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Basin morphometry is vital information for relating storms to hydrologic hazards, such as landslides and
floods. In this paper we present the first comprehensive global dataset of distributed basin morphometry at
30 arc seconds resolution. The dataset includes nine prime morphometric variables; in addition we present
formulas for generating twenty-one additional morphometric variables based on combination of the prime
variables. The dataset can aid different applications including studies of land-atmosphere interaction, and
modelling of floods and droughts for sustainable water management. The validity of the dataset has been
consolidated by successfully repeating the Hack’s law.
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Background & Summary
Morphometry, the topographic and bathymetric features of the earth surface, is known as interactions
among multiple factors including climate, tectonic, and erosion, and is known to impact landscape,
ecology, and consequentially the occurrence and severity of hydro-meteorological hazards. To understand
how the natural surface has grown into its current state1–4, what it will become5, and in which way it
impacts the environment6–12, we need distributed geomorphological data at global scale. The most
commonly cited geomorphological features, listed in Table 1, were defined nearly 20 years ago, while
currently a number of global or regional gridded topographic datasets13–16 are available to support newly
derived geomorphological features.

Numerous local geomorphological studies have been conducted using sparse and limited
data4,6,8,9,17,18. Only uniform geomorphological features are available for large basins12,19. Due to the
heavy computation of basin delineation and boundary tracing at global scale, some critical features
missing from existing datasets are based on boundary information such as basin length and perimeter. A
common solution has been to convert those features from easy-to-obtain features (such as drainage area)
by means of statistical relations20, which is bound to empirical experience and less accuracy, as will be
shown in the Technical Validation Section.

The objective of this paper is to share the first distributed global geomorphological dataset available at
30 arc seconds (denoted as 30’ hereafter) resolution. This dataset groups 30 basin characteristics into two
categories, prime (the first 9 variables) and derived (the rest 21 variables) as listed in Table 1. The prime
characteristic variables are computed strictly by geomorphic definitions following the from-upstream-to-
downstream (FUTD) framework21 and using all cells within the basin, while the derived variables are

Variable (File Name) Description Definition References

Sμ (SO) Stream Order(Strahler) Strahler stream order, numerical measure of river’s branching complexity 28

Nμ (Nu) Stream Number order-wise stream segments based on Sμ
29

Lμ (Lu) Stream Length order-wise total stream length based on Sμ
29

LMF (MFL) Maximal Flow Length the length along the longest watercourse from the mouth to the head of the channel 30

Lv (Lv) Down Valley Length The straight distance from the river cell of interest to the basin mouth 30

Lg (Lg) Length of Overland Flow The overland flow length to river 29

RB (BR) Basin Relief The elevation difference between the highest point on the drainage divide and the mouth 10

LB (BL) Basin Length The maximal length of the line from a basin mouth to a point on the perimeter equidistant from the basin
mouth in either direction around the perimeter

31

P(P) Basin Perimeter The outer boundary of the watershed that enclosed its area 32

Rb Bifurcation Ratio Rbμ=Nμ/Nμ+1 (10)
32

BW Weighted Mean Bifurcation Ratio
Bw ¼ 1Pmax Sμð Þ - 1

1
NμþNμþ1ð Þ

Pmax Sμð Þ - 1
1

Rbμ Nμ þ Nμþ1
� �

(11)

33

Lmμ Mean Stream Length Lmμ= Lμ/Nμ (12) 34

Lmrμ Stream Length Ratio Lmrμ= Lμ/Lμ-1 (13)
29

Si Sinuosity Index Si= LMF/Lv (14)
35

Ff Form Factor Ff=A/LB, where A is the drainage area (15) 36

Rr Relief Ratio Rr=RB/LB (16) 32

Re Elongation Ratio Re= 2/LB× (A/π)
0.5 (17) 32

Rt Texture Ratio Rt=N1/P (18) 29

Rc Circularity Ratio Rc= 4πA/P2 (19) 37

k Lemniscate’s value k= LB
2/A (20) 38

Dtμ Drainage Texture Dtμ=Nμ/P (21) 29

Dd Drainage Density Dd= Lμ/A (22) 31,36

Cc Compactness Coefficient Cc= 0.2841 P/A0.5 (23) 39

RW Wandering Ratio RW= LMF/LB (24) 40

Rf Fitness Ratio Rf=LMF/P (25) 41

MB Basin Magnitude MB=N1 (26)
10

Fs Channel Frequency Fs=Nμ/A (27) 36

Di Drainage Intensity Fs/Dd (28) 42

If Infiltration Number If = Fs×Dd (29) 42

Rn Ruggedness Number Rn=RB×Dd (30) 43

Table 1. Basin characteristics included in the proposed dataset.
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calculated numerically based on the prime variables, therefore they are not archived.

