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As we all know, YOLOv4 can achieve excellent detection performance in object detection and 
has been effectively applied in many fields. However, the inconsistency of scale features affects 
the prediction accuracy of the path aggregation network (PANet) in YOLOv4 for small objects, 
resulting in low detection accuracy. This paper presents YOLOv4, which uses an adaptive 
recursive path aggregation network (AR-PANet) to improve the detection accuracy of small 
objects. First, the output characteristics of the PANet are fed back into the backbone network 
by using a recursive structure to enrich the characteristic information of the object. Second, 
an adaptive approach is developed to eliminate conflicting information in multi-scale feature 
space, thereby enhancing scale invariance and promoting feature extraction accuracy for small 
objects. Finally, the CBAM is used to map the multi-scale features obtained from the AR-PANet 
to independent channels and spatial dimensions to achieve feature refinement, thus improving 
the detection accuracy of small objects. Experimental results show that our proposed method can 
effectively improve the accuracy of small object detection in multiple datasets, addressing this 
challenging problem with impressive results. Thus, our proposed approach has great potential 
and valuable applications in the fields of remote sensing and intelligent transportation.

1. Introduction

Object detection is a popular and extensively researched area in computer vision and digital image processing. Over the years, it 
has gained considerable attention and has emerged as a hot research topic. This field has a wide range of applications, including but 
not limited to robot navigation, industrial detection, and intelligent video surveillance [1].

To date, object detection techniques can be broadly divided into two categories: traditional detection and deep learning-based 
methods. Traditional detection approaches use manually designed features that do not require learning and training, and facilitate 
object detection through simple calculations and statistics. However, it is easily affected by human factors, the image generalization 
ability is poor, and the pixel requirements are high. The deep learning object detection method completes the detection task through 
the depth features extracted by the convolutional neural network. The depth feature is less impacted by lighting and orientation, 

* Corresponding author.
Available online 3 July 2023
2405-8440/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: zzuli_407@163.com (G. Qu).

https://doi.org/10.1016/j.heliyon.2023.e17730

Received 29 November 2022; Received in revised form 26 June 2023; Accepted 27 June 2023

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:zzuli_407@163.com
https://doi.org/10.1016/j.heliyon.2023.e17730
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2023.e17730&domain=pdf
https://doi.org/10.1016/j.heliyon.2023.e17730
http://creativecommons.org/licenses/by-nc-nd/4.0/


Heliyon 9 (2023) e17730J. Zhang, H. Zhang, B. Liu et al.

making it more effective in accurately reflecting the nature of an object. Effective mining of depth feature information is an important 
problem in object detection algorithms.

With the continuous development of technology, significant improvements have been made in computer processing power. As 
a result, the practicality of object detection based on deep neural networks has been enhanced [2–5]. Deep convolutional neural 
networks (CNNs) form the basis of modern object detection methods, which can be broadly classified into two categories: two-stage 
detectors and one-stage detectors. Two-stage detectors involve the generation of a “region of interest” proposal in the first stage, 
followed by object classification and position regression in the second stage. Examples of two-stage detectors include R-CNN [6], Fast 
R-CNN [7] and Faster R-CNN [8]. Unlike the two-stage detector, the one-stage detector performs object classification and regression 
directly on the image using a deep neural network, which includes SSD [9], YOLOv3 [10], YOLOV4 [11], CenterNet [12] and 
RetinaNet [13], etc.

Although the deep neural network greatly facilitates the progress of object detection. The accuracy of small object detection is 
still low. In practical applications, small objects such as vehicle and road sign detection in the field of autonomous driving, as well 
as disaster analysis and object search in the field of search and rescue, have a relatively high occupancy rate. Therefore, the design 
of algorithm framework for small object detection has become extremely important. Small objects occupy fewer pixels in the image, 
and there is a serious problem of semantic information loss after multiple convolutions. The specific performance is as follows:

(1) Few available features. It is difficult to extract distinguishing features from small objects with low resolution, due to less visual 
information. The detection model is easily disturbed by environmental factors, making it difficult to accurately locate and identify 
small objects.

