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Summary

Inhibition of mammalian target of rapamycin, mTOR, extends

lifespan and reduces age-related disease. It is not knownwhat role

mTOR plays in the arterial aging phenotype or if mTOR inhibition

by dietary rapamycin ameliorates age-related arterial dysfunction.

To explore this, young (3.8 � 0.6 months) and old

(30.3 � 0.2 months) male B6D2F1 mice were fed a rapamycin

supplemented or control diet for 6–8 weeks. Although there were

few other notable changes in animal characteristics after rapamy-

cin treatment, we found that glucose tolerance improved in old

mice, but was impaired in young mice, after rapamycin supple-

mentation (both P < 0.05). Aging increased mTOR activation in

arteries evidenced by elevated S6K phosphorylation (P < 0.01),

and this was reversed after rapamycin treatment in old mice

(P < 0.05). Aging was also associated with impaired endothelium-

dependent dilation (EDD) in the carotid artery (P < 0.05). Rapa-

mycin improved EDD in oldmice (P < 0.05). Superoxide production

and NADPH oxidase expression were higher in arteries from old

compared to young mice (P < 0.05), and rapamycin normalized

these (P < 0.05) to levels not different from young mice. Scaveng-

ing superoxide improved carotid artery EDD in untreated

(P < 0.05), but not rapamycin-treated, old mice. While aging

increased large artery stiffness evidenced by increased aortic

pulse-wave velocity (PWV) (P < 0.01), rapamycin treatment

reduced aortic PWV (P < 0.05) and collagen content (P < 0.05) in

old mice. Aortic adenosine monophosphate-activated protein

kinase (AMPK) phosphorylation and expression of the cell cycle-

related proteins PTEN and p27kip were increased with rapamycin

treatment in old mice (all P < 0.05). Lastly, aging resulted in

augmentation of the arterial senescence marker, p19 (P < 0.05),

and this was ameliorated by rapamycin treatment (P < 0.05).

These results demonstrate beneficial effects of rapamycin treat-

ment on arterial function in old mice and suggest these improve-

ments are associated with reduced oxidative stress, AMPK

activation and increased expression of proteins involved in the

control of the cell cycle.

Key words: aging; AMPK; arterial stiffness; endothelial func-

tion; mTOR; oxidative stress; rapamycin.

Introduction

Aging is a primary risk factor for cardiovascular diseases (CVDs)

(D’Agostino et al., 2008), the leading cause of death in the USA

(Mozaffarian et al., 2015). CVDs are primarily diseases of the arteries

and are associated with reduced endothelial function and augmented

large artery stiffening (Yeboah et al., 2007; Mitchell et al., 2010). It is

well established that both of these characteristics are observed even in

healthy older adults (Mitchell et al., 2004; Seals et al., 2011) and that

they are independent predictors of future CVD diagnosis (Yeboah et al.,

2007; Rossi et al., 2008). Although the initiating events of arterial aging

are still unknown, several critical factors have been established, including

reduced nitric oxide (NO) bioavailability, increased arterial oxidative

stress, and increased arterial fibrosis.

Oxidative stress, marked by excess superoxide, is known to be an

important contributor to age-associated arterial dysfunction as a result of

the scavenging of NOby superoxide. This results in blunting of endothelial-

mediated vasodilation and augmentation of large artery stiffness (Donato

et al., 2013). There is a shift in redox balance in arteries and endothelial

cells from old mice and humans that results from enhanced superoxide

production, due to augmented activity of cytosolic enzymes such as

NADPH oxidases (NOX), and inadequate upregulation of cellular antiox-

idant defenses (Donato et al., 2007, 2013). Excessive superoxide-

associated oxidative stress leads to stiffening of large elastic arteries

(Fleenor et al., 2014) with aging by producing changes in the major

structural proteins (collagenand elastin) (Hensonet al., 2014). This fibrotic

state is exacerbated by age-related glucose intolerance contributing to

postprandial hyperglycemia, which increases endothelial oxidative stress

and enhances advanced glycation end product-associated cross-linking of

collagen (Avendano et al., 1999; Goldin et al., 2006). Collectively, these

mechanisms play an important role in age-related arterial dysfunction.

Nutrient-sensing molecular pathways, such as adenosine monophos-

phate-activated protein kinase (AMPK), sirtuins, and mammalian target

of rapamycin (mTOR) are closely related to overall metabolic function

(Howell & Manning, 2011; Mihaylova & Shaw, 2011) and are dysreg-

ulated with advancing age (Lesniewski et al., 2012; Donato et al., 2013).

These pathways have been implicated in the lifespan extending effects of

caloric restriction (CR) (Greer et al., 2007; Medvedik et al., 2007), as

well as in the arterial aging phenotype (Lesniewski et al., 2012; Donato

et al., 2013). Although studies examining the direct effects of AMPK and

sirtuin-1 activation have revealed selective beneficial effects on arterial
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endothelial function in aged mice (Lesniewski et al., 2012; Gano et al.,

2014), less is known about the effects of mTOR inhibition on age-

associated arterial dysfunction.