Methods
The dataset is made available by a recently released tool21 that can reduce the computation to linear
complexity, O(N). Input data used in the morphometric characteristics’ computations include digital
elevation model (DEM) flow direction (FDR) and flow accumulation (FAC) maps at 30’ resolution
contained in the global shuttle elevation derivatives available at multiple Scales (HydroSHEDS) dataset.
The tool is built on a FUTD framework that starts from the most upstream grids (where FAC is equal
to 1) and then ‘flows’ to the downstream direction while computing. Redundant computations are
avoided by inheriting tributary basin characteristics and eliminating the process of basin delineation and
boundary tracing. Through this process, each grid is visited minimal times, which maximizes
computation efficiency. For the details of calculating each prime variable in the FUTD framework, a
demonstration of the algorithm for a small-scale basin consisting of 44 grids is given at this product’s
website, http://engr.uconn.edu/ ~ xshen/GDBC/#example.

Code availability
The matlab codes and user manual of the tool used to generating the dataset are accessible at
http://engr.uconn.edu/ ~ xshen/GDBC/software/.

Data Records
The HydroSHEDS dataset13 used in this study can be accessed at http://www.hydrosheds.org. Figure 1
gives snapshot of some selected basin characteristics. In Fig. 1b, large relief ratio appears at mountainous
areas including the Alps-Himalaya belt, Cordillera belt, Altai belt, and New Guinea highlands. The
probability of basins with high drainage density roughly increases with latitude in both hemispheres.
Figure 2 shows the distribution (converted from number of grids to percentage) of prime variables
grouped by continent. It shows that distributions of any given prime variable except the basin relief are
almost identical among different continents. The significant distinction between basin relief and other
prime variables is that the former is a vertical measurement while the latter are all horizontal descriptors.

The nine prime variables are can be accessed at figshare via https://figshare.com/s/
6cd00491b850bad716d7 (Data Citation 1). Files are stored in GeoTiff format and are projected in

Figure 1. Selected Geomorphological Variables of the proposed dataset: (a) perimeter, (b) relief ratio,

(c) elongation ratio, (d) drainage density and (e) sinuosity.
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Figure 2. Distribution of prime basin characteristics: (a) Nμ (b) Lμ, (c) LMF, (d) LB, (e) RB, (f) P, (g) Lv, and

(h) Lg, grouped by continent: Europe (EU), Asia (AS), North and Central America (NCA), South America

(SA), Australia (AU) and Africa (AF). Nμ and Lμ are only displayed for first order streams, i.e., μ= 1.
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world geodetic system 1984 (WGS84). Basin characteristics are compressed into a single file for each
continent. An example file name is ‘AF.zip’ with AF standing for Africa. The rest continents are AS for
Asia, EU for Europe, AU for Australia, CA for Central America, NA for North America and SA for South
America. One will find the file, ‘AF_BL.tif’, among other characteristics by decompressing the ‘AF.zip’
file. Other variable abbreviations include BR, Lg, Nu, Lu, Lv, MFL, P and SO, standing for basin relief,
length of overland flow, stream number, stream length, down valley length, main (maximal) flow length,
perimeter and stream order, respectively. It is noted that each variable appears stored in a single band
image file except stream number and stream length that are stored in stream order-indexed multi-band
files. Therefore, the number of bands of stream number and stream length files depends on the maximum
stream order for a given continent.

Technical Validation
Quality control of the production method
The production method is carried out using the recently published algorithm21, with every variable
strictly following their original definition listed in Table 1. The algorithm is fully automated, therefore
main error sources include errors in the input data i.e., the HydroSHEDS dataset, and on the assumption
of single flow direction (SFD). The first error source is primarily due to the existence of dense vegetation,
unknown situation under permanent water and the upscaling process, however can be mitigated by a
proposed procedure of correcting the dataset22. The effect of the second error is mitigated using 30’
resolution.