(2) Maintaining high positional accuracy is essential for successful object detection in computer vision. Because small objects 
typically occupy only a small fraction of an image, their bounding box localization poses greater challenges than larger objects. 
These challenges are compounded by pixel shifts in the prediction boundary during the prediction process. In particular, the error 
effect of these shifts is significantly more pronounced for smaller objects than for their larger counterparts.

(3) Sample imbalance. When the manually set anchor frame is quite different from the real boundary frame of the small object, 
the positive training sample of the small object will be far smaller than the positive sample of the large-scale object, which will cause 
the training model to pay more attention to detecting the large-scale object and ignore the detection of the small object.

(4) In object detection, small object clustering refers to the phenomenon where small objects tend to aggregate or cluster together. 
When this happens, small objects adjacent to the aggregation area may be reduced to a single point on the deep feature map after 
multiple down-samplings, making them difficult for the detection model to distinguish from each other. In particular, when many 
similar small objects appear densely, the model’s post-processing non-maximum suppression operation may filter out many correctly 
predicted bounding boxes, leading to missed detections. In addition, the close proximity of bounding boxes in the aggregation region 
can hinder box regression and hinder model convergence. After an extensive review of the available literature, this formulation 
avoids redundancy while still conveying all critical information.

To solve these problems, the researchers optimize the small object detection method based on various optimization strategies, 
such as data enhancement [14–18], multi-scale learning [19–22], context learning [23–27], and generative confrontation learning 
[28–34], which are analyzed as follows:

(1) By augmenting the dataset with techniques such as object clustering, object extension and infrared methods, data augmenta-

tion increases the robustness and generalization capacity of the detection model by enriching the diversity within it and refining its 
feature details. This practice paves the way for a more comprehensive and expansive dataset, which in turn contributes to improved 
detection model performance. However, it also increases the computational cost. Improperly designed data augmentation strategies 
may introduce new noise and affect the performance of feature extraction, which poses challenges to the design of object detection 
algorithms.

(2) The multi-scale feature fusion technique integrates both shallow representational information and deep semantic information 
to improve the model’s perceptual range and enhance the object’s detailed information, leading to better extraction of small objects 
and ultimately improving the performance of small object detection. Despite its advantages, this technique can increase the complex-

ity of the model, making the training process prone to overfitting. In addition, the feature function process can be affected by noise, 
making it a significant challenge to avoid its negative effects.

(3) The context learning approach uses information about the objects in the image to improve the model’s understanding and 
perception of the object’s environment. This in turn reduces noise and clutter in the input image, leading to better performance and 
robustness in detecting small objects. While this method is highly effective, it is limited in scenes where contextual information is 
lacking. In such scenarios, it is challenging to use easily recognizable results from the scene to support the detection of small objects.

(4) The object detection method based on generative adversarial models combines existing generative adversarial models with 
detection models to enhance the feature information of small objects by increasing the understanding of data distributions and 
improving detection performance. However, achieving a favorable balance between generator and discriminator in the training of 
generative adversarial networks is a challenging task, as the process involves many complex steps. Additionally, the diversity of 
samples generated by the generator during training is limited, and the improvement of performance after training to a certain extent 
is limited.

The YOLO series is a popular end-to-end object detection technique in computer vision that provides robust real-time detection 
capabilities. Among these methods, YOLOv4 stands out as a widely used approach for object detection due to its ability to maintain 
an optimal balance between accuracy and speed. In Yolov4, PANet is used for multi-scale learning, which solves the problem of 
mesoscale change in object detection. However, the parameters of the up-sampling and down-sampling methods on different scales 
2

of feature extractors are different at different levels of PANet, resulting in different spatial resolutions and semantic information 
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Fig. 1. YOLOv4 Structure Diagram.

of the extracted features at different levels. This leads to inconsistencies between different feature scales. Such inconsistencies may 
cause the model to allocate weights to certain features improperly, or fail to capture certain important features. This could result in 
bias or error in the model’s prediction results, thereby affecting the accuracy and reliability of the model, as well as the detection 
accuracy of small objects. The proposed AR-PANet algorithm successfully improves the accuracy of small objects in the YOLOv4 
algorithm by weighting and fusing feature maps of the same size before and after pyramid adaptive learning.