Importantly, inhibition ofmTOR by dietary rapamycin has been recently

demonstrated to delay age-associated diseases and extend lifespan in

mice (Harrison et al., 2009; Wilkinson et al., 2012). Moreover, lifespan

extensionwas also seenwhen dietary treatmentwas started inmiddle age

(Harrison et al., 2009). While the mechanisms underlying the beneficial

effects of rapamycin treatment and mTOR inhibition are incompletely

understood, it is clear that signaling through the mTOR pathway

modulates numerous cell cycle proteins, which may have beneficial

effects in a variety of tissues. Furthermore, in conditions such as diabetic

kidney disease, mTOR inhibition has been demonstrated to decrease

NOX4 expression and reduce superoxide/reactive oxygen species (ROS)

generation (Eid et al., 2013). Taken together, these studies suggest that

dietary rapamycin has substantial promise to counteract mechanisms

responsible for arterial aging. However, the impact of mTOR inhibition by

dietary rapamycin on arterial function in aged animals remains unknown.

In this study, we used an established mouse model of arterial aging to

assess the role of mTOR activity in endothelial dysfunction and large

artery stiffening with advancing age. We hypothesized that age-

associated increases in arterial mTOR activation would be associated

with impairments in vascular function (i.e. reduced endothelium-

dependent dilation and increased large artery stiffness), increased

oxidative stress and reduced NO, increased cellular oxidant enzymes,

decreased AMPK activation, and increased extracellular matrix fibrosis in

the large arteries. To investigate the role of mTOR activity further, we

hypothesized that dietary inhibition of mTOR with rapamycin in old mice

would ameliorate this arterial aging phenotype.

Results

Animal characteristics

Body mass, tissue mass, and mean arterial pressures for young and old

untreated and rapamycin-treated mice can be found in Table 1

(N = 6–15/group). Because rapamycin is clinically used as an

immunosuppressant, we assessed the complete blood count (CBC) and

differential counts in peripheral blood collected at sacrifice from old

untreated and rapamycin-treated mice. We found that rapamycin did

not impact total white blood cell, differential, hemoglobin, hematocrit,

or platelet counts (Table S1, Supporting information). Spleen mass,

measured at sacrifice, was reduced with advancing age and after

rapamycin treatment in young mice, but increased after rapamycin in old

mice (Table 1). To determine whether these changes in mass were the

result of tissue congestion, the dry weight of the spleen was calculated

and expressed as a percent of tissue wet weight. Percent of dry weight

of the spleen was reduced by aging (young: 14.3 � 1.2% vs. old:

10.9 � 0.9%, P < 0.05) and rapamycin treatment in young mice (young

rap: 11.0 � 0.8%, P < 0.05), suggesting tissue congestion in these

groups. However, rapamycin increased dry weight of the spleens from

old mice (old rap: 14.0 � 0.9%, P < 0.05 vs. old untreated) and may be

indicative of reduced congestion or increased cellularity in this tissue.

Glucose tolerance was impaired in old untreated compared to young

untreated mice (P < 0.05), evidenced by a greater area under the curve

for glucose (AUCglc) during the GTT (Table 1). Rapamycin treatment

improved glucose tolerance, that is resulted in a reduction in the AUCglc

(P < 0.01) in old mice (Table 1). In contrast, rapamycin impaired glucose

tolerance in young mice such that there was an increased AUCglc

(P < 0.05) during the GTT. Blood glucose was lower, and plasma insulin

was higher in the old compared to young untreated mice (Table 1).

Although HOMA-IR% was not different, HOMA-B% was higher in old

compared to young untreated mice (Table 1). However, blood glucose,

plasma insulin, HOMA-IR%, and HOMA-B% were not impacted by

rapamycin treatment in the young or old mice (Table 1). GTT responses

are provided in Fig. S1 (Supporting information).

Enhanced arterial mTOR activation with aging is reversed

after rapamycin treatment

Although total protein expression of mTOR target S6K, assessed by

Western blotting, did not differ with aging or rapamycin treatment,

phosphorylation of S6K, a marker of activation, was higher in aorta of

old compared to young mice (P < 0.01) (Fig. 1). Dietary rapamycin

Table 1 Age, body and tissue mass, blood pressure and blood glucose, plasma insulin, and homeostatic model assessment of beta-cell function (HOMA-B) and insulin

