, and healthy controls (p < 0.05). Values were expressed only as percentage of incidence of
methane producers [45].

Peng et al., 2010, employed a tailor-made array of cross-reactive sensors based on organically
functionalized gold nanoparticles (GNPs) and HS-SPME-GC-MS to discriminates between breath
volatiles of healthy controls (22) and patients suffering different types of cancers, namely lung (30),
breast (22), colorectal (26), and prostate (18). Principal component analysis (PCA) demonstrated
clear separations between the patterns of healthy controls and of patients suffering from lung, colon,
and breast cancers when using the GNP sensors. HS-SPME-GC-MS experiments of breath samples
resulted in the finding of six potential biomarkers of colorectal cancer, four with decreased levels
(i.e., 1,3-dimethylbenzene, 2-amino-5-isopropyl-8-methyl-1-azulenecarbonitrile) and two increased
(1,1′-(1-butenylidene)bis benzene and 1-iodo nonane). The sensitivity of the GC-MS method to colon
cancer was about ~30% [46].

Altomare et al., 2013, analyzed breath by means of thermal desorption-gas chromatography-mass
spectrometry (TD-GC-MS). The participants included were 37 patients (positive outcome from
colonoscopy examination) and 41 controls. Probabilistic neural network (PNN) was used to assess
discrimination between cancer and control group and this evaluation provided a model based in a
set of 15 compounds. The selected indicators of CRC were: nonanal, 4-methyl-2-pentanone, decanal,
2-methylbutane, 1,2-pentadiene, 2-methylpentane, 3-methylpentane, methylcyclopentane, cyclohexane,
methylcyclohexane, 1,3-dimethylbenzene, 4-methyloctane, 1,4-dimethylbenzene, 4-methylundecane
and trimethyldecane. The sensitivity was 86% and the specificity was 83%. The AUROC value for this
PNN model was 0.852 [47].

Depalma et al., 2014, collected samples of breath from 20 patients with colonoscopic diagnosis
of colonic polyps, 15 CRC patients and 15 healthy controls (negative at colonoscopy). They used TD
(thermal desorption) combined with GC-MS method to obtain VOC patterns. A linear discriminant
analysis (LDA) enabled a discriminant performance with an accuracy of 96.5% and a sensitivity of 100%.
The selected model provided correct classification of 14 patients with polyps over 15 for the group of
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patients with colorectal cancer, with a sensitivity of 93.3%. Group with polyps were distinguished as
markedly pathological [48].

Wang et al., 2014, studied breath samples employing SPME. Twenty samples were collected from
control group and 20 belonged to individuals with colorectal cancer. The discriminative models were
created with the performing of PCA and partial least-squares discriminant analysis (PLSDA). The main
potential markers were cyclohexanone, 2,2-dimethyldecane, dodecane, 4-ethyl-1-octyn-3-ol, ethylaniline,
cyclooctylmethanol, trans-2-dodecen-1-ol, 3-hydroxy-2,4,4-trimethylpentyl 2-methylpropanoate,
in significantly lower levels in positive samples were 6-t-butyl-2,2,9,9-tetramethyl-3, 5-decadien-7-yne
(p < 0.05) [49].

TD-GC-MS was employed again by Altomare et al., 2015, who investigated breath from 48 CRC
patients and 55 healthy controls. They found 31 VOCs discriminating CRC patients from follow-up
(patients after resection with curative intent; FU) groups and from FU groups and healthy groups.
The reliability of the calculated PNN model in discriminating between the CRC and the FU groups
showed a sensitivity of 100%, a specificity of 95.83%, an accuracy of 97.50%, and an AUC of 0.993.
When comparing the FU and healthy control groups with a set of those 31 biomarkers, a sensitivity
of 100%, a specificity of 96.36%, an accuracy of 97.70% and an AUC of 0.992 were noted. A total of
11 VOCs were common to the previous study [47] and the PNN analysis using only them, resulted in
discrimination of follow-up from CRC patients before surgery with a sensitivity of 100%, a specificity
of 97.92%, an accuracy of 98.75%, and an AUC of one. Moreover, the FU group was distinguished from
the healthy group which showed a sensitivity of 100%, a specificity of 90.91%, an accuracy of 94.25%,
and an AUC of 0.959 [50].