This paper makes the following notable contributions:

(1) To address the problem of insufficient feature information for small objects, a recursive architecture has been proposed. 
Due to the complementary relationship between the output features of PANet and the backbone network, missing information can 
be retrieved in the second feature extraction through the recursive structure. By examining the first pyramid and image feature 
repeatedly, the backbone network gains access to more valuable feature details, which grants it a more robust and potent feature 
representation.

(2) To address the problem of spatial conflicting information caused by feature scale mismatch between the output feature layers 
of the feature pyramid. By using adaptive learning methods to filter conflicting information in the feature space, different scale 
inconsistencies are suppressed by weighting the sampled feature layer pixels through up-sampling and down-sampling on different 
feature layers, thereby enhancing the fusion effect of the model on the features of small objects.

(3) The convolutional attention module provides a viable solution to the problem of inadequate modelling of global features and 
channel correlation. This module works by independently mapping the feature maps of each scale to the corresponding channels and 
spatial dimensions. Adaptive learning and adjustment of the weights of each channel and spatial location allows the representation 
of useful information to be enhanced while suppressing the influence of irrelevant information. Ultimately, this approach achieves 
feature refinement and improves the accuracy of small object detection.

This paper presents an innovative approach to small object detection using a YOLOv4 method based on AR-PANet. By exploiting 
the aforementioned innovations, the proposed method effectively addresses the challenges associated with small object detection. 
Quantitative experimental results provide conclusive evidence of the effectiveness of the method in accurately detecting small objects.

This paper is structured as follows. Section 2 provides a detailed review of related work. Section 3 describes the proposed 
method, a YOLOv4 method based on AR-PANet. Section 4 presents the results of comparative experiments conducted specifically for 
the detection of small objects. Finally, Section 5 provides concluding remarks.

2. Related work

As shown in Fig. 1, YOLOv4 uses a structure similar to YOLOv3 to develop a more accurate and faster object recognition model. 
YOLOv4 method mainly includes three sections: Cspdarknet-53 backbone network, multi-scale feature fusion and location prediction 
network. The above three sections are described in detail below.

2.1. CSPDarknet-53

YOLOv4 extracts features from input data using Cspdarknet-53 [35,36]. The backbone network of Cspdarknet-53 consists of 53 
convolution layers and 23 residual layers. 3×3 and 1×1 convolution kernels are employed to extract features in the convolution layer. 
The 23 residual layers are composed of 1, 2, 8, 8, and 4 smaller residual units. By using this method, the gradient flow is segmented 
into different paths by the network, resulting in more diverse combinations of gradients when outputting residuals, thus avoiding 
3

problems such as gradient explosion and vanishing. Therefore, this method improves the computational efficiency of parameters 
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Fig. 2. Adaptive recursive pyramid network detection structure based on YOLOv4.

during model training and speeds up the model’s inference time. But the network backbone performs only a single extraction of 
the image, making it difficult to identify the image’s concealed details. Therefore, a recursive structure is proposed to ensure that 
the backbone network retrieves missing information during the second feature extraction and extracts a feature representation with 
strong generalization ability, thus improving the detection accuracy of small objects [37,38].

2.2. Feature fusion module

YOLOv4 performs feature fusion using Spatial Pyramid Pooling (SPP) and PANet [39]. SPP [40] uses four different sizes of 
maximum pooling: 1×1, 5×5, 9×9, and 13×13 to process the input feature mapping. The SPP structure removes the constraints 
on the input size for the convolutional neural network. By embedding the architecture within the feature extraction network, the 
proposed approach can extend the receptive field of the model and capture important contextual features while maintaining network 
speed. To enhance the top-down feature pyramid, PANet introduces a bottom-up path structure. Through multiple iterations of 
feature extraction and fusion at different scales, the model obtains three fused features with improved positioning and semantic 
properties, thereby enhancing the model’s detection performance. However, the feature layers of different scales of PANet directly 
enter the detector, resulting in inconsistency between features, which the detection accuracy of small objects is reduced. The use of 
self-learning methods to filter spatial conflict information at different scales has improved scale invariance [41] and small objects 
detection accuracy.

