A Genome-wide Survey and Systematic RNAi-based Characterization of Helicase-like Genes in Caenorhabditis elegans

Toshihiko Eki ${ }^{1,2, *}$, Takeshi Ishinara ${ }^{3, \dagger}$, Isao Katsura ${ }^{3}$, and Fumio Hanaoka ${ }^{2,4,5}$
Division of Life Science and Biotechnology, Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan ${ }^{1}$; Cellular Physiology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan²; Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan ${ }^{3}$; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan ${ }^{4}$ and SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan ${ }^{5}$

(Received 20 November 2006; accepted on 27 August 2007; published online 6 October 2007)

Abstract

Helicase-like proteins play a crucial role in nucleic acid- and chromatin-mediated reactions. In this study, we identified 134 helicase-like proteins in the nematode Caenorhabditis elegans and classified the proteins into 10 known subfamilies and a group of orphan genes on the basis of sequence similarity. We characterized loss-of-function phenotypes in RNA interference (RNAi)-treated animals for helicase family members, using the RNAi feeding method, and found several previously unreported phenotypes. Fifty-one (39.5\%) of 129 genes tested showed development- or growth-defect phenotypes, and many of these genes were putative nematode homologs of essential genes in a unicellular eukaryote, budding yeast, suggesting conservation of these essential proteins in both species. Comparative analyses between these species identified evolutionarily diverged nematode proteins as well as conserved family members. Chromosome mapping of the nematode genes revealed 10 pairs of putative duplicated genes and clusters of C. elegans-specific SNF2-like genes and Helitrons. Analyses of transcriptional profile data revealed a predominantly oogenesis- and germline-enriched expression of many helicase-like genes. Finally, we identified the D2005.5(drh-3) gene in an RNAi-based screen for genes involved in resistance to X-ray irradiation. Analysis of DRH-3 will clarify the potentially novel mechanism by which it protects against X-ray-induced damage in C. elegans.

Key words: C. elegans; comparative genomics; drh-3; helicase family; RNAi-based screen

1. Introduction

The helicase superfamily is made up of three functional classes, DNA helicases, RNA helicases, and chromatin remodeling ATPases, and the members of this family play a crucial role in various nucleic acid- and chromatinmediated cellular reactions such as DNA replication, repair and recombination, pre-mRNA splicing, ribosome

[^0]biogenesis, RNA interference, and chromatin remodeling. ${ }^{1-5}$ Since these reactions are essential for maintenance, expression, and regulation of genetic information in the chromosome, dysfunctions of helicase genes may lead to genetic diseases, including cancers. Indeed, genetic mutations of the human RecQ-like BLM and the WRN DNA helicase result in the early development of various cancers and premature aging, respectively. ${ }^{6}$ Most helicases share conserved amino acid sequence motifs, and these genes are classified into five families (SF1-SF5) on the basis of the occurrence and characteristics of conserved motifs. ${ }^{7}$ Because of the biological importance of the helicase family, we conducted a comprehensive analysis of the functions of helicase family members in two model organisms: Saccharomyces cerevisiae and Caenorhabditis
elegans. Previously, we examined loss-of-function phenotypes of yeast novel helicase-related genes, using gene knockout strains and characterized gene expression profiles by northern blotting. ${ }^{8}$ In our previous study, we identified 21 uncharacterized genes including five essential genes YDL031W[DBP10], YDL084W[SUB2], YKL078W[DHR2], YLR276C[DBP9], and YMR128W [ECM16], and YDL070W[BDF2] and YGL150C[INO80] were later shown to be non-essential. Some of these novel genes were subsequently characterized to clarify their molecular functions, for example, SUB2 in pre-mRNA splicing, ${ }^{9}$ DHR2, ECM16 and several DEAD-box genes such as $D B P 9$ in ribosome biogenesis, ${ }^{10,11}$ YOL095C(HMI1) in the maintenance of mitochondrial DNA, ${ }^{12}$ and INO80 and YDR334W(SWR1) in chromatin remodeling and transcription. ${ }^{13,14}$ Thus, comprehensive analyses focusing on the helicase superfamily can lead to the discovery of novel genes required for basic cellular reactions involved in cell proliferation, development, and aging.
In the current study, we have focused on helicase family members in a multicellular organism, the nematode C. elegans, using an RNA interference (RNAi) technique. Indeed, many novel multicellular specific proteins from other gene families have been discovered by RNAimediated comprehensive studies in C. elegans, including SR-related proteins, ${ }^{15,16}$ proteins for the ubiquitylation system, ${ }^{17}$ the forkhead proteins, ${ }^{18}$ and G protein-coupled receptors. ${ }^{19}$ Comparative analysis of helicase-like proteins in yeast and C. elegans will allow us to identify nematodespecific proteins that likely play an important role in multicellular organism-specific functions such as morphogenesis. Identification and characterization of these higher eukaryote-specific helicases will be useful in understanding the molecular mechanisms of genetic diseases caused by mutations of human helicase-like genes.