resistance (HOMA-IR) in untreated and rapamycin-treated young and old mice

Young Old Young Rap Old Rap N’s

Age (months) 3.8 � 0.6 30.3 � 0.2† 4.0 � 0.0 30.3 � 0.2† 9–15

Body mass (g) 32.5 � 1.6 35.6 � 1.4 29.3 � 0.4 36.9 � 1.3† 8–15

Gastrocnemius mass (mg) 243 � 23 150 � 8† 170 � 2† 139 � 5† 7–12

Heart mass (mg) 157 � 10 202 � 7† 134 � 4† 209 � 6† 7–12

Liver mass (g) 1.61 � 0.06 1.97 � 0.07† 1.21 � 0.04† 1.87 � 0.08† 7–12

Spleen mass (mg) 82 � 5 75 � 13† 64 � 2† 116 � 21†,‡ 6–8

Epididymal WAT mass (mg) 679 � 99 327 � 73 456 � 23 576 � 102 7–12

Mean arterial pressure (mmHg) 109 � 3 101 � 5 101 � 4 95 � 3 7–8

AUCglc (%fasted) 11210 � 365 12410 � 388† 14620 � 1127† 11241 � 333‡ 8–12

Fed blood glucose (mg dL�1) 142 � 3 125 � 6† 134 � 3 115 � 5† 8–13

Fed plasma insulin (lU mL�1) 23.8 � 4.3 47.3 � 7.7† 30.8 � 2.9 39.0 � 5.1 7–10

HOMA-IR (%) 4.4 � 0.5 5.5 � 0.6 4.2 � 0.4 5.1 � 0.7 7–10

HOMA-B (%) 110.8 � 10.9 175.5 � 20.4† 117.5 � 8.4 180.6 � 7.9† 7–10

Rap, rapamycin treated, WAT, white adipose tissue.

N = 6–15/group.

Data are means � SEM, P < 0.05.

†Denotes difference from young.

‡Denotes difference from untreated old.
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treatment reduced S6K activation relative to both young (P < 0.05) and

old untreated (P < 0.01) mice (Fig. 1).

mTOR inhibition in old mice by dietary rapamycin ameliorates

oxidative stress-mediated endothelial dysfunction

To determine the impact of aging and rapamycin treatment on

endothelial function and NO bioavailability, carotid arteries were excised

and cannulated in the stage of an inverted microscope and dose

responses to acetylcholine (ACh), an endothelium-dependent dilator

(EDD), and sodium nitroprusside, an endothelium-independent vasodila-

tor, were performed. EDD to ACh was reduced in carotid arteries of old

compared to young mice (P < 0.05). This was the result of reduced NO

bioavailability as evidenced by a loss of the age-associated differences in

dilation after nitric oxide synthase inhibition by L-NAME (Fig. 2A).

Dietary rapamycin treatment improved EDD (P < 0.01) and NO bioavail-

ability in old mice compared to untreated old mice and restored these

measurements to those of young controls (Fig. 2B). Rapamycin treat-

ment was without effect on EDD or NO bioavailability in young mice

(Fig. 2C). There were no differences in endothelium-independent

dilation to sodium nitroprusside (SNP) with aging or rapamycin

treatment in either young or old mice (Fig. 2D). There were no

differences in total aortic eNOS protein expression with aging or

rapamycin treatment in old mice (Fig. 2E). Still, aging tended to decrease

(P = 0.1) and rapamycin tended to increase (P = 0.1 vs. old) phospho-

rylation of eNOS at the activating site, ser1177, in old mice (Fig. 2E).

Maximal dilation to ACh was reduced with aging (P < 0.05) (Fig. 3A).

Both dietary rapamycin and in vitro treatment with the superoxide

dismutase mimetic, TEMPOL, restored maximal dilation in old mice (both

P ≤ 0.05) (Fig. 3A). TEMPOL treatment of carotid arteries from young

untreated and rapamycin-treated mice was without effect on maximal

dilation (Fig. 3A). In contrast to untreated old mice, in vitro treatment of

carotid arteries with TEMPOL did not improve maximal dilation in arteries

from old rapamycin-treated mice (Fig. 3A). These findings indicate that

increased oxidative stress underlies the observed reductions in EDD with

aging and suggest that rapamycin improves EDD by reducing oxidative

stress.

L-NAME treatment of isolated arteries removed all group and

treatment differences (Fig. 3A), indicating that the impairments with

aging and improvements in dilation after rapamycin or TEMPOL in old

mice result from alterations in NO bioavailability downstream of increased

oxidative stress. Superoxide production, measured by electron paramag-

netic resonance (EPR) (Fig. 3B), and nitrotyrosine abundance (Fig. 3C),

markers of oxidative stress, were increased in the aorta with aging

(P < 0.05), and this was reversed after dietary rapamycin treatment

(P < 0.05). The protein expression of the oxidant enzyme NOX4 tended to

be increased with aging (P = 0.10) and reduced after rapamycin

(P = 0.07) (Fig. 3D). Likewise, gene expression for another NADPH

oxidase isoform, NOX2, was increased with advancing age (1.0 � 0.4 vs.

12.1 � 8.1 AU, P < 0.05) and reduced after rapamycin treatment in

aortas from old (0.5 � 0.2 AU, P < 0.05 vs. old), but not young

(1.7 � 0.4 AU) mice. Although not different with aging, the expression

of the antioxidant extracellular superoxide dismutase (ecSOD) was

increased in the aortas of old mice after dietary rapamycin compared to

both young and old untreated mice (both P < 0.01) (Fig. 3E).

Dietary rapamycin reduces large elastic artery stiffness in old

mice and selectively modifies arterial wall composition

Large elastic artery stiffness, assessed by in vivo aortic pulse-wave

velocity (PWV), was increased with aging (P < 0.001) and was improved

(P < 0.05 vs. old), but not restored to young values (P < 0.01 vs. young),

in old mice after rapamycin treatment (Fig. 4A). Rapamycin treatment

was without effect on PWV in young mice (Fig. 4A). The intima-media

area of the aorta was increased in old mice (P < 0.05), but rapamycin

treatment had no effect on intima-media area in young or old mice

(Fig. 4B).