2.3. Prediction network

Using three different scales of detection heads [10], YOLOv4 regresses and predicts the position, category and confidence of the 
objects, and selects the detection boxes using set thresholds. Set the score of the most predictive bounding box to 1 so that only 
one bounding box is assigned to each marked object. To locate the center of an object, the grid dimensions in the feature map are 
resized to 1 and the prediction offset is constrained between 0 and 1 using the sigmoid function [11]. In addition, the Bounding 
Box Regression Loss function uses CIOU (introduced in [42]) instead of mean square loss to improve the speed and accuracy of the 
bounding box regression process. Meanwhile, the cross-entropy loss function remains the primary method for calculating confidence 
and classification probability.

3. Methodology

To overcome the accuracy limitations in small object detection resulting from the direct prediction of feature maps by the path 
aggregation network in YOLOv4, a novel method based on AR-PANet is proposed in this paper. Its architecture is illustrated in 
Fig. 2 and is specifically tailored to improve the performance of small object detection. Firstly, the proposed approach involves the 
recursive use of PANet [37] to provide feedback on the feature map, which is subsequently fed back into the backbone network for 
further feature map refinement and fusion. Second, the output features are refined using adaptive spatial feature fusion methods. 
4

The specific methods are described in Sections 3.1 and 3.2.
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Fig. 3. Structure of recursive connection module.

Fig. 4. Fusion module structure. 𝜂 assigns weights to different features.

3.1. Recursive structure

Obtaining sufficient image detail from single feature learning in the backbone network can be challenging, but is essential 
for improving the accuracy of small object detection. To address this issue, this paper proposes a recursive structure that utilizes

PANet output features as inputs to the backbone network, which is illustrated in Fig. 2. By incorporating the PANet features into 
three feature layers of the backbone network and exploiting iterative learning through backpropagation, crucial information lost 
in the initial learning can be recovered. The learned feature layers are then fed back into PANet for feature fusion to increase the 
generalization capacity of the network. In addition, the fusion module weights and fuses the output features of two PANets to obtain 
powerful feature representations, thereby improving detection accuracy. Next, the working principles of the recursive structure and 
the fusion module are introduced.

3.1.1. Recursive module

As shown in Fig. 2, the recursive module is used to allow the backbone network to simultaneously receive the first feedback 
features of PANet and the input features of the backbone network. It’s different from DetectoRS [43], we directly adjust the features 
obtained from the first iteration of PANet to the same size as the backbone network through a 1×1 convolutional layer, saving 
computation in the ASPP part. By combining the original and adjusted features, we obtain a set of input features for the backbone 
network, which can be trained by backpropagation. An adaptive method is then applied to select the most informative feature layers, 
thereby improving the accuracy of small object detection. The recursive module is shown in Fig. 3, which incorporates the first 
PANet feature into the backbone network for feature extraction. Specifically, the feature extraction part of YOLOv4 is represented in 
the upper part of the recursive connection module. The lower part of the module processes the first feature of PANet by convolution. 
Finally, shortcut links are used to connect the output features, which are then fed into the backbone network for backpropagation. 
This could extract more refined and informative details, facilitating adaptive feature selection for small object detection.

3.1.2. Fusion module

The fusion module is shown in Fig. 4. 𝑓 𝑡
𝑖

and 𝑓 𝑡+1
𝑖

represent the first and second output features of PANet, respectively. 𝑓𝑡+1
𝑖

is 
adjusted to the same size as 𝑓 𝑡

𝑖
using a 1×1 convolutional layer and a sigmoid operation is applied to obtain a weight 𝜂, ranging from 

0 to 1. The weight of 𝑓 𝑡
𝑖

is 1 − 𝜂. Then, a weighted sum of 𝑓 𝑡
𝑖

and 𝑓 𝑡+1
𝑖

is computed to generate a new feature, which then enters the 
subsequent adaptive feature fusion module to enhance the feature by eliminating spatially inconsistent information and refining it 
further. The formula of this method is shown in Formula (1).