Four compounds were assigned as biomarkers of colorectal cancer by Amal et al., 2016.
The amounts of acetone and ethyl acetate were elevated for CRC patients, ethanol and 4-methyl octane
were lower for the diseased group. A total of 65 patients with CRC, 22 with advanced or nonadvanced
adenomas, and 122 healthy controls were enrolled to the study. Two different techniques were employed
for the experiments: sensor analysis with a pattern recognition method and TD-GC-MS. Patients
suffering with CRC were distinguished from the control group using a sensor with 85% sensitivity,
94% specificity and 91% accuracy. The advanced adenoma group from the non-advanced adenomas was
discriminated with 88% sensitivity, 100% specificity, and 94% accuracy. Finally, the advanced adenoma
group from healthy controls was discriminated with 100% sensitivity, 88% specificity, and 94% accuracy.
Acetone and ethyl acetate were found in elevated levels in CRC patients (999.6 ± 116.8 ppb and
128.4 ± 4.01 ppb, respectively) compared to the healthy subjects (731.2 ± 63.8 ppb and 41.80 ± 10.00 ppb,
respectively). Ethanol and 4-methyl octane were increased in the control group (464.7 ± 61.7 ppb and
19.1 ± 0.8 ppb, respectively) compared with the CRC patients (95.9 ± 48.1 ppb and 16.0 ± 0.63 ppb,
respectively) [51].

In total, 205 different compounds (278, considering substances reported more than once) were
indicated as potential CRC markers from all three matrices. Figure 1 and Table 3 show the functional
group distribution of compounds in the matrices, divided by matrix. For urine specimen the most
prevalent group of compounds were amino acids and their derivatives, acids and sugars with
their derivatives. These two first groups were also the most predominant in feces, whereas breath
samples contained mainly hydrocarbons. Table 3 demonstrates that 23.7% of all identified potential
biomarkers of CRC were amino acids and their derivatives, followed by hydrocarbons (20.1%)
and acids (19.1%). The compound with the highest incidence of occurrence among matrices was
p-cresol (reported by five different studies). The other compounds frequently detected were: hexanal,
2-methylbutane, methylcyclohexane, citric acid, linoleic acid and glutamic acid (all reported at least by
four different studies).
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Figure 1. Incidence distribution of potential CRC biomarkers, according to functional group.

Table 3. Incidence distribution of potential CRC biomarkers in all three matrices, according to
functional group.

Incidence of Compounds, Per Class Breath Fecal Samples Urine All

Totals 65 64 148 278
Alcohols, polyols and phenols 4 6 12 22

Aldehydes 4 0 5 9
Ketones 4 1 8 13
Esters 3 4 6 13
Ethers 0 0 3 3

Hydrocarbons 47 1 8 56
Acids 1 25 27 53

Sulfur-containing compounds 0 0 2 2
Nitrogen-containing compounds 2 0 11 13

Amino acids and their derivatives 0 19 47 66
Sugars and their derivatives 0 1 15 16

Complex nitrogen compounds and derivatives 0 0 4 5
Steroids and their derivatives 0 4 0 4

Others 0 3 0 3

2.7. Clinical Relevance of Reviewed Articles

Breath, urine and feces can be collected noninvasively from subjects, in contrast to conventionally
used matrices (blood, serum, and tissue). Noninvasiveness is an important factor for patient safety and
may reflect on increased rates of adherence to the test, helping to promote early diagnosis. Besides that,
simplified sample collection may not require qualified personnel. The mentioned biological samples are
specimens which can be taken relatively fast, at little cost, and without extensive sample preparation for
analytical instruments. The unfavorable issues concerning urine and feces are the possible discomfort
experienced by patients and the complex chemical nature of them. Although breath has lower chemical
complexity, various external factors can influence its composition, such as food remnants, hygiene
products, metabolic products of colonizing oral bacteria and ambient air [57–60], turning challenging
to address which fraction of it would represent blood-related biomarkers.

Urine is a more stable specimen and contains mainly water, inorganic salts and organic compounds,
such as hormones, proteins, other metabolites and bacteria with their products. Due to the role of
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urine as organism’s route of elimination, metabolized forms of substances prevail over parental
molecules. Regarding bioanalyses of urine, there are a few recommendations intended to avoid
excessive contribution of bacterial content in the samples. In fact, the influence of bacterial growth on
the levels of metabolites and proteins has been reported [61]. It was demonstrated that the mid-stream
portion of urine has reduced microbiota composition [62]. Time collection period and diet are also
significant parameters; in this sense, fasting urine was characterized as the most stable in terms of
basal composition [63]. The determination of urine specific gravity is an alternative for normalization
of samples for metabolic investigations [64]. Most of the studied urine samples in this review were
collected in the morning after overnight fasting [31–33,35]. Further information regarding detailed
protocol of sampling was not provided.

