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Abstract: “Internet of Things (IoT)” has emerged as a novel concept in the world of technology and
communication. In modern network technologies, the capability of transmitting data through
data communication networks (such as Internet or intranet) is provided for each organism
(e.g., human beings, animals, things, and so forth). Due to the limited hardware and operational
communication capability as well as small dimensions, IoT undergoes several challenges.
Such inherent challenges not only cause fundamental restrictions in the efficiency of aggregation,
transmission, and communication between nodes; but they also degrade routing performance. To cope
with the reduced availability time and unstable communications among nodes, data aggregation,
and transmission approaches in such networks are designed more intelligently. In this paper,
a distributed method is proposed to set child balance among nodes. In this method, the height of the
network graph increased through restricting the degree; and network congestion reduced as a result.
In addition, a dynamic data aggregation approach based on Learning Automata was proposed for
Routing Protocol for Low-Power and Lossy Networks (LA-RPL). More specifically, each node was
equipped with learning automata in order to perform data aggregation and transmissions. Simulation
and experimental results indicate that the LA-RPL has better efficiency than the basic methods
used in terms of energy consumption, network control overhead, end-to-end delay, loss packet and
aggregation rates.
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1. Introduction

The expression “every Internet-connected thing is alive” will be a new rule in the near future.
Perhaps, future networks are merely IoT, toward which all investigations will soon be converged.
Similar to the procedure of using the Internet by humans; from now on, new devices will be the primary
users of the Internet ecosystem. The attention of researchers has been recently devoted to newly emerged
technologies for manufacturing scalable IoT. However, the speed of comprehending the IoT framework
reduced due to several factors, among which the combination of different devices, secure connections,
trust management, and the collaboration between devices and systems are highlighted. Such devices
collaborate in order to aggregate, share, and conduct information in a multi-hop manner. The bulk
of information continuously generated by IoT necessitates the conversion of aggregated data into
intelligence. Such an intelligent environment can play a vital role in data routing of networks [1,2].
The consistent mobility of most IoT nodes leads to the alternative communication between devices,
and variable network topology as a result [3]. As a result of such frequent topology variations as well

Sensors 2019, 19, 3173; doi:10.3390/s19143173 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6108-6632
https://orcid.org/0000-0002-6605-498X
http://dx.doi.org/10.3390/s19143173
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/19/14/3173?type=check_update&version=2


Sensors 2019, 19, 3173 2 of 26

as the limited resources present in today’s IoT devices, routing scheme of such networks is regarded as
a significant challenge in the research world [4].

Coverage, sensing, connection, and communication of each node in IoT requires energy and cost
expenditures. As IoT equipment is becoming more and more portable and smaller, the energy limitation
of such equipment is a significant and challenging issue to be addressed [5]. Thus, prolonging the
lifetime of network nodes in order to provide long term monitoring is considered as one of the staple
goals of myriads of IoT protocols. On the other hand, as the rate of the generated and transmitted
data toward the base station of the network is remarkably significant, the data aggregation procedure
in IoT nodes is also costly. The primary goal of data aggregation methods is to collect and classify
data packets in an acceptably efficient manner in terms of energy consumption rate, network lifetime,
traffic bottleneck, and data purity [6]. The type and approach of the employed data aggregation
method varies based on the topology type, communication type, network design, and data generation
rate [7]. In data aggregation procedure, if the central nodes do not perform accurately, the base
station will not be able to provide an accurate estimation of the received data; all of which result in
the efficiency decline of the network. Hence, data aggregation approaches play an important role
in monitoring purposes as well as the long term observation of the environment [8]. In this paper,
an efficient distributed data aggregation method for IoT is proposed. Notwithstanding dozens of
conventional approaches, calculation overhead of the proposed method is negligible. Moreover, as the
network traffic varies, the proposed method still makes correct decisions automatically.

The rest of this paper is organized as follows. System model and related works regarding IoT and
data aggregation methods are presented in Section 2. In Section 3, a novel distributed data aggregation
method, is proposed. Performance evaluation of the proposed method in simulation and practical
environments are respectively illustrated in Sections 4 and 5. Finally, Section 6 concludes the paper.

2. System Model and Related Works

2.1. Internet of Things Architecture

Since IoT is to connect a considerable number of heterogeneous things through the Internet,
this technology is significantly dependent on the existence of a flexible layer architecture. In other
words, IoT is to bridge the real world and virtual world such that dynamic communication is ensured [9].
Therefore, IoT requires a novel architecture in order to obviate the inherent challenges as well as
providing acceptable scalability and Quality of Service (QoS) in separate applications [10]. According to
the presented architectures in [11–14], layers of IoT are illustrated in Figure 1.

1. Perception layer: This layer is generally known as the physical or hardware layer, and is
particularly allocated to sensors and edge recognizers of a network. In other words, physical and
environmental parameters are converted into sensed data in this layer. The output of this layer
will be considered as the input of the network layer.

2. Network layer: The main goal of this layer is to provide both direct and indirect communications
between all things and IoT equipment, such that all of them are capable of sending and receiving
data in the network. Note that the communicative infrastructures managed by network layer
include all wireless communication technologies.

3. Middleware layer: The main task of this layer is to combine names and addresses in order to serve
other components of the network. Programmers of IoT are endeavoring to connect heterogeneous
things under a communicative platform, such that a united concept of network is created and
exchanged data in databases can be saved and restored.

4. Application layer: This layer usually merges and evaluates the services provided by other layers.
This layer can present high-quality services for responding to the final user’s applications.

5. Business layer: Also known as the management layer of all components of the IoT network, is to
analyze and schematize data.
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2.2. Data Aggregation Strategies in IoT

Data aggregation (DA) is counterproductive to this distributed raw data from various sources
within the network. The accumulation in the network has a significant impact on the number of packets
transmitted or their length, thereby reducing energy consumption and prolonging network life [15].
The three main scheduling policies for DA are summarized in [16]: (i) Quadruple simple aggregation
requires each router to collect all data items periodically and collect them after a period of time Preset.
(ii) Periodic dispersal aggregation operates in a similar manner to a simple periodic strategy; however,
transferring data as soon as the node receives data from all its children. (iii) Finally, in a moderated
accumulation periodically, each node in the aggregate tree adjusts one hour of time-based on its
position and sends the result of the conclusion.