Here, we found 134 genes encoding putative helicaselike proteins in C. elegans and systematically prepared RNAi-treated animals for each of these genes to characterize their loss-of-function phenotypes. Fifty-one of 129 genes tested caused embryonic lethality or growth defects by RNAi, and these genes contained many putative homologs of yeast essential helicase-like genes. We identified two divergent gene clusters and 10 pairs of putative gene duplications on chromosomes and found germline- and oogenesis-enriched expression of many heli-case-like genes. In addition, an RNAi-based screen was performed to identify genes required for resistance to X-ray irradiation, resulting in successful identification of the novel D2005.5(drh-3) gene.

2. Materials and methods

2.1. Sequence analyses

Identification of helicase-like proteins in C. elegans was performed as described in the legend of Table 1. Helicases
were classified according to the yeast helicase-like protein subfamilies by Linder (http://www.medecine.unige.ch/ ~linder/helicases list.html) with modifications (i.e. addition of the new subfamilies MPH1, PIF1, RAD3, and RECQ). Most orthologous proteins were identified from the InParanoid database ${ }^{20}$ as described in the legend of Table 2. Homologous members in gene pairs and clusters were identified by homology search in C. elegans nucleotide sequence databases as described in the legend of Supplementary Table S4.

2.2. C. elegans strains and culture procedures

C. elegans wild-type strain Bristol N2 and the RNAi-hypersensitive rrf-3 mutant strain NL2099 (rrf$3(p k 1426)$ II $)^{21}$ (obtained from the Caenorhabditis Genetics Center) were used in this study. Animals were maintained at $20^{\circ} \mathrm{C}$ on nematode growth medium (NGM) agar plates seeded with the Escherichia coli OP50 strain, as described previously. ${ }^{22}$

2.3. Construction of recombinant DNA

Genomic DNA or cDNA fragments corresponding to helicase-like genes were cloned into the blunted EcoRI site of the double-stranded RNA (dsRNA) expression vector pPD129.36 (a kind gift of Dr A. Fire, Stanford University School of Medicine, USA). Insert DNA was directly amplified by PCR from a C. elegans embryo cDNA library (No. 937007, Stratagene, La Jolla, CA, USA) or genomic DNA (N2), using a gene-specific primer set for blunt-end cloning. PCR primers were purchased from Sawady (Tokyo) and Proligo LLC (Boulder, USA), and nucleotide sequences of the primers will be provided upon request. The nucleotide sequences of the resultant recombinant clones were determined by dye-terminator cycle sequencing.

2.4. Feeding RNAi

RNAi by feeding bacteria was performed using the N2 and the rrf-3 strains, as described previously, ${ }^{23}$ with the following modifications. In brief, the HT115(DE3) E. coli strain containing the pDP 129.36 with a target genespecific insert was grown overnight in $2 \times$ YT medium containing $100 \mu \mathrm{~g} / \mathrm{mL}$ ampicillin (or $50 \mu \mathrm{~g} / \mathrm{mL}$ carbenicillin and $12.5 \mu \mathrm{~g} / \mathrm{mL}$ tetracycline) with stirring at $37^{\circ} \mathrm{C}$. Aliquots of the culture $(30 \mu \mathrm{~L})$ were spread onto NGM agar in a Petri dish ($\varnothing 6 \mathrm{~cm}$) containing 1 mM isopropyl β-D-thiogalactopyranoside (IPTG) and the indicated antibiotics and incubated at $37^{\circ} \mathrm{C}$ for 18 h for RNAi (RNAi plates). The next day, P0 animals at the fourth larval (L4) to young adult stages were placed onto the RNAi plates and fed the recombinant E. coli strain expressing dsRNA for over 18 h to avoid F1 progeny with leaky phenotypes. Subsequently, P0 animals were transferred onto new RNAi plates with bacteria-expressing dsRNA for 12 h to lay eggs (F1) and

Table 1. Summary of RNAi analyses of C. elegans helicase-like genes ${ }^{\text {a }}$