Feces are an especially meaningful biological specimen in what concerns the evaluation of colonic
system. These are typically solid or semisolid heterogeneous remains of food, not completely digested
or absorbed by the organism. This content is metabolized by intestine bacteria to smaller waste
products and can also contain dead epithelial cells from the lining of the gut. Diet can change the
composition of feces, which directly alter metabolite profiles [65]. Moreover, consumed food impacts
metabolic pathways of gut microbiota and volatiles produced by them [66]. Factors related to the
collection and handling of fecal samples like post-collection metabolite deterioration, due to exposure
to aerobic conditions and ongoing microbial fermentation, also take place [67]. Investigations of
fecal samples regarding VOC profiles, revealed no effect when comparing a processed fresh sample
(firstly homogenized and extracted) to a thawed sample after 7 days, kept at −20 ◦C [68]. Interestingly,
lyophilized feces showed a decrease in the number of detected analytes [69].

All revised studies regarding fecal samples did not impose any kind of dietary restrictions to the
patients. In certain studies, samples from individuals following vegetarian diet or having any dietary
restrictions were not included [38,43], as this factor itself could reflect on a differentiated profile of
molecules extracted from the collected specimen. Interruption of consumption of tobacco or alcohol
was also required in a study [41]. Song et al., 2018, collected samples provided after overnight fasting
and participants were instructed to consume solely local traditional food [42]; participants enrolled in
another study all had a mild diet [41]. Fecal samples were generally provided before the colonoscopy,
without the influence of any kind of procedure for bowel preparation [38,41–43]. Another common
exclusion criteria regards the intake of antibiotics and probiotics months prior to sample donation,
once these agents impact the natural composition of gut microbiota [41,43]. In most of the studies,
patients suffering from intestinal chronic inflammatory diseases were also not enrolled [38,39,41,43],
due to the possibility that the metabolic alterations promoted by these conditions may result in a
false positive or a confounding factor when CRC cases are evaluated. The composition of feces, urine
and breath can also vary according to the physical state of the body, age, and general health. Hence,
biomarkers found in these matrices can have multifarious origin that should be considered while
establishing potential metabolic pathways of them [59,70,71].

The revised studies can be critically analyzed under the point of view of their clinical value. In urine
metabolome studies, Qiu et al., 2010, indicated separations both from CRC patients and precancerous
colorectal lesions in rats to their healthy analogous counterparts. It is an interesting result because
indication of precancerous lesion is the main limitation of commercially available CRC tests which do
not provide good sensitivity in the first stage of the disease. The main differences observed between
pre- and post- groups would be due to removal of a portion of the microbiota during preoperative
preparation of the colon and the influence of supplements intake. These authors suggested that general
results point mainly to changes in tryptophan metabolism and tricarboxylic acid (TCA) cycle due to
the CRC development. Moreover, the method’s reliability was corroborated since almost half of the
altered substances had their identity confirmed by the analysis of standards [31]. Cheng et al., 2012,
similarly to Qiu et al., 2010, suggested the tricarboxylic acid (TCA) cycle, tryptophan metabolism,
and polyamine metabolism as the main affected pathways in the CRC metabolome. Additionally,
they achieved receiver operating characteristic (ROC) curves indicating a method accuracy close to
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100% [33]. Liesenfeld et al., 2015, monitored the metabolomes of patients over time, in the frame of the
ColoCare project—a study encompassing a series of interventions for the collection of samples and
data at different time-points during the period of 5 years. A clear distinction was presented between
the metabolisms of pre- and post- operative cohorts. Their result supported the hypothesis that the gut
microbiota play a more important role for colon cancer than for rectal or rectosigmoidal cancer patients.
Removal of cancerous tissue and parts of the intestine may affect microbial metabolites and possibly the
microbiota itself. The increased effect is intensified with adjuvant chemotherapy. Once again, subjects’
metabolism was evidenced to be affected by changes in the levels of tryptophan. One limitation
of the study was impossibility to identify some metabolites using the available spectral library [35].
Primarily, the study of Delphan et al., 2018, was focused on determination of branched-chain amino
acids (BCAAs). However, no correlation between the amounts of BCAAs and some evaluated energy
balance parameters were observed. On the other hand, two acids were significantly elevated in the CRC
group and associated with overall survival [36]. Silva et al., 2011, were able to discriminate colorectal
cancer from other types of neoplasm (leukemia and lymphoma). In this case, authors presented
data regarding the optimization of the sample preparation method for the selection of parameters
with the greatest recovery of compounds [32]. GC-MS was used as complementary technique by
Arasaradnam et al., 2014, in which an ITEX device served in the preconcentration step. ITEX is a
solution that provides sensitivity similar to purge and trap systems and requires less instrumental
effort, with lower susceptibility to contamination [34,72]. Usage of two employed methods (FAIMS
and GC-IMS) from the described protocol, did not provide satisfactory differentiation between the
adenoma and healthy groups, however, singular CRC cases could be correctly classified from control
and adenomas using the mentioned techniques. The authors highlighted that a panel of biomarkers is
preferential for differentiation, rather than using a single biomarker for diagnostic purposes. This study
was focused on individuals that tested positive for FOBT, then, the results were compared with actual
diagnostic outcomes. In this sense, the proposed metabolome-based methodology proved to be
superior compared to the FOBT approach [37].