One of the chief motivations of utilizing data aggregation schemes in low-power and lossy
networks (LLNs) and IoT is to decrease energy consumption and increase network lifetime [17].
Since each network node not only has limited capacity to generate, process, and save data; but it is also
responsible for data exchange of its neighbor nodes; the necessity of efficient utilization of network
resources is axiomatic. Toward this goal, a number of data aggregation methods are proposed, in order
to remove the redundancy of unnecessary and digressive data, and reduce communication costs as
well [18,19]. The process and architecture of data aggregation in LLN networks and IoT is illustrated
in Figure 2
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Authors in [20] proposed a three-layer data aggregation infrastructure, called dynamic data
aggregation scheme (PDDA) based on priorities for sensor networks because the sensors collect a large
amount of redundant data. The proposed PDDA scheme is a hybrid approach that uses clustered and
tree-based approaches based on application types. Thus, the proposed PDDA approach achieves energy
efficiency and reduces data processing time and overhead at the big data server level. The proposed
data aggregation infrastructure has three Layers [21]:
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• Data aggregation at the level of the sensors-layer 1
• Data aggregation at the base station (BS)-layer 2
• Data aggregation at the big data Server or NoSQL Server-layer 3 server.

It should be noted that our proposed method in this paper is at the level of sensor nodes to
combine effective data with energy and efficient delay. Therefore, the other two layers mentioned in
the PDDA method do not fall within the scope of our paper.

The important data aggregation mechanisms, as well as their differences, benefits, and weaknesses,
are all described in this section. This section is divided into three categories, including cluster-based,
centralized and tree-based aggregation mechanisms for IoT:

(1) Cluster-based mechanisms: Cluster-based networks can reduce the performance load in terms
of reducing the aggregate computation and energy consumption of all nodes [22]. In cluster-based
mechanisms, the network environment is divided into different clusters while each cluster comprises
a number of sensor nodes [23,24]. In each cluster, one node is selected as the head of all other
nodes in a cluster. This will not only decrease the number of transmitted packets, but it also reduces
the transmission overhead and bandwidth consumption in transmissions from the cluster to a base
station [25]. In [26], a data storage system is presented, which has an efficient functionality in terms of
security, scalability, flexibility, and reliability in IoT to be used in the procedure of enormous data analysis.
The proposed approach of this research is to present a distributed storage infrastructure providing
scalability and reliability in IoT. Multiple data storage in the distributed system provides networks
with fault tolerance, reliability, and stability. The general structure of cluster-based mechanisms is
depicted in Figure 3.
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(2) Centralized mechanisms: Another suggested data aggregation method in IoT is termed as
the centralized method [28]. In this method, the data existing in all other network nodes along a
route is transmitted to only one node. In other words, all nodes deliver their sensed information to a
single node, which is superior to other network nodes in terms of hardware features and resources.
In this method, the central node generally aggregates several data packets and converts them into a
single packet [29]. In [30], an IoT communication platform is proposed, in order to support wireless
sensor network nodes activity and proper data delivery rate. In this approach, while the unity of
data is conserved, confidentiality and accessibility of the network are taken into consideration as well.
However, the complexity of this data aggregation mechanism is not evaluated in practical applications.
Authors in [31] presented a distributed service-driven architecture to gather data from multiple nodes
in various applications of IoT. This mechanism not only alleviates network traffic, but it can also be
employed as a flexible mechanism to share data in disparate programs. However, the main challenge
of this mechanism is the low accessibility of the central node in the network. Also, data will be lost if
breaks occur in the central node [32].

(3) Tree-based mechanisms: Another structure of IoT topology is based on trees. In this structure,
tree construction is initiated from the root node (i.e., sink node), and proceeds hierarchically to reach
leaf nodes located at the final level. After the formation of network tree, leaf nodes and median nodes
start sensing the parameters associated with the application type. Afterward, through the accessible
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parent, each node begins exchanging and transmitting data to the root node. Nodes placed between
the root node and the leaf node act as the collector of the transmitted packets from its children. One of
the main goals of the tree-based structure in LLN networks and multi-hop wireless networks is to
conserve energy as well as reducing the hidden terminal effect in the network, in that by utilizing
multi-hop communication, an acceptable balance is established in energy consumption rate [16,33].

The Internet Engineering Task Force group(IETF) has proposed a routing scheme for LLN networks
such as IoT and sensor networks, such that Internet Protocol version 6 (IPv6) is extended based on the
Routing Protocol for Low-Power and Lossy Networks (RPL) [27], [34]. RPL is an extended distance
vector-based protocol for IoT. Routing limitations and challenges in sensor networks, as the most
salient subset of IoT, distinguishes it from all other distributed systems [35]. Such limitations affect
the whole design of wireless sensor networks, including various protocols and algorithms of other
classifications of IoT. This research has focused on the routing scheme of IoT [36]. RPL consists of
an acyclic graph with one root per Destination Oriented Directed Acyclic Graph (DODAG). In such
a graph, each node acts as the parent node if required; otherwise, it is considered as a child of an
accessible parent. The utilization of a point to multi-point approach is another feature of this approach,
which is consistent with the applications of sensor networks. As depicted in Figure 4, this protocol
creates a DODAG as the root.
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If the personal area network coordinator (PAN-Coordinator) is considered as the root of the
directed acyclic graph (DAG), several paths can be established toward the PAN coordinator. However,
in accordance with the considered policies in RPL objective function, any kind of loop creation
is avoided. RPL can exploit any routing metric to create DODAG. Each node broadcasts a DAG
information object (DIO) containing the distance between the node and DAG root in terms of a specific
metric (e.g., several hops, link quality, delay or Jitter). Afterward, each node executes a distance vector
algorithm, in order to find a set of neighbor nodes which are closer to the root than the node itself.

Such neighbors are the very parent nodes. Additionally, RPL presents a fast route repair mechanism
to be utilized if any unstable loop is detected. Although RPL is implemented and completely evaluated
in TinyOS and Contiki [5], it is rarely employed on a short MAC duty cycle. As far as the investigations
of RPL reveal, RPL is not even evaluated under the operation of active beacon IEEE 802.15.4. A number
of recent routing schemes support the multiple route utilization in wireless sensor networks. Authors
in [38] propose the method of selecting the best path among all existing paths in order to obviate some
of the QoS requirements in industrial applications. To demonstrate RPL more clearly, it is crucial to
define the basic principles, based on which the algorithm is proposed. In this regard, by considering an
RPL network named G, consisting of node set S and boundary routers B (DODAG concept) the concepts
of rank, high-priority parent of DODAG, and root list of DODAG are illustrated as follows [34]:
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Definition 1. Rank: Rank R(u, j) is a criterion of the distance between the node u ∈ S and DODAG root
j ∈ B. The accurate rank calculation method depends on the DAG objective function (OF). Although the rank
calculation falls within the obligations of objective function, nodes’ rank should steadily decline while moving in
DODAG toward DODAG destination. This is why rank can be construed as a numerical representative of the
location or radius of a node within DODAG.

Definition 2. DODAG Preferred Parent (DPP): Suppose node u in G, where the single-hop neighbors set is
denoted by N(u), and DPP(u, j) is a limited subset of N(u). For each node v ∈ N(u) we have v ∈ DPP(u, j),
provided that v is of the minimum rank toward the specified DODAG root j ∈ B.