Subbamily	Gene	Transcript ${ }^{\text {b }}$	$\underset{\substack{\text { Protein } \\ \text { ID }}}{\text { den }}$	${ }_{\text {l }}^{\text {Insert }}$ DNA	Phenotype of RNAi-treated nematode ${ }^{\text {a }}$	Phenotype code	$\begin{array}{\|c} \substack{\text { Growth } \\ \text { retaration } \\ \text { indext }} \end{array}$	$\begin{aligned} & \text { S.ray } \\ & \text { sensitivity } \end{aligned}$	$\underset{(\text { RNAi phenotype data }}{\left(\text { WornBase WSTIT1) }{ }^{1}\right.}$	Highest homology matches (BLASTP analysis)							
										S. cerevisae	E-value	H. sapiens	E-value	D. melanogaster	E-value	c. brigsse	E value
DEAD-box	T07D4.4	Tori4.4a	CE18219	c	WT (Clr Him)		${ }^{0.90}$		WT	Dbp5p	3.0e70	ENSPPoooos36817(DDX19A)	${ }^{3.3 \text { e115 }}$	CG7483-PA (elf4AIII)	1.12.64	CBPoor77	5.7e-299
DEAD-box	ZK686. 2	${ }^{\text {2K686. } 2}$	CE3464	c	${ }_{\text {Gro }}$		${ }^{0.31}$		Gro Let Lva WT	${ }^{\text {Dbpep }}$	${ }^{1.72 .37}$	ENSPoooou33746([DD 51)	1.0e48	CG9680.PAA (Dpp73D)	7.20.27	CBPooool	2.9e-247
DEAD-box	H20010.4.4	H20.J0.4.4b	CE39381	${ }^{\text {G }}$	Gro Stp [Pv]		0.48		Gro Rup Reed_brod WT	${ }^{\text {Dbppp }}$	2.2e90	ENSPDoooorat703(DDX 49)	4.4 e118	CG923.PA	4.6.e89	CBP21316	9.0. 252
${ }_{\text {dea }}^{\text {DEAD.box }}$ DEAD-box	${ }^{\text {c24 } 2412.4}$	${ }^{\text {C24.412 }}$ 2a	${ }_{\text {CE27728 }}$	${ }^{\text {c }}$	Lva		0.19 0.26			${ }_{\text {Dbpgp }}$			${ }_{\text {l }}^{1.680 .105}$			${ }_{\text {CBPPOIT739 }}$	${ }^{3} 8.9 .307$
${ }^{\text {DEAD }}$ DEAD-box		${ }_{\text {Y974GA.5 }}$	${ }_{\text {cerens39 }}$	${ }_{\text {c }}^{\text {G }}$	${ }_{\text {Adl Emb Prl }}^{\text {Gup }}$ Stp				${ }_{\text {Adl Emb }}^{\text {Lea }}$ Lva Prl Rup Ste Stp WT	${ }_{\text {din }}{ }_{\text {Dhplop }}$	${ }_{6}^{3.802123}$		${ }_{2.606161}^{8.8169}$	${ }_{\text {CGG996-PA (mes31B) }}$	${ }_{\text {l }}^{\text {8.8.e-170 }}$	${ }_{\text {CBPPO2411 }}$	${ }_{8.5 \text { e-226 }}$
DEAD-box	Y771G12B. 8	Y71/1212B.8	CE27030	G	Gro Lval		0.54	(-)	wT	$\mathrm{Drss}^{\text {P }}$	5.3666	ENSPDooooz39833(DDX27)	5.10153	CG2173-PA(Rs1)	1.1.e-146	CBPO5301	
Dead-box	YSSFEBR. 1	Y55F3BR. 1	CE29884	${ }^{\text {G }}$	Weak Gro \|Gro Stpl (Emb)		${ }^{0.8330 .80]}$	(-)	Gro Stp Loc_ab WT	Fallp	5.6e.31	ENSPOooooz33084(DDX1)	1.80180	${ }^{\text {CG9054.PA(Ddx1) }}$	2.3-175	CBPO3389	0
Dead-box	${ }^{\text {B05511.6 }}$	${ }^{\text {B00511.6 }}$	CE26853	c	Lva				Let Lva WT	Hasip	3.5-140	ENSPDoooov23239(DDX18)	2.00180	CG6375-PB(pit)	${ }^{1.6 e-178}$	CBPP3010	3.00-271
Deadbox		${ }^{\text {Y23HESB. } 6}$	CE25231	${ }_{\text {G }}$	${ }_{\text {Gro }}$		0.49		Emb Lva Stp Reed brood WT	${ }_{\text {Hca }}$	${ }^{1.3 .2114}$	ENSP(00000314348(DDX10)	5.78135	${ }^{\text {CGFs80.PA }}$	3.1e-118	${ }^{\text {CBPP66 } 20}$	1.5e-295