As mentioned before, bacterial content strongly influences the composition and metabolic outcome
of fecal samples. Weir et al., 2013, investigated stool samples from a small group of CRC and healthy
patients. The authors stated that using sequencing, allied together with metabolic profiles may be
a powerful approach in the elucidation of mechanisms of interaction between gut microorganisms
and metabolites. They quoted the hypothesis of the driver–passenger model, in which bacteria are
infectious agents in the development of cancer. Bacterial drivers of colorectal neoplasm are intestinal
bacteria with pro-carcinogenic features. One of these features is the production of DNA-damaging
compounds. “Passenger bacteria” are bacteria that may outcompete drivers to flourish in the tumor
environment as the cancer progresses. The findings from Weir et al., 2013, lead to the conclusion
that by knowing the relationship between colonizing bacteria and altered fecal metabolites, there is
the possibility to focus on metabolome analyses to indirectly assess the composition of microbiota,
and if the latter implies CRC risk [38,73]. Phua et al., 2014, recognized that the used sample set
was rather small for the aimed purposes. They mentioned that a previous study regarding fecal
samples (Weir et al., 2013) was potentially affected for not considering the presence of blood in the
stool samples, making difficult to determine whether the found metabolites would be originated
from blood or not. With respect to this, in their study the authors worked with a subset of stool
samples without a noticeable amount of blood, aiming to mitigate the interferences of this matrix on
the conducted experiments [39]. Wang et al., 2017, also focused on the bacterial content of feces and its
relationship to secreted metabolites. They signalized that for a better assessment of the correlation
between bacterial genus and detected compounds, a larger group of samples should be considered [41].
In contrast to other researchers, Song et al., 2018, pointed out that no significant differences were found
regarding the levels of fecal short-chain fatty acids in CRC samples. Through the monitoring of the
diet of a healthy group, it was demonstrated that there is no correlation between described dietary
habits and level of substances of interest, suggesting that other factors (specifically related to CRC)
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contribute to the differential distribution of fatty acids in feces [42]. Bond et al., 2019, hypothesized
that propan-2-ol is a major metabolite of Fusobacterium nucleatum, a strain previously connected with
CRC tumorigenesis. Despite that main candidate biomarkers were identified by analysis of chemical
standards, no quantification was performed [43].