To determine whether the structural changes underlie changes in

large artery stiffness with aging and rapamycin, aortic collagen (assessed

by pricrosirius red stain), elastin (assessed by Verhoff’s Van Geison stain,

advanced glycation end products (AGEs, assessed by immunohisto-

chemistry), and calcification (assessed by Von Kossa staining) were

assessed on histological aortic sections. With aging in the aorta, there

was increased collagen (P < 0.01) (Fig. 4C), decreased elastin (P < 0.01)

(Fig. 4D), and increased abundance of AGEs (P < 0.01) (Fig. 4E). There

was no evidence of calcification of the aorta with aging (data not

shown).

In old mice, dietary rapamycin reduced aortic collagen (P < 0.05)

(Fig. 4C), but was without effect on elastin content (Fig. 4D). In contrast,

in young rapamycin-treated mice, collagen was higher and elastin was

lower in the aorta compared to untreated young mice (Fig. 4C,D),

despite there being no differences in PWV. AGEs were reduced

(P < 0.05) in aortas of old, but not young mice after dietary rapamycin

treatment (Fig. 4E).

mTOR inhibition increases AMPK activation and cell cycle

regulatory proteins and decreases a marker of senescence in

aorta of old mice

Phosphorylation, but not total protein expression, of AMPK was lower in

aorta of old compared to young mice (P < 0.05, Fig. 5). Dietary

rapamycin treatment in old mice did not impact total AMPK protein

expression, but increased phosphorylation of AMPK (P < 0.01)
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compared to untreated old mice (Fig. 5A). Although not different with

aging, the cell cycle regulatory proteins, PTEN (P < 0.05 old Rap vs. old)

(Fig. 5B) and p27kip (P < 0.01 old Rap vs. young and old) (Fig. 5C) were

increased in the aortas of old mice after dietary rapamycin treatment.

Gene expression, assessed by quantitative PCR, for the senescence-

related cyclin-dependent kinase inhibitor, p19, was increased with

advancing age (young: 1.0 � 0.3 vs. Old: 8.0 � 3.2 AU, P < 0.05).

Rapamycin was without effect on p19 gene expression in aortas from

young mice (1.1 � 0.3 AU), but decreased p19 in aortas of old mice

(1.6 � 0.7 AU, P < 0.05 vs. old).

Discussion

The novel findings of the present study are that (a) compared with young

mice, mTOR activation was increased in the large arteries of old mice and

was associated with vascular oxidative stress, impaired endothelial

function, increased large elastic artery stiffness, decreased AMPK

activation, and increased senescence marker p19, but no change in

the expression of cell cycle-related proteins, PTEN or p27kip, and (b)

dietary rapamycin treatment of old mice reversed the arterial aging

phenotype and was associated with decreased oxidative stress, increased

arterial AMPK activation, increased expression of PTEN and p27kip, and

decreased senescence marker p19. We also provide evidence that

although rapamycin can lead to reductions in glucose tolerance in young

mice as reported previously by others (Lamming et al., 2012); however,

old mice demonstrate improved glucose tolerance after rapamycin

treatment. Our results demonstrate that enhanced mTOR signaling is an

important factor in age-associated vascular dysfunction and may also

play a role in glucose intolerance with aging. These findings also suggest

that changes in the cell cycle regulation/cell fate may underlie at least

part of the beneficial vascular effects of rapamycin, a possibility requiring

further elucidation.

Rapamycin and endothelial function

Aging is associated with endothelial dysfunction and reduced NO

bioavailability. Here, we find that activation, indicated by ser1177

phosphorylation of eNOS, tended to be reduced with aging and

improved after rapamycin. Although such changes in eNOS activation

may contribute to the age-related impairments and rapamycin-related

improvements in EDD and NO bioavailability, they cannot fully explain

these effects. Age-associated endothelial dysfunction is characterized by

an oxidative stress-mediated reduction in NO bioavailability. Similar to

what we have previously demonstrated after both short-term (Rippe

et al., 2010) and lifelong CR (Donato et al., 2013), as well as after

chronic aerobic exercise in old mice (Durrant et al., 2009), rapamycin

treatment decreased arterial oxidative stress, evidenced by decreased

nitrotyrosine content, a cellular marker of oxidative stress, and reduced

superoxide production measured by EPR. Age-associated arterial oxida-

tive stress results from an increase in oxidant production, at least in part

as a consequence of increased expression and activity of NADPH oxidase,

in the absence of adequate compensatory antioxidant increases (Durrant

et al., 2009; Rippe et al., 2010; Donato et al., 2013). Here, we extend

these earlier findings to demonstrate that both the NOX4 and NOX2

isoforms of NADPH oxidase are increased in arteries of old mice and that

mTOR inhibition is associated with reduced expression of both of these

NOX isoforms in old mice. This is similar to changes reported for isoforms

of NADPH oxidase after CR (Rippe et al., 2010; Donato et al., 2013). We
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have also demonstrated that the vascular protection afforded by CR is

associated with an increased expression of a critical antioxidant, ecSOD.