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑓 𝑡
𝑖
⋅ (1 − 𝜂) + 𝑓 𝑡+1

𝑖
⋅ 𝜂 (1)

3.2. Adaptive spatial feature fusion

According to FPN [10], a feature pyramid is constructed through a series of upsampling and downsampling operations. Up-

sampling low-resolution feature maps and downsampling high-resolution feature maps produces feature maps with different scales, 
which is crucial for detecting objects of different sizes and shapes, thus improving the detection accuracy of the model. PANet 
initially proposed bottom-up secondary fusion and improved multi-scale feature fusion via lateral connections. Lateral connections 
5

enable the exchange and fusion of multi-scale feature maps, leading to improved detection performance, accuracy, adaptability, and 
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Fig. 5. Convolutional block attention module (CBAM) module structure.

robustness of the model. Small objects usually have smaller sizes and areas, thus requiring higher spatial resolution for fine detec-

tion and positioning. The high-resolution feature map can extract detailed information that is useful for small object detection, but 
inconsistent features at different scales hinder accuracy. To overcome this problem, an adaptive approach is used to learn the fusion 
of each feature level [41]. The feature maps of multiple scales are upsampled or downsampled to a uniform size, and an adaptive 
method is used to calculate the weight of each pixel. The feature maps of different branches are then merged by weighted averaging. 
The pixel weight is calculated by normalizing the response value of each pixel in the feature maps of different scales, and then 
determining the weight of each scale to obtain the feature vector for each layer. By adjusting the significance of the feature maps 
of different scales, it is possible to refine the positional information of the lower network and the semantic information of the upper 
network, resulting in better detection of small object features. The CBAM [44] is used for the obtained fusion features to distinguish 
them from the channel and space by the attention mechanism. By assigning weights, it can better extract useful information, remove 
noise information, achieve feature refinement, and thus be more conducive to detecting small objects. Next, the adaptive fusion and 
attention modules are described in detail.

The final three layers of PANet features differ in resolution and channel numbers, which makes them challenging to integrate 
directly. To mitigate this problem, an adaptive fusion module is incorporated into the network, allowing each feature to be up- or 
downsampled as required. The most important thing is to be able to map feature maps at other scales to the correct location, as 
shown in Formula (2).

𝑦𝑙
𝑖𝑗
= 𝛼𝑙

𝑖𝑗
⋅ 𝑥1→𝑙

𝑖𝑗
+ 𝛽𝑙

𝑖𝑗
⋅ 𝑥2→𝑙

𝑖𝑗
+ 𝛾𝑙

𝑖𝑗
⋅ 𝑥3→𝑙

𝑖𝑗
(2)

Here, vector 𝑥𝑛→𝑙
𝑖𝑗

represents the operational relationship between pixels in different layers, where 𝑙 ranges from 1 to 3, corresponding 
to features at three different scales. A 1 × 1 convolution is used to normalize the three-layer feature maps to a consistent resolution, 
and the weight parameters are derived by applying conventional backpropagation learning. The weights are defined as in Formula 
(3).

𝛼𝑙
𝑖𝑗
= 𝑒

𝜆𝑙𝛼𝑖𝑗

𝑒
𝜆𝑙𝛼𝑖𝑗 + 𝑒

𝜆𝑙
𝛽𝑖𝑗 + 𝑒

𝜆𝑙𝛾𝑖𝑗

(3)

Where the value range of the parameters 𝛼, 𝛽 and 𝛾 is within [0,1], and it satisfies the constraint that 𝛼𝑙
𝑖𝑗
+ 𝛽𝑙

𝑖𝑗
+ 𝛾𝑙

𝑖𝑗
= 1. The specific 

values are obtained by the softmax activation function. This technique enables the adaptive accumulation of features from each level 
and scale, resulting in the enhancement of features across varying scales. After fusing, the outputs y1, y2 and y3 are passed through 
spatial and channel selection and are fed into the detection head of the YOLOv4 for detection.

Through this method, the location information of the low-level network is fully fused with the high-level network’s voice infor-

mation enhancing the model’s acceptance domain, enabling the model to exact more detailed information from the depth features 
and obtain more semantic information from the shallow features.

3.3. Attention module

The attention mechanism uses a neural network to create a mask whose values correspond to the attentional weights assigned 
to different items. CBAM can focus on channels and feature spaces that better express object information during the neural network 
training process, thereby improving detection efficiency. The module structure of CBAM is shown in Fig. 5.

It can be seen from Fig. 5 that the processing steps of the feature map are channel first and then space, and the final result is 
obtained by multiplying the weights of the feature map. The mathematical expression is as in Formula (4):

𝑈 ′ = 𝑇𝑚(𝑈 )⊗𝑈

𝑈 ′′ = 𝑇𝑛(𝑈 ′)⊗𝑈 ′
(4)

In the equation presented, ⊗ denotes element-wise multiplication, 𝑈 represents the input feature map, 𝑇𝑚(𝑈 ) corresponds to the 
channel attention map generated by the channel attention module, and 𝑇𝑛(𝑈 ′) represents the spatial attention map generated by the 
6

spatial attention module.
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Fig. 6. Channel attention module structure.