Validation using Hack’s law and closing remarks
Since similar datasets do not exist for comparison, we performed indirect validation of the proposed
dataset via the Hack’s law.The Hack’s law is an empirical power law between drainage area, A and
different measures of length, L, main flow or basin length, as written in equation (1), which was originally
proposed by fixing C and n to 1.4 and 0.6 respectively20, the modified by23,24 to improve the estimation of
n, and finally generalized as cumulative density function for both basin area and length, as given by

Figure 3. Validation of the Hack’s law: (a) basin area versus main flow length and (b) basin area versus basin

length. The correlation value and RMSE of this fitting are given in Table 2.

AF AS AU NA CA SA EU AF AS AU NA CA SA EU

Pearson Correlation RMSE (mi)

LMF 0.9828 0.9633 0.9754 0.9875 0.9912 0.9798 0.9760 25.60 41.67 15.97 22.11 10.95 31.79 21.23

LB 0.9765 0.9629 0.9680 0.9837 0.9846 0.9782 0.9668 9.695 12.00 6.415 7.520 4.982 10.39 7.840

C n

LMF 1.8102 1.4318 1.8672 1.9455 0.8945 2.8166 2.1845 0.5329 0.5715 0.5268 0.5326 0.6157 0.4944 0.5168

LB 2.0910 1.7300 1.9922 2.0133 0.9584 2.8204 2.3020 0.4808 0.5048 0.4825 0.4829 0.5696 0.4526 0.4641

Table 2. Fitting error and coefficients of the Hack’s law.
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equations (2) and (3), most recently25–27.

L¼CAn ð1Þ
P A > að Þpa - β ð2Þ

P LB > lð Þpl - β=n � l - γ ð3Þ
where

β ¼ 1- n ð4Þ
Using the proposed dataset, we first tested the accuracy of equation (1) by regressing C and n for
all grids in each continent, then that of equations (2) and (3) in the long river in each continent. From
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Figure 4. Validation of the PDF of drainage area and basin length given by equations (7) and (8) in the left

and right column respectively. Each row contains the results from a river. From the top to the bottom, they

are Nile River in Africa, Yangtze River in Asia, Murray–Darling River in Australia, Volga River in Europe,

Mississippi River in North America, and Amazon River in South America.
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equation (2) the probability density function (PDF) of drainage area can be written by equation (5):

p Að ÞpA - 1þβð Þ ð5Þ
If we set

B ¼ ln Að Þ ð6Þ
then,

p Bð Þpe - βB ð7Þ
Similarly,

p Mð Þpe - γM ð8Þ
where,

M ¼ ln LBð Þ ð9Þ
The distribution of B and M are easier to be visualized than A and LB because the high concentration on
basins of small scales. It is understood that grids of LBo10 km are ruled out for this validation because of
the possibility of losing accuracy of small LB derived from 1 km source data. Following the convention of
the Hack’s law, the unit of length and area are converted to mile and squared mile before fitting. Since the
method of computingnremains controversial in the past literatures, one way to validate equations (7) and
(8) is through inspecting the linearity of ln [p (B)] and ln [p (M)].

Scatter plots of equation (1) with setting L to LMF and LB are given in Fig. 3a,b. The Pearson
correlation coefficient varies from 0.96 to 0.99 and the root mean squared error (RMSE) varies from 10.95
to 41.67 mi for LMF and from 4.982 to 12.00 mi for LB, respectively, as given in Table 2. The linearity of
the pdf of equations (7) and (8) are tested in the following river basins, Nile, Yangtze, Mississippi,
Amazon, Murray-Darling and Volga Rivers, as shown in Fig. 4. The goodness of fit of the distribution
and the estimated β and γ are listed in Table 3. Except the slight deviation at both ends, the overall power
law distribution is very well represented by the proposed dataset with obtaining Pearson correlation
coefficients from 0.89–0.98, and the estimated β fallen between 0.4–0.5 (indicating that n is between
0.5–0.6). At this point, we have proved that the proposed data satisfy the Hack’s law.
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