DEAD-box	${ }_{\text {FSSFEP } 2 .}$	${ }_{\text {F5FPs 2a }}$	CE11190	c	${ }_{\text {Gro Pru Sck Stp }}^{\text {Lival }}$		${ }^{0.29}$		${ }^{\text {Bra }}$ Bia Gro Lva Stp Reed brood WT	${ }^{\text {Prpp } 28 p}$	${ }^{3.9940}$		1.92115	${ }_{\text {CG9143PA }}$	${ }^{1.9 e-108}$	${ }_{\text {CBPP18131 }}$	7.9e203
DEAD-box				${ }_{\text {G }}$	${ }_{\text {WTo Sck }}$		${ }^{0.65}$	(+?)	${ }_{\text {WTP }}^{\text {Emb }}$ Gro Rup Pul Ste Stp WT	${ }_{\text {Prp5p }}$	${ }^{5.66108}$		${ }^{2} 212235$	${ }_{\text {CG6227-PA }}$	${ }^{\text {7.1.2-232 }}$	${ }_{\text {CBPP3983 }}$	
DEAD-box		${ }_{\text {Rospl1.4 }}^{\text {T26G101 }}$	${ }_{\text {Craberen }}$	${ }_{\text {G }}$	WT		${ }^{0.91}$		WT	${ }_{\text {Roll }}^{\text {Rorm }}$	4.9970		9.10 .97	${ }^{\text {CGF5sg.PA }}$	${ }^{2} 2.8$ es88	${ }_{\substack{\text { CBP17618 } \\ \text { CPPo2482 }}}$	7.4.e248
DEAD-box		${ }_{\text {T266610. }}$		${ }^{\text {c }}$			${ }_{0}^{0.04}$		$\underset{\substack{\text { Dpy Emb Gro Let Lva Pvi Ste Stp WT } \\ \text { Gro Ste der delay }}}{\text { ar }}$	$\underset{\substack{\text { Rrp3p } \\ \text { Sphap }}}{\text { chen }}$	4.9e102			${ }_{\text {CG9 }}^{\text {CG9233-PA }}$	${ }_{2}^{2.88 .160}$	${ }_{\text {CBPPO24732 }}$	(1.1-240
${ }^{\text {DEAL }}$ DEAD-box box	${ }_{\text {hel-l }}^{\text {Lel }}$	${ }_{\text {C26Dili } 2 \mathrm{ab}}$		${ }_{\text {c }}$	${ }_{\text {Adl }}$ Emb Gro Let Lva Prl Sck Ste Stp \|ste]				Ad Bmid Cra Embl Let Sck Ste Stp WT		${ }_{\text {c }}$	ENSPPooooozaz776(DDDX39)	${ }_{1}^{2.600176}$	${ }_{\text {CGG7299PPC(Hel2E) }}$		${ }_{\text {CBPO}}$ CBP82	
DEAD-box	${ }_{\text {FS8GIII } 2}$	F58G11.2	CE11402	${ }^{\text {G }}$	wT		${ }^{1.06}$			Dedip	8.75 .50	ENSPooooo310870(DDX 3 X)	3.2e53	CG9748.Pa (bel)	1.8 e 78	CBP17194	4.1e-181
Dead-box		${ }_{\text {C46F1.4 }}$		${ }^{\text {c }}$			${ }^{0.91}$		Ste WT	${ }^{\text {Dbp } 2 \mathrm{P}}$	2.6e87	ENSP(00003332388(DDX42)	${ }^{3} .3$ 3-179	${ }^{\text {CGG6418.PB }}$	${ }_{\text {2, }}^{\text {2.le } 184}$	${ }_{\text {CBPP20456 }}$	
DEAD-box DEAD-box				${ }_{\text {c }}$	$\underset{\substack{\text { Emb } \text { Stel } \\ \text { Gro Lra Sck }}}{\text { a }}$		0.19		$\underset{\text { Emb Sck }}{\text { Emb }}$	${ }_{\substack{\text { Dbp2p } \\ \text { Dpprp }}}$	${ }_{4}^{4.00882}{ }_{4}^{4.424}$			${ }_{\text {CGIIOorzPA }}^{\text {CGI }}$	${ }_{\text {2,2el61 }}^{2.92929}$	${ }_{\text {CBPP2535 }}^{\text {CBP }}$	${ }_{9}^{0} 2 \mathrm{e}$-282