Here, we find a similar increase in ecSOD expression after rapamycin

treatment in old mice. As ecSOD is a critical factor in the protection of

NO in its diffusion from endothelial cells through the extracellular space

into vascular smooth muscle, increased ecSOD may explain, in part, the

improvements in NO bioavailability after rapamycin treatment. However,

unlike CR (Rippe et al., 2010; Donato et al., 2013) or chronic aerobic

exercise (Durrant et al., 2009), the expression of other SOD isoforms,

such as Mn or CuZn, was not impacted by rapamycin treatment (data

not shown). Thus, rapamycin treatment in old mice appears to mimic

selective beneficial effects of both CR and exercise.

Rapamycin and large elastic artery stiffness

The effects of rapamycin treatment on large elastic artery stiffness in old

mice largely mimic those of lifelong CR. Lifelong CR reduced aortic PWV

compared to ad libitum fed age-matched mice (Donato et al., 2013),

and this was associated with reduced area of the medial wall, decreased

collagen and increased elastin content of the aorta (Donato et al., 2013).

Here, we find that dietary rapamycin improves, but does not completely

normalize, aortic stiffness in old mice. This reduction in arterial stiffness

was associated with a rapamycin-induced decrease in collagen and AGEs

in the aorta in the absence of changes in intima-media thickness or aortic

elastin content. The findings of the present study are consistent with a

‘CR mimetic’ effect of rapamycin on age-associated large elastic artery

stiffening, and an incomplete phenocopy may be due to the shorter

length of treatment compared to lifelong CR. Furthermore, the

reduction in AGEs observed in the present study suggests that the

beneficial effects of rapamycin on large elastic artery stiffness may be

mediated, at least in part, by a reduction in the cross-linking of collagens

by AGEs, an effect that may be related to the improved glucose

metabolism after rapamycin treatment in old mice (Beisswenger et al.,

1993).

Rapamycin and AMPK activation

AMPK activation, in response to low cellular energy status, leads to a

reduction in mTOR signaling via inhibition of S6K (Gwinn et al., 2008).

Likewise, inhibition of mTOR after rapamycin treatment of MCF-7 breast

cancer cells leads to increased AMPK activation, indicating a reciprocal

relation between these energy-sensing pathways (Zakikhani et al.,

2010). In addition to effects on metabolism, AMPK activation increases

eNOS activation in cultured endothelial cells, suggestive of a
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vasoprotective effect (Murakami et al., 2006). Our laboratory has

previously demonstrated that pharmacological activation of AMPK, via

in vivo administration of AICAR, reverses superoxide-mediated suppres-

sion of endothelium-dependent dilation in the carotid arteries of old

mice, although this effect did not result from an increase in NO

bioavailability, but rather from increased reliance on another endothelial

vasodilator, endothelium-derived hyperpolarizing factor (EDHF) (Les-

niewski et al., 2012). Here, we demonstrate the cross talk between

mTOR inhibition and AMPK activation in arteries, with rapamycin

treatment of old mice leading to increased arterial AMPK activation.

However, unlike direct pharmacological activation of AMPK by AICAR,

increased vasodilation in old mice after rapamycin resulted from

increased NO bioavailability. Still, the beneficial effects of both

rapamycin and AICAR on arterial endothelial vasodilation appear to be

predominately mediated through a reduction in the suppression of

vasodilation by oxidative stress. This effect to reduce oxidative stress and

improve vasodilation via either AICAR or rapamycin occurs regardless of

the endogenous vasodilator (i.e. NO or EDHF) being impacted.

Rapamycin, cell fate, and senescence

Advancing age is associated with cellular senescence (Herbig et al.,

2006). Here, we demonstrate that although aging did not impact the

expression of the tumor suppressor, PTEN, or the cell cycle inhibitor,

p27kip, their expressions were increased after rapamycin treatment.

PTEN is a negative regulator of protein kinase B (AKt) signaling with

antiproliferative effects and a reduction in PTEN-mediated inhibition of

Akt in old mice may underlie the reduction in p27kip (Sun et al., 2014).

p27kip is a member of the Cip/kip family of cyclin-dependent kinase

inhibitors that act to block progression through the G1/S transition of

the cell cycle (Pestell et al., 1999). In addition, we found that

rapamycin reversed the age-associated increase in p19, a cyclin-

dependent kinase inhibitor that is associated with cellular senescence.

Taken together, these results indicate that rapamycin treatment in old

mice may reduce growth signaling in arteries and perhaps favor the

clearing of dysfunctional senescent cells/tissue, which could in part

explain the improvements in arterial vasodilation and stiffness we

observed.

Differential effects of rapamycin on glucose/insulin

metabolism in young and old

Although not a primary outcome of our study, our results are consistent

with those of previous investigations (Lamming et al., 2012; Fang et al.,

2013), indicating that short-term rapamycin treatment in young mice

leads to glucose and insulin intolerance. In contrast, long(er) term
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treatment with rapamycin, from 20 weeks up to 2 years, improved

metabolic function and reduced adiposity in mice (Harrison et al., 2009;

Anisimov et al., 2011; Fang et al., 2013). Here, we find that short-term

rapamycin treatment of old mice improves glucose tolerance. In young

mice, rapamycin treatment increased collagen and decreased elastin in

the aortas, and although such differences should act to increase large

elastic artery stiffness, these structural changes were not sufficient to

change aortic PWV. When applied to our young mice, the findings of

Fang et al. (2013) suggest that the deleterious effects of short-term

rapamycin treatment on glucose-insulin metabolism would resolve if

treatment were sustained. However, it is not known if a longer period of

treatment in young mice might also lead to potentially deleterious

changes in arterial structure or function. Although earlier reports

demonstrating lifespan extending and beneficial metabolic effects of

long-term rapamycin treatment (initiated in middle age) (Harrison et al.,

2009; Miller et al., 2014) argue against a deleterious effect of prolonged

treatment, no information is available on other biomarkers, including

vascular function.