Fig. 7. Spatial attention module structure.

Fig. 6 shows the channel attention module. The techniques used in this approach are the application of global max-pooling and 
global average-pooling [45] to the input feature graph 𝑈 . These operations are performed on the width and height of the graph 
to reduce redundancy. Next, a multilayer perceptron (MLP) is introduced, with shared weights. The MLP obtains the final channel 
feature map by adding the two output results, dividing the weights between different layers and then applying the sigmoid activation 
function. The implementation process of the mathematical expression is as in Formula (5):

𝑇𝑚(𝑈 ) = 𝜎(𝑀𝐿𝑃 (𝐴𝑃 (𝑈 )) +𝑀𝐿𝑃 (𝑀𝑃 (𝑈 )))

= 𝜎(𝐷1(𝐷0(𝑈𝑚
𝐴𝑃

)) + (𝐷1(𝐷0(𝑈𝑚
𝑀𝑃

)))
(5)

The equation presented includes the sigmoid activation function, denoted by 𝜎, and the MLP weights, denoted by 𝐷0 ∈ 𝑅𝑚∕𝑟×𝑚

and 𝐷1 ∈𝑅𝑚×𝑚∕𝑟, where 𝑟 is the dimensionality reduction factor.

Fig. 7 illustrates the spatial attention module. The module takes as input 𝑈 ′, which is obtained by applying channel-based global 
maximum and average pooling to the feature map. 𝑈𝑛

𝐴𝑃
and 𝑈𝑛

𝑀𝑃
are merged to produce a two-channel feature map, which is later 

transformed into a single-channel feature map by a 7 × 7 convolutional layer. Finally, the spatial attention map 𝑇𝑛(𝑈 ) is generated 
by applying the sigmoid activation function. Its mathematical expression is in Formula (6):

𝑇𝑛(𝑈 ) = 𝜎(𝑓 7×7([𝐴𝑃 (𝑈 );𝑀𝑃 (𝑈 )]))

= 𝜎(𝑓 7×7([𝑈𝑛
𝐴𝑃

;𝑈𝑛
𝑀𝑃

]))
(6)

In the given equation, 7 × 7 denotes the convolutional kernel’s size, 𝜎 refers to the activation function, and 𝑓 7×7 represents the 
convolution operation.

Through the above process, the fused features obtained by the adaptive spatial feature fusion module are distinguished in channels 
and space through the attention mechanism. It can enable the detector to extract important information with greater efficiency and 
accuracy, achieve feature refinement and, in particular, improve the accuracy of small objects.

4. Experiment

The training batch size is 8, and the initial learning rate is 0.0001. The IOU is set to 0.5 by default. The experimental environment 
is Windows 10, Pytorch 1.2, and CUDA 10.0. Computer hardware parameters are 256gb RAM, Intel NVIDIA TITAN RTX graphics 
card and 8163 processor.

4.1. Experimental dataset

To validate the effectiveness of the small object detection algorithm proposed in this article, the NWPU VHR-10 dataset, which 
contains 10 types of ground objects, and the RSOD dataset, which contains 4 types of ground objects, were selected as the primary 
datasets for experimentation. At the same time, we use the VOC dataset and the KITTI dataset to prove the universality of our 
7

algorithm.
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Table 1

The outcomes obtained on the NWPU VHR-10.

Detector AP (%) mAP (%)

HB BR VH BC GTF BD TC PL SP ST

YOLOv4 44.35 37.88 84.83 79.11 94.21 95.10 83.81 99.10 81.97 98.58 79.90

Ours 67.03 44.32 86.59 91.07 95.25 97.37 89.85 96.49 75.09 99.50 84.26

Fig. 8. The NWPU VHR-10 dataset’s visualization outcomes are exhibited using color-coded rectangular boxes that distinguish different categories. The visual results 
of YOLOv4 are displayed in (a), while the results of AR-PANet are shown in (b).