The earliest works comprising exhaled breath from CRC patients concerned the detection of
methane. The study of Haines et al. 1977, was focused on the evaluation of this gas and encompassed
the collection of the last portion of patients’ expiration. Methane levels in the room air were taken as a
basal measure to define methane producers and non-producers. Excluding univariate comparison
between the two groups, no further statistical analyses were explored. The results revealed poor
sensitivity and specificity, reinforcing that approaches relying on the determination of a single marker
tend to be deficient; however, the used approaches offered perspectives towards CRC breath diagnosis.
Nowadays, different options of analytical apparatus are available, able to provide increased sensitivity
and detection of a wider range of compounds from different classes. Considering the limitations inherent
to the period, this work was the first to suggest the evaluation of bacterial metabolites as a manner to
assess the presence of CRC tissue [44]. Due to the coincident prevalence of methane in the studied
cohorts, results of Piqué et al. 1984, suggested the existence of a common substrate for large bowel
cancer, extensive ulcerative colitis, and colonic polyposis. Produced metabolites found in the breath
from CRC patients are likely to originate from modified microflora [45]. In the work of Peng et al., 2010,
the main goal was to enable differentiation of various types of cancers using nanosensors, since GC-MS
was used as validation tool. The employed methodology did not perform so satisfactorily for CRC,
in comparison to other studied neoplasms—it was pointed out that a significant portion of the CRC
profile was overlapping with VOC patterns coming from healthy subjects. This may indicate that
sensed CRC metabolic changes were rather subtle [46]. Altomare et al., 2013, used for the first time
TD-GC-MS in such context. The main advantage of the thermal desorption technique using sorbent
cartridges, is the efficient concentration of analytes, allowing VOCs trace analysis without requiring
any sample preparation steps [74,75]. The researchers used a sample collection protocol based on the
vital capacity expiration instead of prioritizing obtaining alveolar breath. This procedure can increase
the influence of exogenous compounds in breath composition, however, it is a more comfortable and
reachable approach for patients [47]. Depalma et al., 2014, were able to differentiate between patients
with polyps and patients with CRC. Once the majority of CRC cases derive from polyps, the detection
of such markers (as achieved by the referred study) is significantly relevant. Polyps’ detection may
indicate which individuals should be monitored regularly in order to prevent disease development [48].
In the work of Wang et al., 2014, the differentiation between tumor stages was studied, however,
no specific patterns could be associated with the varied degree of tumor growth. The researchers used
a collection procedure based on obtaining alveolar breath samples, thus favoring the evaluation of
compounds more closely related to blood levels (alveoli–blood exchange), which suffers less influence
from room air composition [49]. Altomare et al., 2015, showed for the first time that breath profiles
are also subjected to differences when comparing patterns from positive groups with the same cohort
after undergoing curative tumor resection. In addition, they highlighted the need for more complex
chemometric models to achieve the identification of specific patterns, leading to a successful breath
test [50]. GC-MS was used in a study by Amal et al., 2016, to identify candidate biomarkers related
to the results of sensor analyses. Authors performed quantitation of detected potential biomarkers,
however, details of the calibration procedure were not demonstrated in the article [51].

3. Possible Origin of Potential Molecular Biomarkers of CRC

There are several complex mechanisms involved in the carcinogenesis process, which comprehend
changes in cell biochemistry and a series of metabolic adaptations, characteristic of tumor development.
Most of these mechanisms are still not fully elucidated and their investigation at the level of small
metabolites remains insufficient. Considering this, the present section aims to discuss the main
hypotheses related to the occurrence and modulation of the compounds most frequently reported
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as potential CRC biomarkers. For this purpose, aforementioned candidate markers of CRC were
correlated with molecular pathways previously described as related to this disease. Solely mechanisms
which could be addressed to the altered metabolites reported in the previous section were presented.
Through the next section, references are made to the observations presented in Table 2.

3.1. Alterations in Cell Energetics

During tumorigenesis, the cells demand the reprogramming of energy generation. Apart from the
favoring of glycolysis (Warburg effect) [76–78], perturbations of the TCA cycle are also documented.
In the TCA cycle, intermediates which can be incorporated in biosynthetic pathways are formed;
therefore, this cycle can be found to be partially down-regulated, due to the need of malignant cells for
precursors [78,79]. Apart from this, alterations in genes related to the expression of TCA cycle enzymes
are reported [80]. The beta-oxidation of fatty acids seems to be triggered by the aforementioned
metabolic disturbances. It is demonstrated that this process can be parallelly stimulated to serve
as another energy sustaining source, once fatty acids are broken down to give rise to acetyl-CoA,
ATP (adenosine triphosphate) and reduced co-enzymes [81].

In most of the studies related to CRC, lactic acid (M54) is found to be increased in biological
matrices, such circumstance can be due to the enhanced secretion of this metabolite during the
upregulated glycolysis in oxygen-deprived environment [82]. Partial inactivation of the TCA cycle is
evidenced in CRC, with its corresponding intermediates citric, isocitric, succinic and fumaric acids (M47,
M51, M61, M63, respectively) presenting decreasing trends in comparison to urine control samples.

Acetic acid (M44) was pointed out as a potential cancer indicator, according to the investigation
in fecal samples belonging to individuals with cancer. Acetate is mostly sourced from intestinal
fermentation performed by bacteria; however, current research verified that acetate could also be
produced from pyruvate (yielded at the end of glycolysis), this conversion would be promoted by
reactive oxygen species (ROS) [83,84]. The assimilated acetate can be converted to acetyl-CoA and may
configure as a substantial energy source in a poor nutrient environment and under hypoxia conditions,
which are characteristic of tumors [84,85].

3.2. Structural Self-Maintenance

The glycerol produced in the cytosol can be phosphorylated and submitted to consecutive reactions,
covering the generation of phospholipids and glycerides. In this sense, the glycerolipid pathway
comprises a source of building blocks required for cell survival and growth; concurrently, produced
lipids have a function as signaling molecules with pro-tumorigenic properties in cancer [86,87].
When compared to control fecal samples, glycerol (M6) was found in lower abundance. Apart from
this, monoacylglycerol (M7), an intermediate of the same pathway, also presented lower responses in
the positive cohort. These observations can be connected with the greater consumption of glycerol in
CRC, due to the enhancement of glycerolipid biosynthesis.