Rapamycin/mTOR inhibition: a potential CR mimetic?

Treatment of mice with rapamycin beginning in early or middle age can

extend lifespan and reduce many age-related phenotypes including liver

degeneration, myocardial nuclear abnormalities, endometrial cystic

hyperplasia, adrenal tumors, tendon elasticity, age-related loss of

spontaneous activity, cognitive deficits, age-related cardiac dysfunction,

altered blood cell count, cellular senescence, self-renewal and activity of

hematopoietic stem cells, and turnover of hepatic proteins (Chen et al.,

2009; Harrison et al., 2009; Miller et al., 2011, 2014; Majumder et al.,

2012; Wilkinson et al., 2012; Flynn et al., 2013; Neff et al., 2013;

Karunadharma et al., 2015). These lifespan extending and anti-aging

effects of rapamycin are similar to those previously reported in mice

undergoing lifelong CR (reductions of 40% of caloric intake). Previous

work by our laboratories has demonstrated that CR, either lifelong or

short-term in old mice, can ameliorate age-related arterial dysfunction

(Rippe et al., 2010; Donato et al., 2013), and these changes are

associated with blunted mTOR signaling in old arteries (Donato et al.,

2013). These findings further support the role mTOR inhibition in the

vasoprotective effects of both CR and dietary rapamycin in old mice.

Unlike AMPK activation (AICAR) (Lesniewski et al., 2012) and SIRT-1

activation (SRT1720) (Gano et al., 2014), these effects of rapamycin

fully recapitulate preserved endothelial function and nitric oxide

bioavailability observed with both lifelong and short-term CR; therefore,

rapamycin appears to be the most viable CR mimetic tested in our

laboratory.

Summary and future directions

Age-associated vascular dysfunction is an important contributing factor

to increased CVD risk in older adults. Our results indicate that increased

mTOR activation may underlie vascular oxidative stress, endothelial

dysfunction, increases in large elastic artery stiffness, and structural

adaptations in the vessel wall with advancing age. Dietary rapamycin

treatment reversed these deleterious arterial phenotypes and increased

the expression of proteins involved in the control of the cell cycle. Our

findings suggest that treatment with rapamycin or other ‘rapalogs’ holds

promise for the treatment of arterial aging and, therefore, the potential

prevention of age-associated CVD. Future studies should explore the role

of the individual mTOR complexes in age-associated vascular dysfunc-

tion, as well as the impact of rapamycin on autophagy and cellular

senescence.

Experimental procedures

Ethical approval

All animal procedures conformed to the Guide to the Care and Use of

Laboratory Animals (NIH publication no. 85-23, revised 2010) and were

approved by the University of Colorado at Boulder, University of Utah

and VAMC-SLC Animal Care and Use Committees.
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Fig. 5 Expression and activation of

adenosine monophosphate-activated

protein kinase (AMPK) and cell cycle-related

proteins in aortas of young and old

untreated and old rapamycin-treated mice.

(A) Total (open bars) and the ratio of

phosphorylated (P-) to total (hashed bars)

AMPK in aortas excised from young and old

untreated and rapamycin-treated mice

(N = 5–6/group). Expression of (B)

phosphatase and tensin homolog, PTEN,

and (C) the cyclin-dependent kinase

inhibitor, p27kip, in aortas excised from

young and old untreated and rapamycin-

treated mice (N = 5–6/group). Expression
was normalized to GAPDH and blot images

are provided in panel (D). * denotes

difference from young, and † denotes

difference from old. Differences were

assessed by one-way ANOVA with LSD post

hoc. Data are means � SEM, P ≤ 0.05.
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Animals

Young male B6D2F1 mice were obtained from Charles River Inc, and old

male mice were purchased from the aging colonies maintained at

Charles River Inc. for the National Institute on Aging. All mice were

housed in standard mouse cages in an animal care facility at the VAMC-

SLC or at the University of Colorado at Boulder on a 12-h:12-h light:dark

cycle. Mice were fed either a custom control (Purina 5LG6/122 PPM

Eudragit 3/8 Pellet, Test Diet) or rapamycin supplemented diet

(14 mg kg�1 diet in Purina 56LG6/122 PPM Eudragit 3/8 Pellet, Test

Diet) for 6 weeks, as described by Harrison et al. (2009). Assuming a

daily food intake of approximately 5 g day�1 and an approximately 30-g

mouse, this yields a dose of 2.24 mg rapamycin kg�1 body

weight day�1. Food and water were supplied ad libitum. Glucose

tolerance was assessed by intraperitoneal glucose tolerance test (GTT) as

previously described (Lesniewski et al., 2007; Donato et al., 2012).