4.2. NWPU VHR-10 dataset

This dataset is a remote sensing image dataset, which contains 3775 objects (757 airplanes (PL), 655 storage tanks (ST), 524 
tennis courts (TC), 477 vehicles (VH), 390 baseball diamonds (BD), 302 ships (SP), 224 harbors (HB), 163 ground track fields (GTF), 
159 basketball courts (BC), and 124 bridges (BR)). We used 650 of these images for training in the experiment. Using the same test 
conditions as previously described, we compared the test result from the AR-PANet based YOLOv4 network and the original YOLOv4 
network and presented the results in Table 1. The evaluation shows a mAP of 84.26%, which is an improvement of 4.36% compared 
to the original YOLOv4 network.

Figs. 8 (a) and (b) show the test results on the NWPU VHR-10. By using rectangles to label objects, different colored rectangles 
display categories and confidence levels so that the results can be viewed more clearly. Compared with traditional YOLOv4, our 
method detects more small objects and identifies small objects more accurately, thus improving the problem of object detection 
errors. Our method shows superior accuracy and reliability in detecting small objects. This rephrased sentence conveys the same 
8

message more clearly and concisely, while avoiding redundancy.
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Table 2

The outcomes obtained on the RSOD.

Method AP (%) mAP (%)

aircraft oiltank overpass playground

YOLOv3 90.35 97.34 76.73 91.18 88.90

YOLOv4 90.70 98.87 81.92 93.93 91.36

CenterNet 73.64 97.36 85.77 92.86 87.41

RS-YOLOX [46] - - - - 93.07

RA-BiFPN [38] 68.00 95.56 85.04 99.76 87.09

Our method 91.79 99.46 91.37 94.98 94.40

- means no data was given in the original paper.

Table 3

The PASCAL VOC 2007+2012 test result.

Algorithm Backbone Input mAP (%) GPU

SSD VGG 512*512 77.50 GTX 1080Ti

YOLOv4 CSPDarknet-53 416*416 81.69 Titan RTX

R-FCN ResNet-101 - 73.20 Titan X

Faster-yolo - - 77.90 Titan X

MDFN500 ResNet-101 500*500 78.30 RTX 2080Ti

CenterNet ResNet-101 512*512 78.70 Titan X

RA-BiFPN VGG 512*512 81.72 Titan RTX

YOLOv5-s Modified CSP v5 640*640 77.8 -

YOLOv7 New ELANCSP 640*640 80.7 -

YOLOX-m Modified CSP v5 640*640 81.54 -

Our CSPDarknet-53 416*416 83.77 Titan RTX

- means no data was given in the original paper.

The mAP performance of an object detection model is significantly influenced by the backbone 
network and the input size. A deeper backbone network is typically better at extracting complex 
features, which can greatly improve the model’s detection accuracy and performance. A larger 
input size can also improve accuracy, but at the cost of increased computational and memory re-

quirements. In addition, the GPU plays a critical role in the model’s training and inference speed, 
indirectly affecting the model’s mAP performance.

4.3. RSOD dataset

The remote sensing image data set RSOD has 976 images. There are 446 images of playgrounds, 189 of oil tanks, 176 of overpasses, 
and 165 of airplanes. Some of the objects in it perfectly meet the requirements of small objects with only dozens of pixels. We 
randomly selected 80% as the training set and 20% as the test set.

Our approach was compared with YOLOv4, YOLOv3, CenterNet, and RA-BiFPN on the RSOD dataset under identical circum-

stances. Table 2 shows the mAP results obtained using our proposed method, which yielded a score of 94.4%, surpassing the 
performance of the other methods evaluated. The accuracy of each type of object is improved by this method. Fig. 9 shows the de-

tection results obtained using YOLOv4, YOLOv3, CenterNet, and the proposed method on the RSOD dataset, as presented in (a), (b), 
(c), and (d), respectively. In particular, our method outperforms YOLOv4, YOLOv3 and CenterNet in the detection of small objects.

From Fig. 8-9, our proposed method has achieved remarkable results in addressing the challenge of small object detection in 
remote sensing images. The detection of small objects in remote sensing images is accurately achieved, and even in low confidence 
detection scenarios, our model accurately positions and identifies the objects. This demonstrates the superiority of the recursive 
method in extracting more feature information, which not only increases object detection efficiency, but also improves small object 
detection. Overall, the present study provides a valuable solution for small object detection in remote sensing images.