Definition 3. DODAG Root List (DRL): As mentioned formerly, each node v ∈ N(u) should send DIO
messages in broadcast manner. In GeoRank operation, the location of DODAG root should be included in such
messages. Hence, it is supposed that DRL( j) is a saved list of DODAG root location in each node u.

For each sink node, RPL creates and supports at least one DODAG. According to the predefined
specific procedure, this protocol calculates upstream and downstream routes independently; to take
advantage of them if the network objective function is fulfilled. Notwithstanding the features and
privileges of RPL protocol, this protocol suffers from a kind of unfairness, and unbalanced traffic
transmission, since the introduced objective functions in papers support a specific objective function
depending on the particular application. As elucidated in [39], one of the recently proposed solutions
is the graph degree restriction in RPL network. As mentioned by authors, graph degree restriction is
the main principle of discriminating parent node in child node selection. In this approach, the network
is modeled by a connected non-directional graph G (V, E).

Constant value k is defined such that k < |V|, where |V| is the number of existing nodes in the
network graph. Constant value k, which indicates the constraint of the number of acceptable children,
is recognized by each node. In other words, k is the maximum node degree in DODAG. Note that
the root node does not obey this constraint. In the constitution procedure of the DODAG, each node
v in DODAG selects the optimum parent p, and memorizes a potential set of alternative parents
to construct upstream nodes. To implement the graph degree constraint in Bounding Degree RPL
(BD-RPL), the principle messages of RPL protocol, like DAO and DAO-ACK, are utilized. A list of
variables used in the paper are shown in Table 1.

Due to the tremendous topological changes and the resultant requirement to synchronize and
update routing tables, a significant number of control messages are exchanged in most of the protocols
proposed for IoT. For the aim of conserving energy in most of the equipment’s with limited resources,
such communication costs should be controlled [40]. Authors in [16] focus on the LLN networks
protocols, especially RPL, where resource limitations remarkably affect efficiency. A flexible approach,
named Adaptive-RPL (A-RPL), a protocol that uses periodic simple aggregation method called
Modified RPL (M-RPL) was proposed in order to create and change network conditions through
objective function formation framework. In this approach, network data is aggregated along with
seeking the root node. The proposed data aggregation method in this protocol is so simple (maximum,
minimum, average), such that depending on the application of the data received by the parent node, the
maximum value or minimum value is merely sent to its parent. Furthermore, a compatible scheduling
model is proposed to optimize the number of control packets in an RPL network. Also, a compatible
MAC-based function is introduced in order to determine the message transmission frequency based
on the traffic variety and storage degree of the node.
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Table 1. List of variables used in the paper.

Variables Definition Variables Definition

G Graph DIS DODAG Information
Solicitation

V V is a set of vertices DAO-Ack Destination Advertisement
Object Acknowledgement

E E is a set of edges
{
α, β, p, T

}
Automata’s operations

S Set of nodes α Action of Automata

B Border routers β Input set of automata

u, v Node in graph c Penalties of Automata

p Parent node d Bonuses of Automata

p’ Alternative parent node p Probability of Automata

DODAG Destination Oriented Directed
Acyclic Graph T Learning Algorithm

GeoRank A geographic routing approach
for RPL lbl− indicator Aggregation label

Root Root node of graph (Sink) F Aggregation Function

Rank Number hops of Root node in a
DODAG

PAgg
Probability of Aggregation by

node

OF Objective Function PAN
Number of data packets

aggregated by previous nodes

DPP DODAG Preferred Parent PAM

Number of data packets not
being aggregated by previous

nodes

DRL DODAG Root List RS Reinforcement Signal

k Constant K is degree of graph Rate j Rate of input packets

DIO DAG Information Object NPKi

Number of aggregated data
packets in i

DAO Destination Advertisement
Object PDR Packet Delivery Ratio

3. Proposed Method (LA-RPL)

In accordance with the demonstration of the previously proposed approaches in Section 2,
the proposed method of this paper comprises two objective functions for both network graph creation
phase and aggregation-based data transmission and exchange phase. In our proposed method,
learning automata-RPL (LA-RPL), according to the first objective function (named OF 1), each parent
node is limited to k child nodes, where value k is determined depending on the network application
type. Through the second objective function, namely OF 2, each network node is equipped with a
learning automata. According to the status and congestion of the received packets, such that learning
automata grants either data aggregation permission or instantly direct transmission permission to the
parent node. Subsequent subsections are as follows. The formation of the network graph, based on the
objective function OF 1, is illustrated in Section 3.1. The proposed learning automata in the form of
objective function OF 2 is presented in Section 3.2.

3.1. Network Graph Formation Phase

RPL graph is generally challenged by the unbalanced work-load and the degree of network nodes.
To address this issue, a k degree constraint is determined in order to prohibit each parent node from



Sensors 2019, 19, 3173 8 of 26

possessing more than (k) threshold children. It is axiomatic that this approach increases the graph
levels. An example of the RPL structure and unbalanced network nodes is illustrated in Figure 5 [27].
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Figure 5. A perspective of RPL graph structure.

For instance, the constraint of degree k = 2 in the connected structure of the network tree is
depicted in Figure 6. According to [40] the queueing mechanism of network nodes has limited efficiency
on network congestion reduction. However, the act of increasing network graph levels restricts the
number of assigned children to a common parent node and reduces the probability of collision and
queue overflow in the network as a result.
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In this approach, the number of transmitted (i.e. relayed) packets in nodes placed near the sink 
node is not changed. However, the collision and packet loss rate decreases, which yields in the 
reduction of network energy consumption. According to our proposed method, in each node other 
than the root node, these steps are followed: 

1. As soon as node v selects its optimal parent (p) from DODAG, node v assists p through sending 
a DAO message, in order to construct the downstream routes. 
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After the placement of network nodes in the environment, the root node determines the type of
objective function, based on the priority of the network application type; then, the node broadcasts
the degree restriction value (i.e., k constant) through DIO messages throughout the network [27].
Note that the priority of the network application type specifies the targeted end-to-end delay and
packet delivery ratio. Having received the DIO message in the first level, each child node investigates
the value of graph degree restriction (written in the Options field of DIO message) to verify whether or
not this value exceeds the determined threshold. This value must not exceed the determined threshold.
We have used this field in the DIO control message to specify graph and threshold. In other words,
this field has not added any overhead to the network but has been able to inform one of the target
network functions in the formation of the graph to the members of the graph. The parent nodes are
aware of the amount of k in the network that cannot send to children more than the threshold k of the
DAO-Ack message on admission as a child. The proposed structure for DIO message is presented in
Figure 7.
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In this approach, the number of transmitted (i.e., relayed) packets in nodes placed near the
sink node is not changed. However, the collision and packet loss rate decreases, which yields in the
reduction of network energy consumption. According to our proposed method, in each node other
than the root node, these steps are followed:

1. As soon as node v selects its optimal parent (p) from DODAG, node v assists p through sending a
DAO message, in order to construct the downstream routes.