Briefly, in the morning after a 2-h fast, blood glucose was collected from

a tail nick (5 ll) and assessed with a Precision Xceed Pro Glucose

Analyzer. Glucose was then administered (2 g glucose kg�1 body

weight), and blood glucose was measured in whole blood at times 15,

30, 45, 60, and 90 min after injection. Area under the curve for glucose

(AUCglc) during the GTT was calculated. Prior to tissue harvest, mice

were euthanized via exsanguinations by cardiac puncture while under

isoflurane anesthesia (Donato et al., 2009; Durrant et al., 2009). Whole

blood from untreated and rapamycin-treated old mice collected at

sacrifice was used for total white blood cell and differential assessment.

To do so, a standard veterinary differential was performed with 100

WBC counted and types identified thereby giving a percent for each type

of WBC.

Ex vivo arterial endothelium and vascular smooth muscle

assessment

To assess endothelial function, carotid arteries were excised, cleared of

surrounding tissue and cannulated in the stage of a pressure myograph

(DMT Inc, Atlanta, GA, USA). Arteries were preconstricted with 2 lM
phenylephrine, and endothelium-dependent dilation and the NO contri-

bution to dilation were measured in response to the cumulative addition

of acetylcholine (1 9 10�9 to 1 9 10�4 mol L�1) in the absence or

presence of the nitric oxide synthase inhibitor, L-NAME (0.1 mmol L�1,

30 min), as described previously (Durrant et al., 2009). To assess

superoxide-mediated suppression of endothelial function, acetylcholine

dose responses in the absence and presence of L-NAME were performed

in the contralateral carotid artery after incubation with the superoxide

dismutase mimetic, TEMPOL (1 mmol/L, 1 h). Endothelium-independent

dilation was assessed in response to sodium nitroprusside (1 9 10�10 to

1 9 10�4 mol L�1) (Durrant et al., 2009). Vessel diameters were mea-

sured by MyoView software (DMT, Inc., Atlanta, GA, USA). All dose–

response data are presented as percent of possible dilation after

preconstriction to phenylephrine. Arteries failing to achieve ≥ 20%

preconstriction were excluded. Sensitivity was defined as the concen-

tration of ACh or SNP that elicited 50% of the maximal response (IC50).

Sensitivities (IC50s) were calculated using BioDataFit 1.02. A regression

was used to fit a sigmoidal model to individual dose responses yielding a

dose for the half maximal response in log M units.

Superoxide production

Production of superoxide was measured by electron paramagnetic

resonance (EPR) spectrometry using the spin probe 1-hydroxy-

3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH, Alexis Bio-

chemicals). Stock solutions of CMH were prepared in ice-cold deoxy-

genated Krebs–HEPES buffer (mmol L�1: NaCl, 99.01, KCl 4.69, CaCl2
2.50, MgSO4 1.20, K2HPO4 1.03, NaHCO3 25.0, glucose 11.10, and Na-

HEPES 20.00; pH 7.4) containing 0.1 mmol L�1 diethylenetriamine-

penta-acetic acid and 5 lmol L�1 sodium diethyldithiocarbamate and

pretreated with Chelex (Sigma, Saint Louis, MO, USA) to minimize auto-

oxidation of the spin probe. Three-millimeter aortic rings were washed

once in PSS and again in modified Krebs–HEPES buffer. Rings were then

incubated for 60 min at 37 °C in 200 lL Krebs-–HEPES buffer contain-

ing 0.5 mmol L�1 CMH and analyzed immediately on an MS300 X-band

EPR spectrometer (Magnettech, Berlin, Germany). Instrument settings

were as follows: microwave frequency 9.83 Ghz, centerfield 3480 G,

sweep 80 G, modulation amplitude 3.3 G, microwave power 40 mW,

microwave attenuation 7, and receiver gain 30. A total of six sweeps

were conducted lasting 8.7 s per sweep. The running average of the six

sweeps was collected with the double integration (area under and over

the baseline) of the triplet used to display the magnitude of the signal.

The magnitude of this signal directly relates to the amount of superoxide

that has been trapped by the CMH.

Pulse-wave velocity

To assess large artery stiffening, aortic PWV was measured as described

previously (Henson et al., 2014). Briefly, mice were anesthetized under

2% isoflurane in a closed chamber anesthesia machine (V3000PK,

Parkland Scientific, Coral Springs, FL) for ~1–3 min. Anesthesia was

maintained via nose-cone and mice were secured in a supine position on

a heating board (~35 °C) to maintain body temperature. Velocities were

measured with 4-mm piezoelectric crystal, 20-MHz Doppler probes

(Indus Instruments, Webster, TX, USA) at the transverse aortic arch, and

~4-cm distal at the abdominal aorta and collected using WinDAQ Pro+

software (DataQ Instruments, Akron, OH, USA). Absolute pulse arrival

times were indicated by the sharp upstroke, or foot, of each velocity

waveform analyzed with WinDAQ Waveform Browser (DataQ Instru-

ments). Aortic pulse-wave velocity was then calculated as the quotient of

the separation distance, assessed to the nearest half millimeter by

engineering caliper (typically ~4 cm) and difference in absolute arrival

times.