DEAD-box	нгтмо9, 1	H27M109.1	CE23832	c	walk Gro Adl Gro Let Pul Rupl (Clr Him)		${ }_{0.78}$		Emb Lva WT	${ }_{\text {Dpprp }}$	1.1 le 74	ENSPDonoou333349(DDX41)	${ }_{8.30172}$	CG14637-PA(abs)	${ }_{1.660168}$	CBP03123	
Deadbox	Y54GIIA. 3	Y54G11A. 3	CE22474	${ }^{\text {c }}$			${ }^{0.95}$			${ }^{\text {Dbp } 2 \mathrm{P}}$	2.4e84	ENSPoooooz38919(DDX43)	4.72103	${ }^{\text {CGIOOT7-PA }}$	4e83	CBP04867	2.00-230
DEAD-box	${ }_{\text {F33DII } 10}$	$\underset{\substack{\text { F33D11.10 } \\ \text { F57R } 30}}{ }$		${ }^{\text {c }}$	${ }_{\text {Emb \| }}^{\text {cro Sck] }}$				Emb Mul Ste WT ${ }_{\text {w }}$	${ }_{\text {Trifp }}$ /Tifip	5.7el124	ENSPPoooorez9399(DDX48)	3.7e188		3.4e-187	${ }_{\text {CBPP1556 }}$	${ }^{\text {7 }}$ 7.6e-206
${ }^{\text {DE }}$ DEAD-box	FiF78.3		${ }_{\text {CE001338 }}$	${ }_{\text {G }}$	${ }_{\text {Grom }}^{\text {Gra Sck }}$		${ }^{0.17}$		Emb Lva Ste Loc ab WT	${ }^{\text {Tiflp }}$ /Tirp	2.88-90		${ }^{1.8094}$		${ }^{\text {5 }}$. 5.9 .96		8.4.e 120
${ }_{\text {dead }}^{\text {Dead box }}$ DEAD-box	$\underbrace{}_{\substack{\text { inf-I } \\ \text { mel } 46}}$		${ }_{\text {CFEOP24145 }}$	${ }_{\text {c }}^{\text {c }}$	${ }_{\text {Emb }}^{\text {Emb }}$				$\underset{\text { Emb Lva Loc_ab }}{\text { che }}$				${ }_{\text {l }}^{4.6 .60 .5151}$		${ }_{\text {c }}^{1.3-1.188}$	${ }_{\text {CBPO}}^{\text {CBP3338 }}$	($\begin{aligned} & 3.7 .2-206 \\ & 6.6 e 208\end{aligned}$
DEAD-box	Y6SBAA. 6	Y65bat. 6	CE3419	c	Emb Lva Sck		0.10		Egl Lra WT	Tifip/Tit2p	${ }_{7,2 \mathrm{el} 124}$	ENSPDooooze9349(DDX48)	2.30188	CG7433-PA (ell 4 AIII)	3.9e-186	CBP21556	3.6e-208
${ }^{\text {Ded }}$ DEAD-box				${ }_{\text {C }}^{\text {G }}$	${ }_{\text {wT }}^{\text {wT }}$			(-)	${ }_{\text {WT }}^{\text {WT }}$	${ }_{\text {Dbplp }}^{\text {Dip }}$	${ }_{\substack{\text { c.3e-27 } \\ 3.5018}}$	ENSPDooooz33167(DDX4)	${ }_{\substack{1.7 e 24 \\ 280017}}$			${ }_{\text {CBPI }}^{\text {CB5 }}$ (1657 7	${ }_{\text {cose }}^{4.3 .162}$
${ }_{\text {dean }}^{\text {DEAD-box }}$ DEAD-box				${ }_{\text {c }}^{\text {c }}$	${ }_{\text {Gro }}^{\text {Weck }}$ [Let, Prl Dev_abl (Hiim)		0.73		${ }_{\text {Emb }}^{\text {WT }}$ WT	${ }_{\substack{\text { Dipplp } \\ \text { Dbplp }}}$	${ }_{\text {chen }}^{\substack{3.5518 \\ 7.5-122}}$				${ }_{2.12 \mathrm{el} 143}^{2.9 .17}$	${ }_{\text {CBPOLIO3 }}$	
${ }_{\text {den }}^{\text {DEAD-box }}$ DEAD-box		${ }_{\text {YC73171 }}$		${ }_{\text {G }}^{\text {G }}$	${ }_{\text {WT }}^{\text {Lva }}$		${ }_{\substack{0.06 \\ 0.08}}^{0 .}$	${ }_{(+)}^{(+)}$	${ }_{\text {WT }}^{\text {Emb }}$	${ }_{\text {Dbplp }}$							(1.7e-257
DEAD-box (gh)	${ }_{\text {glh }}$ - 3	B0414.6	CE07736	c	wT				wT	Dedip	4.2882	ENSPPoooos 377087 (DDX44)	3.4694	CG9748.PA(bal)	2.8e88	CBP22748	2.20-200