2. Since p may receive DAO from different children, this node investigates the number of requests at
the moment of receiving a DAO. p adopts node v as its child and adds the existing route to v into
its routing table, provided that the number of accepted parental requests (including the request
of node v) does not exceed k. By doing so, p informs v about acceptance of the request through
sending a DAO-ACK to v. On the other hand, if the number of existing children of p exceeds k
value, p denies the request of v and informs it through sending a DAO-ACK.

3. Having received the DAO-ACK message, node v creates the upstream route to p in order to
stop the procedure of DAO allocation and confirmation, provided that DAO-ACK is an accept
confirmation. However, if the DAO-ACK includes a denial notification, v selects another proper
parent p’ from the available parent set, and sends a DAO message to p’.

3.2. Data Aggregation Scheme Based on Learning Automata

As a novel research topic, the learning mechanism of alive organisms classifies into two general
categories. The first category deals with recognizing the learning principles of organisms and the
relevant stages. The second category deals with presenting a methodology of placing such principles
in a machine. Learning is defined as the occurred changes in a system efficiency based on the former
experience. One of the essential features of a learner system is the ability to improve the performance
of itself with the passage of time. To put in mathematical explanation, the main objective of a learner
system is to optimize a task which is not entirely recognized. Therefore, one of the approaches of this
problem is to decrease the objectives of learner system into an optimization problem defined on a
set of parameters; the aim of which is to find the set of optimal parameters. A Learning Automata
considered as an abstract object with a finite number of operations. Learning Automata operates
through choosing one operation from the operation set and applying that operation to the environment.
The applied operation is evaluated by a random environment, and the learning automata employs the
environmental response to choose its next operation. During this procedure, the automata learn to
choose the optimal operation. How to utilize the environmental response of the former operation in
selecting the next operation is specified by the learning algorithm of the automata [41]. A learning
automata consists of two main components [42]:



Sensors 2019, 19, 3173 10 of 26

• Random automata with a limited number of operations and a random environment communicating
with the automata.

• The learning algorithm through which the automata learns the optimal operation.

A random automata defined as the fourfold set LA ≡
{
α, β, p, T

}
, where α ≡ {α1, α2, . . . , αn} is the

set of automata’s operations (n denotes the number of automata’s operation), and β ≡
{
β1 , β2 , . . . , βm

}
is the input set of automata. The environment is denoted by the fourfold set of E ≡

{
α, β, c, d

}
, where

c ≡ {c1, c2, . . . , cn} is the set of penalty probabilities and d ≡ {d1, d2, . . . , dn} denote the automata’s
bonuses. The environment input is one of the n selected operations of the automata. The output
(i.e., response) of the environment to each operation i is denoted by βi. If βi is a binary response,
the environment is denominated as P-model. In such an environment, βi(n) = 1 is construed as the
unfavorable response, or failure; and βi(n) = 0 is considered as favorable response, or success. Set c
denoting the penalty (failure) probabilities of the environment responses is defined

ci = Prob
{
β(n) = 1

∣∣∣α(n) = αi
}
, i = {1, 2, 3, . . . n} (1)

where the probability of receiving an unfavorable response from the environment is denoted by αi.
Note that αi values are unspecified, and it is supposed that all values of ci have a unique minimum value.
In the same way, the environment can be demonstrated as a set of bonus (success) probabilities (i.e., {di})
where di denotes the probability of receiving favorable a response from operation αi. The relation
between the random automata and environment is shown in Figure 8. This set as well as the learning
algorithm are denominated as Stochastic Learning Automata. In a similar manner, the stochastic learning
automata can be demonstrated by the fourfold set LA ≡

{
α, β, p, T

}
, where p =

{
p1, p2 , . . . , pn

}
is

the border of the probabilities of automata’s operations, and T ≡ p(n + 1) = T[α(n), β(n), p(n)] is the
learning algorithm.
Sensors 2019, 19, x  10 of 24 

 

 
Figure 8. Stochastic Learning Automata [41]. 

If operation 𝛼 is selected in the 𝑛௧ step; then, in the (𝑛 +  1)௧ step we have: 
The favorable response from the environment is 𝑃,(𝑘 + 1) = ቊ 𝑃,(𝑘) + 𝛼(1 − 𝑃,(𝑘)),      𝑖 = 𝑗𝑃,(𝑘)(1 − 𝛼),                      ∀𝑗 ് 𝑖  (2) 

The unfavorable response from the environment is 

𝑃,(𝑘 + 1) = ቐ 𝑃,(𝑘) + (1 − 𝛽),                 𝑖 = 𝑗𝛽𝑟 − 1 + 𝑃,(𝑘)(1 − 𝛽),        ∀𝑗 = 𝑖  (3) 

It is worth stating that set 𝛼 includes the outputs (i.e. the operations) of automata. In other 
words, the automata selects and applies one operation among all r operations existing in this set in 
each step. Note that the input set β determines the inputs of the automata [42]. 

Having created the network graph, network nodes execute the proposed objective function OF2. 
Each parent node starts either aggregating data or instantly sending data in a recent time slot. The 
act of data aggregation is performed by each parent node such that the next-step action is selected 
according to the environmental received feedback. Note that the proposed system acts in a 
distributed manner; such that if a parent node in lower layers aggregates some packets, such packets 
are not aggregated in higher layers, to avoid the multi-step aggregation and the resultant 
unacceptable imposed delay on data packets. In order for data aggregation mechanism to perform 
efficiently, each sensor node is equipped with learning automata. Learning automata is a decision-
making system selecting an existing operation in the upcoming round according to the environmental 
received feedback. Learning automata includes two phases: selecting phase, and learning phase. In 
the selecting phase, based on the environment feedback, decisions are made concerning the 
upcoming rounds toward improving the current status about previous steps [43]. 

(1) Selecting Phase: All of the sensor nodes have an aggregation label (lbl_indicator), which is 
initialized to 0 at the beginning. When a sensor node plays the role as an aggregator, the value 
of this label changes to 1. In the routing procedure proceeding data reception, each node acts 
as an aggregator with probability 𝑃  and, accordingly, acts as an ordinary node with 
probability 1 − 𝑃 to prepare and send the received data toward the root node. Upon the 
activation of lbl_indicator (i.e. changing the value to 1), the node waits for t seconds to receive 
more data packets. Note that t is a constant value for all of the nodes acting as an aggregator. 
After the passage of t seconds, all the received data is aggregated into a single data packet, by 
means of the function F (Aggregation). Afterwards, this single packet is routed. At the 
beginning, all nodes have the same 𝑃. However, through the repetitions of the algorithm 
and the reception of reinforcement signals from the environment, this probability changes. 

(2) Learning Phase: In the learning phase, a learning automata employed in the internet of things 
network as a distributed factor. Each node, as a learning agent, is equipped with learning 
automata comprising two different operations. The concepts and parameters of such a learning 
automata are as follows: 

• Agent: Each sensor node acting as an independent learner is known as an agent. In other words, 
the action of learning agent has no effect on other learning agents. 