Lipogenesis also appears upregulated in cancers, generating material for cell membrane building
and saturation, and the biosynthesis of lipid-signaling molecules [88,89]. Additionally, the lipolytic
pathway seems to be explored by cancer cells as a manner of using exogenous fatty acids to enhance
their own growth [89]. Considering this context, species related to the lipolysis pathway are also
expected to exhibit alterations. Linoleic (M55) and oleic acids (M57), the main constituents of cell
membranes, are recurrently reported as decreased in fecal samples of CRC individuals, an observation
coincident with the withdrawal of fatty acids. Extending this analysis and considering the occurrence
of an excessive breakdown of fatty acids, the greater occurrence of ketone bodies can be supposed.
Both 3-Hydroxybutanoic acid (M53) and acetone (M21) were found with augmented levels in the
urine and breath of CRC patients, both compounds are ketone bodies derived from acetoacetate
decarboxylation occurring in the final stage of lipolysis pathway. Figure 2 presents a scheme of the
main pathways possibly altered in CRC.
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biomarkers), involved in energy production and the generation of functional biomolecules,
where: TCA—tricarboxylic acid, ATP—adenosine triphosphate, ADP—adenosine diphosphate,
GDP—guanosine diphosphate, GTP—guanosine triphosphate, LPA—lysophosphatidic acid,
PA—phosphatidic acids, MAG—monoacylglycerol, DAG—diacylglycerol, TAG—triacylglycerol. Based
on Anderson et al., 2018 [79], Icard et al., 2012 [81] and Prentki et al., 2008 [87].

During carcinogenesis, a series of molecular signals culminate in the activation of the transcription
of genes linked to the mevalonate pathway, causing dysfunctions in the levels of intermediate
metabolites. This would be a mechanism of tumor cells to restore the levels of molecules that are
products of this pathway, which have important structural functions [90,91]. Terpenoids indicated as
cancer biomarkers can have their origin related to unrevealed mechanisms laying on aberrant activity
of mevalonate pathway or even represent intermediates from these pathways that were not properly
identified by the spectral library. Besides this, the differentiated occurrence of such compounds could
be associated with deficient processes in the metabolization of secondary plant metabolites coming
from the diet. p-Cymene (M41) and γ-terpinene (M42) were terpenoids found increased in CRC urine
specimens, and beta-pinene (M43) in breath samples.

3.3. Oxidative Stress

The concentration of ROS is often reported to be elevated in tumors—these species can be produced
in the cell as consequence of enhanced metabolic activity and mitochondrial damage, but also play
important role in cancer signaling pathways [92,93].

Oxidative stress also favors lipid peroxidation, generating products such as linear alkanes,
aldehydes and alcohols (Figure 3) [94]. Nonanal (M15) and decanal (M12) were present in greater
amounts in breath of CRC patients, these are compounds that can be directly associated with
the oxidation of the main lipids constituting cell membrane. Nonanal can be produced both
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by α and β-scissions, while decanal may arise from the β-fragmentation of oleic acid [95].
Alkanes such as dodecane (M37), 2-methylbutane (M30), 2-methylpentane (M31), 3-methylpentane
(M32), 4-methyloctane (M35)—also elevated in exhaled air of positive cohort, are likely other products
of lipid oxidation that have not been precisely described yet.
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3.4. Alterations in Enzyme Catalytic Activity

The activity of cytochrome P450 is reported to be altered in different neoplasms, through the
differential expression of their isoforms. This factor can influence the bioavailability of substrates and
their products, as well as their pattern of excretion in cancer cases [96,97]. Alcohol dehydrogenase and
aldehyde dehydrogenase present activities statistically superior in several tumors when compared to
normal tissues [98]. It is reported that reduced co-enzymes produced by the action of these enzymes
may support ATP production [99].