DEAD-box (gh)	${ }_{\text {grem }}^{\text {glu. } 2}$		${ }_{\text {CFe90012 }}$	${ }_{\text {c }}$	${ }_{\text {wT }}^{\text {wT }}$		${ }^{0.86}$		${ }_{\text {WT }}^{\text {WT }}$	${ }^{\text {Dbpplp }}$	${ }^{6} .72882$	ENSPOooon377087(DDX4)	8.50105	${ }^{\text {CG } 3506-P A(v a s)}$	${ }^{1.3-96}$	CBP22748	2.6e-264
DEAD-box (ght	$g^{\text {glu.4 }}$	${ }_{\text {T12F5. }}$	${ }^{\text {Ce2905 } 2}$	${ }^{\text {G }}$	${ }^{\text {wT }}$				${ }_{\text {WT }}$	Dbplp	8.3e64	ENSPDoooo347087(DDX4)	${ }^{1.7276}$	CG9748.PAP(bel)	${ }^{7.9 .9} 73$	CBPP9018	2.00 189
		${ }_{\text {F20A1 } 19}^{\text {T216. }}$	${ }_{\text {CEF53281 }}^{\text {Cer }}$	${ }_{\text {c }}^{\text {c }}$	${ }_{\text {WT }}^{\text {WT }}$			(-)	${ }_{\text {Emb }}^{\text {WT }}$ WT	${ }_{\text {Diplp }}^{\text {ND }}$	6.4e84					${ }_{\text {CBP23550 }}$	
Deahbox	rha-2	Co6E1.10	CE29563	c	Gro Lva		${ }^{0.22}$	(-)	${ }_{\text {Age }}$ Emb Gro Let Lva Stp Red _brood WT	${ }_{\text {Emm }} \mathrm{m}_{\mathrm{p}}$	${ }^{7.4 e} 137$	ENSpoonoo311335(DHX37)	${ }^{1.0 e 213}$	CG3228.PA (kz)	${ }^{1.8 .204}$	CBPo3z24	0
${ }_{\text {De }}^{\text {DEAA-box }}$ DEAH-box	$\underset{\substack{\text { Y37EIAM. } \\ \text { rha-l }}}{\text { deld }}$		${ }_{\text {Cex }}{ }_{\text {CE39853 }}$	${ }_{\text {C }}^{\text {G }}$	${ }_{\text {WT }}^{\text {WT }}$			$\stackrel{(-)}{ }$	${ }^{\text {Dpp Emb Let Lva Loc_ab WT }}$	${ }_{\text {Prp2p }}$		ENSP(0000331997(DHX34)	${ }^{5.3 .2185}$	${ }^{\text {CG32333PPA }}$	${ }^{2.12 .174}$	${ }^{\text {CbPPo230 }}$	0
${ }^{\text {DEA }}$ DEAH-box		${ }_{\text {TVOTDH. }}$	${ }_{\text {CEP31127 }}$	${ }_{c}^{\text {c }}$	${ }_{\text {Emb }}^{\text {WT }}$				${ }_{\text {Bmd D }}$ Wey Emb Let							${ }_{\text {CBPI }}$ CBP677 ${ }^{\text {che }}$	
DEAA-box DEAH-box		$\underset{\text { F52B5. }}{\substack{\text { Y108 }}}$		${ }_{\text {G }}^{\text {G }}$	${ }_{\mathrm{WT}}^{\mathrm{WT}}$ (Him)		${ }^{0.90}$	$\stackrel{(-)}{(-)}$	Red fat WT Emb WT		4.4 .30 4.5068		1.3e.41 1.3 ec 116				${ }_{\text {5 }}^{5}$.6e-69
${ }^{\text {DEAAH-box }}$	${ }_{\text {FFSbD2. }}$	${ }_{\text {FF5CD2.6a }}$	${ }_{\text {cFoli }}$	${ }_{\text {c }}$	Gro Lva Sck Ste Stp		${ }_{0.24}$	$(-)$	Emb Gro Lva Ste Dev delay Loc ab	${ }_{\substack{\text { Prppl3p }}}^{\text {Prpp }}$	${ }_{\text {c }}$	ENSPpooooos36741(PH115)	${ }_{9.00290}$	CG11107PA	7.2e-282	CBPI 6424	0
DEAH-box	mog. 4	${ }^{\text {Co4F5, } 6 .}$	CE15592	c	Emb				Emb Let Lva Prl Sck Şte Stp	${ }_{\text {Prp 22 }}$	1.20172	ENSPDoooo 355613(DHX16)	8.50287	CG10689PA		CBP04901	0