• Action: Each agent can act as an aggregator or an ordinary node. 

𝛼(𝑛) 

Random automata 

Environment 

𝛽(𝑛) 
Figure 8. Stochastic Learning Automata [41].

If operation αi is selected in the nth step; then, in the (n + 1)th step we have:
The favorable response from the environment is

Pi, j(k + 1) =

 Pi, j(k) + α
(
1− Pi, j(k)

)
, i = j

Pi, j(k)(1− α), ∀ j , i
(2)

The unfavorable response from the environment is

Pi, j(k + 1) =
 Pi, j(k) + (1− β), i = j

β
r−1 + Pi, j(k)(1− β), ∀ j = i

(3)

It is worth stating that set α includes the outputs (i.e., the operations) of automata. In other words,
the automata selects and applies one operation among all r operations existing in this set in each step.
Note that the input set β determines the inputs of the automata [42].

Having created the network graph, network nodes execute the proposed objective function OF2.
Each parent node starts either aggregating data or instantly sending data in a recent time slot. The act of
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data aggregation is performed by each parent node such that the next-step action is selected according
to the environmental received feedback. Note that the proposed system acts in a distributed manner;
such that if a parent node in lower layers aggregates some packets, such packets are not aggregated
in higher layers, to avoid the multi-step aggregation and the resultant unacceptable imposed delay
on data packets. In order for data aggregation mechanism to perform efficiently, each sensor node
is equipped with learning automata. Learning automata is a decision-making system selecting an
existing operation in the upcoming round according to the environmental received feedback. Learning
automata includes two phases: selecting phase, and learning phase. In the selecting phase, based on
the environment feedback, decisions are made concerning the upcoming rounds toward improving the
current status about previous steps [43].

(1) Selecting Phase: All of the sensor nodes have an aggregation label (lbl_indicator), which is
initialized to 0 at the beginning. When a sensor node plays the role as an aggregator, the value of
this label changes to 1. In the routing procedure proceeding data reception, each node acts as
an aggregator with probability PAgg and, accordingly, acts as an ordinary node with probability
1 − PAgg to prepare and send the received data toward the root node. Upon the activation of
lbl_indicator (i.e., changing the value to 1), the node waits for t seconds to receive more data
packets. Note that t is a constant value for all of the nodes acting as an aggregator. After the
passage of t seconds, all the received data is aggregated into a single data packet, by means of the
function F (Aggregation). Afterwards, this single packet is routed. At the beginning, all nodes
have the same PAgg. However, through the repetitions of the algorithm and the reception of
reinforcement signals from the environment, this probability changes.

(2) Learning Phase: In the learning phase, a learning automata employed in the internet of things
network as a distributed factor. Each node, as a learning agent, is equipped with learning
automata comprising two different operations. The concepts and parameters of such a learning
automata are as follows:

• Agent: Each sensor node acting as an independent learner is known as an agent. In other
words, the action of learning agent has no effect on other learning agents.

• Action: Each agent can act as an aggregator or an ordinary node.
• Reinforcement Signal (RS): The number of data packets received by node j during time

duration t (also known as input degree).

Rate j = PAN + PAM (4)

where PAN is the number of data packets aggregated by previous nodes throughout the routing,
and PAM is the number of data packets not being aggregated by previous nodes throughout the routing.

RS = 1−
1

Rate j
(5)

If S > Threshold δ, then node j is rewarded. Otherwise, the node is given a penalty. If a reward is
received by the node, PAgg varies as

PAgg = PAgg + α×R×
(
1− PAgg

)
, (6)

And if a bonus is received by the node, PAgg will be as

PAgg = (1− β(1−R))PAgg, (7)
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where β is the penalty coefficient, T is the reward to penalty ratio, and the impact of coefficients for the
total number of (plain or aggregated) received packets in node j during time duration t is

NAP j =
∑

i = 1degree NPKi (8)

where NPKi is the number of aggregated data packets in i for node j, and the impact of coefficients
(reward/penalty) is as

T = 1−
1

NAP j

(9)

In Figure 9, the status of a node in the network is displayed with the RPL structure. In this figure,
depending on the role of the node on the network, either the child node or the parent, one or both
types of input can be adopted. For example, for a leaf node, there is only a data sensing unit and
packet formation, and in the parent node, in addition to the sensor segment, there is also a unit of
message reception from the children. Therefore, the parent node in the proposed method, depending
on whether the package received from its child has already been aggregated, can be done with the
functions of the automata to create and manage the Transmission Queue. Finally, the outgoing packets
from each parent node are packets that once have been aggregated.
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Figure 9. The diagram of data aggregation mechanism in each parent node.

In Figure 10, the internal communication diagram of each node is displayed in the RPL network.
In this form, the Data Generator unit has the task of sensing the physical environment and data
generation that transmits its output to the aggregation node in the node. The control unit for collecting
information from the child nodes manages the information received from the parent and acts on the
child to send the message to the data sending unit aggregated to the parent or to send the Ack message.
It should be noted that all the units mentioned use their internal timer.

In Figure 11, a general diagram of the proposed method is presented. As shown earlier, the root
node uses two objective functions, one to two, to send a DIO message and form a network graph.
In the second step, network nodes send the root node after receiving the DIO message to send the DAO
message requesting a root subscription. At the first level, there is no limit to the number of children
for root nodes. The parent nodes that are rooted are forwarding the DIO message received from the
unit by updating the open rank. At this point, each parent node can accept k child numbers and will
not respond to requests that exceed the threshold. This process is done to the extent that the network
graph is complete. In the aggregation phase, each label has a label (zero). Given that the parent node
closed recently? Retrieved with a learning automata system and will wait for t seconds. This will have
a greater chance of getting future packs. Otherwise, he will receive a fine and send the packet directly
to his parent. The parent node, in the event of expiration, t submits to the aggregation of the data
received and its production data, if any, and sends the packet to the parent. In order to avoid multiple
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aggregations of a packet at different levels of the network graph after the package is first combined,
the label will change to 1.
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4. Performance Evaluation

In order to evaluate the performance of the proposed method and compare its performance with
those of base approaches, Contiki Operating System and Cooja emulator were utilized [44]. Contiki is
an open source operating system for simulating IoT, which enables us to provide communication
between low power and low-cost microcontrollers through the Internet. Additionally, using the
embedded tools in the core of Contiki Operating System, this OS provides the implementation of
complex wireless networks. Contiki adapted for the hardware which is simultaneously constrained
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by the memory, power, processing capability, and communication bandwidth. A Contiki-based
system usually requires resources such as a kilobyte-ranged memory capacity, a milliwatt-ranged
power, a several megahertz-ranged processing frequencies, and hundreds of kilobits per second
bandwidth. Such class of hardware includes a wide range, such as common embedded systems to
old computers [45,46]. Note that while alluding to an emulator, we imply a software or a hardware
system which acts positively close and similar to a real system; such that while utilizing such a system,
it is usually supposed that a real system is being utilized. However, it is worth mentioning that the
implementation procedure of simulators are entirely different. In other words, simulators do not
exactly follow the rules and dealings of a real system. Rather, they have specific rules, some of which
may hardly occur in a real, non-simulated system. In the present paper, Cooja emulator was employed,
in order to model the proposed methods as well as the base method on the Contiki open source
operating system.