Magnified activity of aldehyde dehydrogenase in tumors can transform the aldehydes released
during lipid peroxidation into corresponding carboxylic acids. In this sense, secondary ketones may
arise from carboxylic acids undergoing β-oxidation process—a mechanism boosted in cancer cells, as
previously mentioned. Such observations regarding metabolic dynamics in cancer may explain why
n-aldehydes heptanal (M13) and hexanal (M14) were decreased in the urine of individuals belonging
to the positive group, while the ketones 4-heptanone (M18) and 2-pentanone (M20) presented a greater
response in urine samples from the diseased. Because urine consists of a fluid related to the elimination
route in organisms, the assumption that molecules are in their metabolized form may be reasonable.
Compounds such as cyclohexane (M36), methylcyclohexane (M39) and xylene (M27, M28) in the
breath were pointed out as CRC markers. These compounds are traditionally addressed as exogenous,
coming from environment. The endogenous synthesis of such VOCs was not described in humans
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yet, nevertheless, bacterial shikimate and derived pathways could play a part in the occurrence of
similar aromatic compounds. Another hypothesis is that altered isoforms of enzymes responsible for
the metabolism of these exogenous compounds are impaired during cancer, making increased levels of
these cyclic and aromatic VOCs frequently observed among diseased patients.

3.5. Contribution of the Microbiota

One of the most important roles of intestinal bacteria is the fermentation of saccharides that cannot
be digested by human. Dietary fibers can exhibit different levels of susceptibility to the fermentation
process and, when low fermentable, appear to be related to colonic diseases [100]. In bacterial
fermentation, released monosaccharides are converted into pyruvate and derived short-chain fatty
acids are produced—from these, the major species formed are acetate, butyrate and propionate [100,101].
In CRC collected fecal samples, acetic (M44) and propionic acid (M59) were registered with augmented
responses. The indexed literature reports butyric acid (M46) as a discriminant feature in CRC; however,
diverging trends in butyric acid levels are documented.

The minor metabolites of the fermentation pathways are methane, hydrogen sulfide, ethanol
and formate [102]. Methane (M25) was reported with higher concentrations in the breath of colon
cancer subjects. In intestinal gas samples, the hydrogen sulfide concentration was elevated, while its
precursor—hydrogen—was decreased [103]. Ethanol (M5) measured in exhaled air presented to be
distinguished for healthy and diseased subjects. Succinate (M61), a propionate precursor, was present in
urine at lower abundance; correspondingly, propionic acid (M59) itself was detected in superior amounts
in feces. Fermenting microorganisms can convert acetone to 2-propanol (M3) [104], a compound found
to be increased in fecal samples in CRC cases. A scheme of microbial fermentation pathways in the gut
environment is depicted in Figure 4.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 25 of 33 

 

M28) in the breath were pointed out as CRC markers. These compounds are traditionally addressed 
as exogenous, coming from environment. The endogenous synthesis of such VOCs was not described 
in humans yet, nevertheless, bacterial shikimate and derived pathways could play a part in the 
occurrence of similar aromatic compounds. Another hypothesis is that altered isoforms of enzymes 
responsible for the metabolism of these exogenous compounds are impaired during cancer, making 
increased levels of these cyclic and aromatic VOCs frequently observed among diseased patients. 

3.5. Contribution of the Microbiota 

One of the most important roles of intestinal bacteria is the fermentation of saccharides that 
cannot be digested by human. Dietary fibers can exhibit different levels of susceptibility to the 
fermentation process and, when low fermentable, appear to be related to colonic diseases [100]. In 
bacterial fermentation, released monosaccharides are converted into pyruvate and derived short-
chain fatty acids are produced—from these, the major species formed are acetate, butyrate and 
propionate [100,101]. In CRC collected fecal samples, acetic (M44) and propionic acid (M59) were 
registered with augmented responses. The indexed literature reports butyric acid (M46) as a 
discriminant feature in CRC; however, diverging trends in butyric acid levels are documented. 

The minor metabolites of the fermentation pathways are methane, hydrogen sulfide, ethanol 
and formate [102]. Methane (M25) was reported with higher concentrations in the breath of colon 
cancer subjects. In intestinal gas samples, the hydrogen sulfide concentration was elevated, while its 
precursor—hydrogen—was decreased [103]. Ethanol (M5) measured in exhaled air presented to be 
distinguished for healthy and diseased subjects. Succinate (M61), a propionate precursor, was present 
in urine at lower abundance; correspondingly, propionic acid (M59) itself was detected in superior 
amounts in feces. Fermenting microorganisms can convert acetone to 2-propanol (M3) [104], a 
compound found to be increased in fecal samples in CRC cases. A scheme of microbial fermentation 
pathways in the gut environment is depicted in Figure 4. 

 
Figure 4. Bacterial fermentation pathways in the human gut. Based on Commane et al., 2005 [102] and
Koh et al., 2016 [105].