Western blots

Because both carotid arteries were used for functional measures and to

provide adequate tissue for measurement of proteins, the thoracic aorta

was excised and used for protein expression assays. Histological samples

were saved as described below and the remaining aorta was cleared of

perivascular adipose tissue while maintained in 4 °C PSS. Cleared aorta

was then frozen in liquid nitrogen. Whole artery lysates were prepared as

previously described (Durrant et al., 2009). Protein expression was

assessed by standard Western blot procedures using primary antibodies

against ribosomal S6K (S6K, 1:1000; 32 kDa; Cell Signaling, Danvers,

MA, USA), phosphorylated S6K (p-S6K, 1:1000; 32 kDa; Cell Signaling),

eNOS (1:1000; 140 kDa; BD Transduction, San Jose, CA, SUA), ser1177

phosphorylated eNOS (ser1177 p-eNOS, 1:1000; 140 kDa; Cell Signal-

ing), nitrotyrosine (NT, 1:100; 25/55/160 kDa; Abcam, Cambridge, MA,

USA), NOX4 (1:650; 67 kDa; Abcam), extracellular superoxide dismutase

(ecSOD, 1:500; 31/35 kDa; Sigma), AMPK (1:500; 62 kDa; Cell Signal-

ing), phosphorylated AMPK (Thr172 p-AMPK, 1:1000; 62 kDa; Cell

Signaling), PTEN (1:1000; 54 kDa; Cell Signaling), p27kip (1:1000;

27 kDa; Cell Signaling) and GAPDH (1:1000; 37 kDa; Cell Signaling),
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appropriate HRP-conjugated secondary antibodies (Jackson Immunolog-

ical, West Grove, PA, USA), and Supersignal ECL (Pierce, Rockford, IL,

USA). Bands were visualized using a digital acquisition system

(ChemiDoc-It, UVP, Upland, CA, USA or Bio-Rad ChemiDoc XRS+ with

ImageLab Software) and quantified using ImageJ 1.42 software (NIH,

Bethesda, MD, USA). To account for differences in protein loading,

expression is normalized to GAPDH expression. Representative images

are provided. The ratio of phosphorylated to total protein is calculated

from the bands for a given sample lysate.

Quantitative PCR

mRNA expression for p19 and Nox2 was measured in lysed aortas by

qRT–PCR using the QuantiTect Reverse Transcription kit (Qiagen, Inc.,

Valencia, CA, USA) and FastStart SYBR Green Master (Roche Diagnostics

Corporation, Roche Applied Science, Indianapolis, IN, USA) according to

the manufacturer’s protocols. Fold change in mRNA expression was

calculated as the fold difference in expression of target mRNA to 18s

rRNA for each animal 2�ðtarget CT �18s CTÞ; 18s rRNA QuantiTect Primer

Assay: Qiagen, Inc.). p19 mRNA primers: fwd-CGCAGGTTCTTGGT-

CACTGT and rev-TGTTCACGAAAGCCAGAGCG; Nox2 mRNA primers:

fwd-TCCCAGAGAACACAGCATAAC and rev-CTAGCCTGCTTATGG-

GATTCTT.

Histology

Two-millimeter rings of thoracic aorta with perivascular tissue intact were

removed from the thoracic aorta directly distal to the greater curvature of

the aortic arch and embedded in optimal cutting temperature (OCT)

medium. Rings were sectioned (7 lm) and mounted on glass slides for

histological analysis. Intima-media area was measured on Maisson’s

trichrome (HT15, Sigma) stained sections of aorta using ImageJ. Collagen

was quantified by picrosirius red stain as described previously (Donato

et al., 2013; Henson et al., 2014), and green channel images from a RGB

stack were utilized for densitometric quantification with ImageJ (NIH,

Bethesda, MA, USA). Elastin was quantified by Verhoff’s Van Geison stain

as described previously (Donato et al., 2013; Henson et al., 2014), and 8-

bit gray-scale images were utilized for densitometric quantification with

ImageJ. AGEs were assessed by immunohistochemical visualization.

Briefly, sections were washed and incubated in primary antibody (1:200,

GeneTex 20055) or negative control (2.5% horse serum, Vector Labs)

overnight, and AGEs were visualized using the appropriate secondary

antibody and Vector Labs NovaRed (SK-4800) Peroxidase substrate kit.

Three separate, blinded observers scored images on a zero to three scale

(0 = absence of appreciable positive stain, 1 = minimal positive stain,

2 = appreciable positive stain, 3 = highly positive stain). Scores for each

section were averaged across observers and normalized to negative

control sections. Calcium stainingwas performedon aorta sections by Von

Kossa staining by the instructions provided by the kit manufacturer

(Polysciences, Inc.,Warrington, PA, USA), with staining in 3% silver nitrate

for 40 min under UV light. A slide containing sections of bonewas used as

a positive control.

Statistics

Repeated-measures analysis of variance (ANOVA) was performed to

assess differences in ACh and SNP dose responses as well as for GTT

curves. One-way ANOVAs were performed for all other analyses.

Least-squares differences post hoc tests were performed where

appropriate. Data are presented as mean � SEM. Significance was

set at P < 0.05.
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