In both scenarios, there is only one sink node, and 49 sensor nodes are randomly distributed with
a 10 m × 20 m in the indoor and outdoor area. The simulation was carried out using 2.66 GHz Intel
processor CoreI5 with 8GB RAM on Ubuntu OS. A screenshot of the COOJA simulator environment
is shown in Figure 12, which shows the relationship between the nodes of Gloriot. As it is known,
all network nodes using DIO and DAO and DAO-Ack messages try to form an enhanced RPL graph
with a fixed constraint k = 2.
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4.1. Test Settings

In order to investigate and evaluate the performance of the proposed method, a set of sensor nodes
were employed, all of which were produced by our research group (Internet of Things Laboratory
of Iran). The designed hardware, which is made in accordance with the specifications elaborated in
Table 2 is commercially known as GLORIOT. This test was carried out in Cooja emulator environment
and real feedbacks, in order to take test precision into consideration as well.
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Table 2. Specifications of sensor nodes Gloriot in Cooja environment.

Part Description

Micro STM32f405-ARM32-bit-Cortex-M4-CPU

Flash Up to 1 Mbyte

LP Operation Sleep, Stop and Standby modes VBAT supply for RTC, 2032 bit backup- registers
+optional 4 KB backup SRAM

Radio TI CC2520

Routing Level RPL based on border router

Network Layer IPv6 with 6LoWPAN standards 802.15.4

Application Layer GLORIOT-Interface + COAP

Battery Level Battery holder for 2 AAA batteries

Sensors Sensors: temperature/humidity(SHT15)

Sensor Port Interfaced with the IRMote-CC2520

Radio Rate 30 m −1 dBm in simulation and 2 m in experimental

Propagate Model Unit Disk Graph Model

Number of Nodes 50 randomly-deployed nodes

Node Position Fixed without mobility

Sink/Root node Position X/2, Y0

Warming 120 s

Data Generating Every 20 s and 30 s UDP packet

Simulation time 2 h

4.2. Energy Consumption Evaluation

IoT nodes commonly use batteries; therefore, the energy source of such nodes are the indispensable
factor for their persistent survival and activity in network environment. Regarding this issue,
the network energy consumption is measured through two approaches named real energy consumption
and nominal energy consumption. In fact, these two measurement approaches are the energy
consumption values in real world implementation and Cooja emulator environment respectively.
The first solution to calculate the energy consumption rate in milli-Joule scales is modeled as [47,48]:

Energy(mJ) =
(Tx × 19.5 mA + Rx × 21.8 mA + CPU × 1.8 mA + LPM× 0.0545) × 3V

4096× 8
(10)

where Tx and Rx respectively represent the consumed energy in each transmission and reception
occurred in a node. In addition, the power consumption level (in milli-watt hour units) in network
nodes is calculated through Equation (10) as:

Power(mW) =
Energy(mJ)

Time(s)
(11)

The energy consumption diagram of the proposed method as well as those of base RPL approach,
bounding degree (BD-RPL), modified RPL (M-RPL) and adaptive RPL (A-RPL) version is depicted
in Figure 13. It is obvious from Figure 13 that the decrease of exchange rate as well as the increase
of available time of network nodes not only have abated network congestion, but have reduced the
number of required efforts for data exchange as well. Accordingly, the proposed method consumes
less energy as compared to the base approaches; hence, longer network lifetime is provided by
this approach.
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Figure 13. The results of energy consumption evaluation, while network traffic is set to 5, 10, and 15
packets per minute.

4.3. Control Overhead Evaluation

According to the assertions in Section 2 of this paper, a relatively high percentage of network
activity time is spent on environmental control message exchanges, in as much as each connection
or communication in RPL mechanism requires the transmission of control packets. Furthermore,
due to the utilization of wireless communication medium, the collision rate (i.e., signal collision) of
nodes in a tree-structured network in non-extensive environments is relatively high. This is why
the precipitation of reaching the steady state procedure in a network graph, prohibition of Lossy
communication, and reduction of network communications through aggregating multiple packets in
one packet, will desirably reduce the number of efforts required for accessing the medium. Note that
another cause of signal congestion in a RPL tree is the usage of multicast and broadcast messages
throughout the network.

In other words, according to Figure 14, our proposed method has increased the medium access
probability for adjacent nodes; in that this method reduces not only the required medium access time
but also the number of back-offs occurred in the medium access control layer. The criterion number of
control packets in a network is appreciably dependent on the traffic rate (i.e., the number of packets
generated in the time unit) as well as on the changes that have taken place in the graph topology
structure. In the real world, numerous factors can intensify this procedure; such as noise, signal error
in an indoor environment, signal distortion and attenuation, and similar drawbacks preventing the
high-quality signal from reaching the intended place. The reduction of RSSI rate is commonly derived
from the aforementioned factors, all of which are directly related to the network decisions. Due to
the expensive costs of detection, restoration, and recognition of signals in hardware implementations;
the message retransmission approach is proposed.

4.4. Average Path Length Evaluation

In this test, network performance is investigated through different link successful transmission
rates. In particular, link successful transmission rate among nodes varies between values 0.3, 0.5, and 0.7.
In other words, the higher successful transmission rate a link has, the higher child-to-parent accessibility
is provided, and the fewer number of efforts are required for data transmission. Consequently, as the
successful transmission rate of a link reduces, the number of efforts made by a typical child in order to
connect to its corresponding parent increases. This leads the connection and communication between
child and parent to be more problematic; all of which can culminate in either link failure or consecutive
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child parent session failures. In this test, which is known as the average path length test, the average
number of traversed hops between the leaf node and the root node is indicated.
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Since the primitive criterion for network graph formation in the basic RPL approach is defined
as the hop-count distance from the sink node, the values of average path length in this approach is
lower than other approaches. In BD-RPL, similar to our proposed method, the number of hop-counts
to the root node has increased, in that nodes’ degrees have been restricted. Through the utilization
of a combinational objective function as well as the consideration of hop-count parameter in graph
formation, the tree height in M-RPL and A-RPL approach has been decreased. In the proposed method
of this paper, as a result of degree restriction, the network tree height has been increased. As a result,
the more successful transmission rate of link increases, the less average path length; as illustrated in
Figure 15.
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Figure 15. The results of average path length evaluation, while the successful transmission rate of links
varies between 0.3~0.9.