J. Clin. Med. 2020, 9, 3191 25 of 32

An alternative fermentation pathway through acetoin metabolism may be performed by
bacteria. This path involves the formation of 2,3-butadione (M22) and 2,3-butanediol (M10) [106,107].
The production of 2,3-butanedione is believed to be supported by an acidic pH and low oxygen
environment, conditions compatible with the tumor micro-region. This substance appeared in elevated
amounts in urine samples of CRC subjects.

Based on the exposed, and according with the reviewed studies, an accumulation of some
short-chain fatty acids in CRC is evidenced. In fact, it is demonstrated that butyrate (M46) has its
oxidation reduced in CRC tissue, the process is achieved through the down-regulated expression of
short chain acyl-CoA dehydrogenase [108,109]. Specifically, butyrate promotes the development of
normal cells and inhibits histone deacetylases, thus, making it reasonable to assume that malignant
colonocytes perform a metabolic shift to skip butyrate as an energy source [109].

Mucins are glycosylated proteins frequently overexpressed by different epithelial cancer cells.
They play a role in the control of the inflammatory response and it is believed that their molecular
apparat is employed by tumor cells to stimulate cell growth and survival [110]. In parallel, it is
demonstrated that the cancer environment can favor bacterial genera that perform mucin degradation
in the intestine [111,112]. Lower levels of sugars and derivatives (M90-99) in feces and urine from CRC
patients are indicative of the recruitment of these species for fermentation. Apart from this, free amino
acids (M73, M74, M76, M79, M80, M82, M83, M85, M86, M89) were encountered as being elevated in
fecal samples, suggesting degradation of mucins and other proteins in the colon.

The microbial catabolism of proteins in the gut is another factor to be considered [113]. Proteolytic
fermentation is considered as non-favorable, once reactive products can be generated, leading to tissue
inflammation, a process that can serve both to initiate and promote colorectal cancer [114]. Neoplastic
lesions appear to be induced by the formation of detrimental amino acid metabolites, such as p-cresol
(M4) [115] (Figure 5A). Similarly to p-cresol, phenyl acetate (M23) was also encountered with elevated
amounts in the urine of CRC patients. The later can be derived, for example, from phenylalanine
catabolism by the microbial aldoxime–nitrile pathway [116] (Figure 5B).
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Hydrogen sulfide and methanethiol are harmful species produced in the bowel by the reduction
of sulphate-derived substrates [117,118] (Figure 5C). Stimulated production of sulfur-containing
species has been addressed in colorectal cancer, as an indicator of alterations in gut bacteria activity
driven by carcinogenesis [118]. Potentially related to this, the levels of dimethyl disulfide (M65) and
2-methoxythiophene (M64) appeared altered in positive urine samples.

Elevated amounts of free amino acids in feces—a colon directly related sample—can be also
indicative of poor nutrient fixation in the previous steps of digestion. The observed increment in the
concentration of the aforementioned metabolites in CRC specimens demonstrates that CRC-associated
gut microbiota actively perform amino acid catabolism, which corroborates to colon inflammation
and may constitute a tumor promoting mechanism by triggering an inflammatory response which
activates cell division.

4. Conclusions

Considering the reviewed articles, it is possible to observe that varied methodologies have been
employed for the study of the CRC metabolome. The investigation of different biological species has
permitted observations of varied aspects of changes in metabolism, as each matrix involves different
physiological mechanisms. Chemometric approaches were prevalent among the reviewed studies,
presenting themselves as indispensable for the processing of the complex data acquired. Such statistical
evaluations enable us to identify discriminant features and latent patterns, as well as to express the
method’s performance. The most prevalent altered compounds observed in the investigated profiles
were hydrocarbons, short-chain fatty acids and amino acids and their derivatives. These chemical
species could be correlated with general cancer mechanisms and specific pathways affected during
CRC. The indexed candidate biomarkers could be addressed as metabolites, both of human and
bacteria from the gut microbiota. The inspected studies indicate the promising status of the analysis
of small molecules, using non-invasive approaches, in the determination of CRC with an accuracy
greater than the already available screening tests. Besides that, GC-based exams have great potential
to configure as affordable and standardized methods, able to attend to broad demand. Nowadays,
there is an expanding group of evidence showing metabolite-based diagnosis of CRC, however, data
inconsistency due to the employment of diverse protocols is observed, emphasizing the need for
validation strategies. Yet, the value of independent studies cannot be diminished, for the reason
that the gathered evidence presents great elucidative value in what concerns the understanding of
particular mechanisms associated with CRC. In this way, studies on molecular patterns can be applied
for diagnostic purposes, as well as to configure as a powerful tool for the interpretation of disease
mechanisms at the molecular level.
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