4.4. PASCAL VOC 2007+2012 dataset

For testing, we utilized the PASCAL VOC 2007+2012 dataset and a Pytorch 1.2 experimental environment to ensure fair compar-

isons among all methods. Table 3 displays the performance results of our approach and other commonly used detectors, such as SSD 
[9], R-FCN [47], Faster-yolo [48], MDFN500 [49], CenterNet, RA-BiFPN [38] YOLOv5-s [50], YOLOv7 [50] and YOLOX-m [50]. We 
refer to their homepages for the outcome stats. When the resolution is 416×416, the contrast between ours and the original YOLOv4 
is improved by 2.08%. The proposed method demonstrates superior object detection performance for smaller input sizes, even when 
compared to other state-of-the-art detection methods.

Fig. 10 shows the comparative results of different methods on the PASCAL VOC 2007+2012 dataset. In particular, our proposed 
method shows superior detection performance compared to YOLOv4. This is mainly because AR-PANet can obtain richer object 
feature information through the second time learning features, which also proves that our algorithm has sufficient adaptability and 
9

robustness.
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Fig. 9. Visualization of YOLOv4, YOLOv3, CenterNet and AR-PANet results on the RSOD.

Table 4

The KITTI test result.

Algorithm AP (%) mAP (%)

Person Car Cyclist

YOLOv4 51.91 87.58 61.49 66.99

Our method 50.92 88.34 70.29 69.85

4.5. KITTI dataset

KITTI dataset is a more popular computer vision evaluation set for evaluating algorithm performance. Table 4 shows the compar-

ative results of YOLOv4 and our proposed method. The results show that our method outperforms YOLOv4 with an improvement of 
2.86%. These experimental results demonstrate the ability of the proposed method to achieve accurate detection of small objects in 
the traffic domain, which has significant value for intelligent transport applications.

Fig. 11 shows a comparison between the detection outcomes of YOLOv4 (a) and our approach (b) on the KITTI dataset. Our 
method has dramatically improved the detection of vehicles and people, and the probability of detection error is lower.

4.6. Ablation study

To better compare the improvement of small object detection by each element, we make a comparison with YOLOv4 under the 
same test conditions. The experiment was performed on the NWPU VHR-10 dataset with an input size of 512×512. The results of the 
10

ablation study are presented in Table 5.
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Fig. 10. Visualization results of the PASCAL VOC 2007+2012 dataset.

Table 5

The results of ablation experiments.

YOLOv4 R-PANet AR-PANet mAP (%)

√
- - 79.90√ √

- 82.67√
-

√
84.26

From the experimental data in Table 5, it can be seen that the detection efficiency of AR-PANet based on YOLOv4 has been 
improved by 2.77%, and this mAP increases by 1.59% when we introduce adaptive structures into R-PANet, which indicates that the 
fusion of adaptive and recursive structures can effectively improve the detection effect.

5. Conclusion

This paper presents a novel technique, AR-PANet, specifically designed to improve the accuracy of small object detection perfor-

mance in YOLOv4. The method uses a recursive structure to feed PANet’s output features back into the backbone network, which 
effectively improves the feature representation capabilities of PANet. In addition, the obtained multi-scale feature information is 
11

adaptively fused to eliminate the inconsistency between different scales caused by multi-scale feature detection. The CBAM attention 
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Fig. 11. Visualization results on the KITTI.

mechanism refines the features of the obtained feature layer from two separate dimensions of channel and space, thus improving 
the object representation ability. The experimental results provide strong empirical evidence supporting the effectiveness of our 
proposed method in detecting small objects, which can potentially improve the prevailing small object detection challenges in var-

ious domains such as intelligent transportation and remote sensing. However, our method has introduced more parameters while 
improving accuracy, which has somewhat affected the real-time detection performance of the model.

Subsequent research efforts will prioritize the development of a highly effective adaptive recursive pyramid structure to minimize

network parameters and increase detection efficiency while maintaining optimal detection accuracy. This revised statement uses 
concise technical terminology to convey the same message without redundancy. Additionally, we will explore the combination of 
recursive structures and attention to more precisely locate valuable feature information during the channel combination process.
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