4.5. Upward Average Delay Evaluation

The upward consumed time for a packet to reach the sink node is known as a function of the distance
to the sink node. According to Figure 16, as anticipated, due to the degree restriction, the upward delay
in reaching the sink node in the proposed method is less than those of other approaches. The reduction
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of network nodes overflow rate as well as the aggregated packet transmissions has brought about a
trade-off; such that the slight impact of packets aggregation delay is evident in the network.
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Figure 16. The comparison of average upward delay toward the sink node, while the number of
traversed hops varies between 2~5.

In RPL, M-RPL and ARPL approaches, due to the occurred congestion on parent nodes, the delay
of seeking the root node is gradually increased. However, as compared to BD-RPL, the degree
restriction in the proposed LA-RPL method has caused some time duration to be consumed for
aggregation, as well as the common existing packet reception delay, processing delay, transmission
delay, and propagation delay. On the other hand, since the packet transmission delay is longer than
the aggregation delay, less total time is consumed for packet transmissions by the proposed method in
comparison with BD-RPL.

AD =

∑n
i=2(DProcess + DQueue + DAggergation + DTrans + DPropagate)∑n

i=2(Hop)
(12)

In the proposed method, DAggregation is a nonzero value. This value is equal to zero for all
other approaches.

4.6. Network Warming Time Test

In each RPL network graph, the root node transmits a start message, which is an rudimentary
DIO message. Afterward, the network requires an opportunity to create a network graph. As shown
in Figure 17, despite former favorable results of the proposed method, this method requires longer
network warming time for first time. The warming time of the proposed method consists of the
restriction of the number of children assigned to the parent node and amalgamate it into DIO message
format, as well as the priority comparison among child nodes for selecting the best parent among
all available parents. This procedure requires more incipient exchanges as compared to the base
approaches like RPL, M-RPL, and A-RPL. The degree restriction of parent nodes increases the number of
levels and effort steps passed by child nodes for the sake of parent node selection; therefore, the height
of the network tree has been increased. This approach has been regarded as desirability cost and
routing management of network nodes, and, following the inevitable existence of both privileges and
deficiencies in each proposed IoT protocol, this can be alluded to the cost of the proposed method.
Also, the effect of the successful transmission rate of a link on the warming time also indicates the
efforts made by nodes, in order to create the network graph.
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Figure 17. The comparison of warming time in network graph while the successful transmission rate
of links varies between 0.3~0.9.

According to Figure 17, in the proposed method of this paper, as the successful transmission rate
of links decreases, the waiting time for the creation of a network graph is increased up to four times.
However, in RPL, M-RPL, and A-RPL approaches, this increasing trend has been up to at most three
times. This observation highlights the significance of the link quality in the proposed method and
BD-RPL approach.

5. Performance Evaluation in Practical Tests

For the sake of performance evaluation of the proposed method, some practical tests performed
in addition to the previously presented simulation tests. Note that practical tests executed on the
same designed hardware with the same conditions. A perspective of the designed sensor nodes in IoT
Laboratory(Gloriot) illustrated in Figure 18.

Sensors 2019, 19, x  18 of 24 

 

the proposed method. Also, the effect of the successful transmission rate of a link on the warming 
time also indicates the efforts made by nodes, in order to create the network graph.  

 
Figure 17. The comparison of warming time in network graph while the successful transmission rate 
of links varies between 0.3~0.9. 

According to Figure 17, in the proposed method of this paper, as the successful transmission rate 
of links decreases, the waiting time for the creation of a network graph is increased up to four times. 
However, in RPL, M-RPL, and A-RPL approaches, this increasing trend has been up to at most three 
times. This observation highlights the significance of the link quality in the proposed method and 
BD-RPL approach.  

5. Performance Evaluation in Practical Tests 

For the sake of performance evaluation of the proposed method, some practical tests performed 
in addition to the previously presented simulation tests. Note that practical tests executed on the 
same designed hardware with the same conditions. A perspective of the designed sensor nodes in 
IoT Laboratory(Gloriot) illustrated in Figure 18. 

 
Figure 18. A perspective of the designed sensor node accompanied by ST-Link interface. 

Two network scenarios (Indoor and Outdoor) selected to evaluate the performance of the 
proposed scheme Learning Automata RPL (LA-RPL). Similarly, the distribution of nodes in indoor 
and outdoor environments are shown in Figures 19 and 20, respectively. 

0

2

4

6

8

10

0.3 0.5 0.7 0.9

T
im

e(
s)

Link Success Rate

Warming up

RPL BD-RPL M-RPL A-RPL LA-RPL

Figure 18. A perspective of the designed sensor node accompanied by ST-Link interface.

Two network scenarios (Indoor and Outdoor) selected to evaluate the performance of the proposed
scheme Learning Automata RPL (LA-RPL). Similarly, the distribution of nodes in indoor and outdoor
environments are shown in Figures 19 and 20, respectively.
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5.1. Routing Packets and Loss Packets and Aggregation Evaluation

In this test, in order to evaluate the performance of the proposed method and investigate its
success in the delivery of produced data packets throughout the network, the difference between the
network nodes’ transmitted packets and root node’s received packets postulated as the evaluation
criterion. The number of packets being retransmitted because the noise is not calculated, withstands
the fact that the connection type of this test considered as user datagram protocol (UDP).

Table 3 shows the number of packets sent/receive/drop, packet delivery ratio (PDR),
and Aggregation rate for all evaluated methods are in two indoor and outdoor environments.
RPL protocol shows the packet delivery ratio from indoor (91%) and outdoor (95%) environment in
the network perspective. Due to the use of graph-grade constraints and the formation of a balanced
graph, the delivery rate has risen to 96% in BD-RPL protocol. Using a single objective function in
M-RPL method, the percentage of packet delivery ratio (PDR) reaches to 93% in an indoor environment
and 95% in outdoor space. The A-RPL method has performed more efficiently than expected in its
predecessor’s expectations and reach to 96% of the packets in the network in both indoor and outdoor
space, but the proposed method has not yet been able to overtake it. According to the results of
the proposed LA-RPL approach, around 98% of packets sent to the network reached in an indoor
environment.. On the other hand, the PDR reaches 99%. Thus, the reliability of the packet delivery in
the network in the proposed method is far higher than the comparable methods.
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Table 3. Results of practical tests comparing the proposed method and other approaches in indoor and
outdoor environments.