${ }^{\text {DEAAH-box }}$			${ }_{\text {CEP374 }}$	${ }_{\text {c }}$	${ }_{\text {Gmo Stp }}^{\text {Empl }}$ Sck]		0.61			$\underset{\substack{\text { Prp2 } 2 \text { p } \\ \text { Prp2 }}}{ }$			${ }_{1.90} 124$	${ }_{\text {CGG }}^{\text {Cigl-PA }}$	${ }_{7.9 \text { e-117 }}$	${ }_{\text {CBPIT }}$ CBP0631	0
DEAH-box	Y67D2.6	Y67D2. 6	CE27311	G	wT			(-)		${ }_{\text {Prp 2p }}$	${ }^{1.6 e-135}$	ENSPOoooo252011(DDX35)	6.12200	CG322-PA	${ }^{1.7 e-151}$	CBPO3695	0
${ }_{\text {SK12 }}$	${ }_{\text {YSSBIAL }}$	Yfsbial.3a	CE27019	${ }_{\text {G }}$	wT			$(-)$	${ }^{\text {wT }}$	${ }_{\text {Hfmlp }}$	8.2e32	ENSPPoonoe295488	1.20141	${ }_{\text {CG7972-PA }}$ (mus301)	${ }^{1.5-125}$	${ }^{\text {CBPP3650 }}$	0
$\underbrace{\text { SK12 }}_{\text {SK12 }}$	${ }^{\text {Wospor }}$, 7	Vosp2.7		${ }_{\text {c }}$			0.18		Emb Gro Let Lva Sck ste Stp Loc ab WT	${ }_{\text {Mrutap }}$	${ }^{1.99162}$		${ }_{\substack{7.70270 \\ 410 \\ 4163}}$		${ }^{1.3 .2-2}$		0
SK12	COS88. 2	CosF8.2a	CE19689	c	Weak Gro Stp \|Grol (Emb)		${ }^{0.86[0.68]}$	(t?)	${ }_{\text {Emb Gra Lva Stp Dev_delay Red_ brood }}^{\text {Transpona }}$	Sur3p	2.4 e70	ENSP00000331379(SUPV3L1)	4.1 el 163	CG9791-PA	5.0el60	CBPO1637	0
${ }_{\text {SK12 }}$	${ }^{\text {Y46G54.6 }}$	Y46654.6	${ }^{\text {Ce2 } 2303}$	${ }^{\text {c }}$	WT		${ }^{0.93}$	$(-)$	Emb Lva Ste Loc_ab Thin WT	${ }_{\text {Brr } 2 \mathrm{P}}$	9.7e54	ENSP0ooou317123(ASCC3)	1.6e 1114	${ }^{\text {CG59331-PA }}$	7.8e-109	${ }^{\text {CBPP22000 }}$	${ }^{1.66-152}$
SK12	${ }_{\substack{\text { cient } \\ \text { FolG } 4.3 \\ \hline}}$	${ }_{\substack{\text { c28H8.3 } \\ \text { Folc } 4.3}}$		${ }_{\text {c }}^{\text {c }}$	${ }_{\mathrm{WT}}^{\mathrm{WT}}$ (Dev_ab)			$\stackrel{(+?)}{(-)}$	${ }_{\text {WT }}{ }_{\text {WT }}$	${ }_{\substack{\text { Ski2p } \\ \text { Ski2p }}}^{\text {S }}$	3.8228 4.4×168	ENSPPooovezol14	${ }_{\substack{1.5-119 \\ 1.3 e-213}}$			${ }_{\text {CBPP2209 }}^{\text {CBP } 510}$	
skl2	Y46G54.4	Y46G5a.4	CE21971	G	Emb [Lval				Emb Lva Ste Loc_ab Thin WT	Sllip	6.4e308	ENSPOOOOO317123(ASCC3L1)		CG5931-PA		CBP22000	0
SK12	Y54F22. 6	Y54E2A.6	CE20305	G	wT			(-)	wT	Sllhp	1.88206	ENSPOooooz22902(ASCC3)	0	CG520-PA	0	CBP01139	0
UPF1	${ }_{\text {dana-2 }}$	F43G6.1a	CE02219		wT			(-)	${ }^{\text {Emb }}$ WT	Dna2p	5.7e84	ENSpoooou351185(DNALL)	${ }^{1.3 \mathrm{e}-125}$	$\mathrm{CG}_{2} 2990 \cdot \mathrm{~PB}$	9.1e-101	$\mathrm{CBP}^{4} 4508$	${ }^{0}$
${ }_{\text {UPF1 }}^{\text {UPF1 }}$				${ }_{\text {c }}^{\text {c }}$	${ }_{\text {Gro }}^{\text {WT }}$		${ }^{0.75}$	$\stackrel{(-)}{(-)}$	${ }_{\substack{\text { Ste WT } \\ \text { Bmd Emb Loc_ab WT }}}$	$\underset{\substack{\text { Hesip } \\ \text { Heslp }}}{\text { dem }}$	${ }_{\text {c }}^{\text {6.1e2 } 25}$		${ }_{0}^{1.80 .33}$		8.5.e32	${ }_{\text {CBPP }}^{\text {CBP } 1383}$	- $\begin{aligned} & 1.3 \text { e- } 129 \\ & 1.9 \mathrm{ec} 106\end{aligned}$