Protocol Sent Receive Drop Packet Delivery
Ratio(%)

Aggregated
(%)

RPL(Indoor) 81,874 75,313 6561 91.9 0
RPL(Outdoor) 81,430 77,987 3443 95.7 0

BD-RPL(Indoor) 83,326 80,334 2992 96.4 0
BD-RPL(Outdoor) 81,450 79,004 2446 96.9 0

M-RPL(Indoor) 78,830 73,369 5461 93.1 6.78
M-RPL(Outdoor) 77,329 73,650 3679 95.2 9.83
A-RPL(Indoor) 80,993 78,132 2861 96.4 11.03

A-RPL(Outdoor) 82,584 79,931 2653 96.7 13.26
LA-RPL(Indoor) 83,718 82,665 1053 98.7 34.11

LA-RPL(Outdoor) 82,880 82,151 729 99.1 37.7

Based on results in Table 3 noted that the packet aggregation rate in RPL and BD-RPL is zero
because both methods have not any aggregation process in their protocol. In M-RPL aggregation rate
is 6.78 and 9.83 in the indoor and outdoor environment respectively, but these rates in A-RPL are
increased about 11.03 and 13.26 in each experimental environment. Finally in the proposed method
(LA-RPL) aggregation rate is 34.11% in the indoor environment, and 37.3% in the outdoor environment.
In other words, for each hundred transmitted packets in the network, approximately 34 packets in the
indoor environment and 37 packets in the outdoor environment are received by the root node in an
aggregated format.

5.2. Average Power Consumption Per Node

This test is allocated to the investigation of the average energy consumption for each network
node. By the acquired simulation results presented in Figure 13, it is observed through this practice test
that the energy consumption of network nodes is reduced. According to Figure 21, the average energy
consumption of each network node for traffic rates 5, 10, and 15 packets per minute is respectively 3.37,
6.14, and 17.4 milliwatts.

Sensors 2019, 19, x  20 of 24 

 

Table 3. Results of practical tests comparing the proposed method and other approaches in indoor 
and outdoor environments. 

Protocol Sent Receive Drop Packet Delivery Ratio(%) Aggregated (%) 
RPL(Indoor) 81874 75313 6561 91.9 0 

RPL(Outdoor) 81430 77987 3443 95.7 0 
BD-RPL(Indoor) 83326 80334 2992 96.4 0 

BD-RPL(Outdoor) 81450 79004 2446 96.9 0 
M-RPL(Indoor) 78830 73369 5461 93.1 6.78 

M-RPL(Outdoor) 77329 73650 3679 95.2 9.83 
A-RPL(Indoor) 80993 78132 2861 96.4 11.03 

A-RPL(Outdoor) 82584 79931 2653 96.7 13.26 
LA-RPL(Indoor) 83718 82665 1053 98.7 34.11 

LA-RPL(Outdoor) 82880 82151 729 99.1 37.7 

5.2. Average Power Consumption Per Node 

This test is allocated to the investigation of the average energy consumption for each network 
node. By the acquired simulation results presented in Figure 13, it is observed through this practice 
test that the energy consumption of network nodes is reduced. According to Figure 21, the average 
energy consumption of each network node for traffic rates 5, 10, and 15 packets per minute is 
respectively 3.37, 6.14, and 17.4 milliwatts. 

 
Figure 21. Comparison of average energy consumption of each node, while the traffic rate is 5, 10, 
and 15 packets per minute. 

5.3. The Average Number of DIO Control Packets while Topology Changes 

The main objective of this test is to investigate the extent to which the proposed method is 
effective to preserve trickle timer; such that the transmission of unnecessary DIO messages are 
avoided. In other words, to what extent the creation of steady network graph can reduce the control 
overhead, and increase the available time of nodes as well. In the proposed method and BD-RPL, 
through providing a balance in the network graph, the degree restriction of parent nodes prevents 
the occurrence of congestion; therefore, the rate of DODAG Information Solicitation messages (DIS) 
and network instability is reduced in comparison with the base RPL, M-RPL, and A-RPL approach. 
In Figure 22, the average number of DIO messages was published in the network in the indoor 
environment over five times and averaged over time. 

0

10

20

30

40

15 10 5

P
ow

er
(m

W
)

Packet per Minute

Average Power Consumption per Node

RPL BD-RPL M-RPL A-RPL LA-RPL

Figure 21. Comparison of average energy consumption of each node, while the traffic rate is 5, 10,
and 15 packets per minute.



Sensors 2019, 19, 3173 22 of 26

5.3. The Average Number of DIO Control Packets while Topology Changes

The main objective of this test is to investigate the extent to which the proposed method is
effective to preserve trickle timer; such that the transmission of unnecessary DIO messages are
avoided. In other words, to what extent the creation of steady network graph can reduce the control
overhead, and increase the available time of nodes as well. In the proposed method and BD-RPL,
through providing a balance in the network graph, the degree restriction of parent nodes prevents
the occurrence of congestion; therefore, the rate of DODAG Information Solicitation messages (DIS)
and network instability is reduced in comparison with the base RPL, M-RPL, and A-RPL approach.
In Figure 22, the average number of DIO messages was published in the network in the indoor
environment over five times and averaged over time.Sensors 2019, 19, x  21 of 24 
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Figure 22. The diagram of trickle timer control of DIO message in indoor environments.

This is mainly since, despite the existence of upper-threshold recognized instability in the network,
a reset trickle timer that culminates in the transmissions of DIO messages, as well as some changes
in the network graph are essential. An important note in this test is that the location of five nodes
changed after the passage of 60 min from the initial start time. This is done to investigate and compare
both approaches in terms of both the speed and the cost of restoring network graph in indoor and
outdoor environments. According to the results of the test, the number of published DIO messages
in the outdoor environment network is lower than the indoor environment in the proposed method
of LA-RPL and BD-RPL, which indicates the stability of the network graph in these two protocols.
Also, in the M-RPL and A-RPL methods, due to the lack of focus on the grid structure, there was no
systematic and accountable management of the DIO message. The results of the five repetitions of the
outdoor test are shown in Figure 23.
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6. Conclusions

Due to the significance of communications among nodes as well as the topology and data
packets’ transmission method in wireless sensor networks, specifically in the Internet of Things,
this research investigated the state-of-the-art proposed methods and presented a novel solution for the
mentioned issues. According to the presented documentaries in this research, routing approaches in
IoT extended facets, such that it was highly dependent on the hardware, software, and the embedded
operating system leaded to a number of various challenges. Routing efficiency of a destined source
and destination pair were remarkably affected by issues such as computational overhead, algorithmic
complexity, security, reliability, hardware fault tolerance, data error, and so forth. Such challenges were
so wide-ranging and relevant to the cross layer issues that exceed the scope of this research. This paper
focused on the reduction of both excessive exchanges and routing load in IoT, specifically in RPL
approach. In the proposed method of this paper, through exerting graph degree restriction on each
parent node, the exchange rate was reduced as far as possible to a cogent extent.

Furthermore, through the utilization of learning automata, packets belonging to similar directions
were aggregated toward network root, and the time consumption was managed in terms of the data
exchange rate. As a result, this approach yielded in the more intelligent formation of the network
graph, and more efficient load balancing in the network in both simulation and practical environments.
The accrued results from both simulations and practical tests results confirmed the remarkably superior
performance of the proposed method in terms of energy consumption, control overhead, and root
access delay as compared to the previously proposed methods.
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