UPF1	Cosclio.	Cosclio.2b	CE27795	c	wT			$(-$	wT	Nam7p	5.7e24	ENSP00000262883 (UPF1)	3.2e22	$\mathrm{CGG696}^{\text {PPB }}$	2.2e-20	CBP0296	
P1	$\operatorname{smg}_{\text {m-2 }}$	Y48G8AL. 6	CE28367	G	${ }^{\text {wT }}$			(-)	${ }^{\text {WT }}$	Nam7p	5.1e-210	ENSP(0)002288033(4PFI)	${ }_{\text {3 }}{ }^{3.50 .271}$			${ }_{\text {CBPPO2073 }}$	0
${ }_{\text {UPF1 }}$	${ }_{\text {cher }}$	${ }_{\text {Cathli }}$	${ }_{\text {CEES3643 }}$	${ }_{\text {G }}^{\text {G }}$	${ }_{\text {wT }}^{\text {WT }}$			$\stackrel{(-)}{(-)}$	${ }_{\text {WT }}$	${ }_{\text {Senlp }}^{\text {Namp }}$	${ }_{4}^{3.3924}$			${ }_{\text {CGIIS59PA (Upfl) }}$	${ }_{\text {l }}^{\text {2.8.5.55 }}$	${ }_{\text {CBPI } 3569}$	${ }_{8.20-266}$
${ }_{\text {UPF1 }}^{\text {UPF1 }}$		${ }_{\text {Kosplo. }}^{\text {Kin }}$		${ }_{\text {c }}$	${ }_{\text {WT }}^{\text {wT }}$			${ }^{(+7)}$	${ }_{\text {WT }}^{\text {WT }}$	Senlp	$5.9 \mathrm{el1}$		8.4 -10	CG7504PA	${ }_{4}$ 4.3-08	CBP24705	${ }^{2.7 e-62}$
${ }_{\text {UPF1 }}^{\text {UP1 }}$ (far related)			${ }_{\text {CEO5519 }}$	${ }_{\text {G }}^{\text {G }}$	${ }_{\text {WT }}^{\text {WT }}$			$\stackrel{(-)}{(-)}$	${ }_{\text {WT }}^{\text {WT }}$	${ }_{\text {Soll }}^{\text {Sen }}$	1.0e09	${ }_{\text {ENSPooooosi7088 }}$	3.2e-12	${ }_{\text {CGF7504-PA }}^{\text {ND }}$	6.7e-10	${ }_{\text {CBP13569 }}$	
					wT												
$\underbrace{\text { S }}_{\substack{\text { SWWI2 SNF2 } \\ \text { SWI2 SNF }}}$			${ }_{\text {CES37696 }}$	${ }_{\text {c }}^{\text {c }}$	${ }_{\text {WT }}$ WT (Dev_ab)			(-)	${ }_{\text {Emb }}^{\text {EmT }}$ (nc mutation WT	${ }_{\substack{\text { Fun30p } \\ \text { Rad5p }}}$				${ }_{\text {CGI599-PA }}^{\text {CG737-PA }}$		${ }_{\text {CBPr }}^{\text {CBPO7194 }}$	${ }_{0}^{0}$
SWI2/ SNF2		Cl6a3.1c	CE36606	c	WT (Dev_ab)			(-)		$\mathrm{Iswl}_{\text {P }}$	4.8e29	ENSPDoooos399823(SMARCALL)	8.10 .103	CG3733-PA (Marall)	2.77 .97	CBP1649	2.7e-193
SWI2 / SNF2	$i^{\text {isw }}$ - 1	${ }_{\text {F374.4.8 }}$	CE29792		Weak Gro Stp [Gro Pru]		${ }^{0.8770 .70 \mid}$	(-)	Emb Gro Pvi Rup Stp WT	Isw2p	1.0e236	ENSPooooe218157(SMARCA1)		CG8625-PC(Iswi)		CBP10391	
			${ }_{\substack{\text { Cel } 15856 \\ \text { CF2714 }}}$	${ }_{\text {c }}^{\text {c }}$	${ }_{\text {WT }}^{\text {WT }}$		${ }^{0.93}$	$\stackrel{(-)}{(-)}$	${ }_{\text {WT }}^{\text {WT }}$	${ }_{\substack{\text { Motip } \\ \text { Suntp }}}^{\text {and }}$	3.88120 402020		${ }_{\text {l }}^{\text {7.9el } 131}$		${ }_{\text {2 }}^{2.6699}$	${ }_{\text {CBPPooz21 }}^{\text {CBP2a32 }}$	0
SWI2/ SNF2	$p_{\text {ssa }}$	F01G4.1	CEbo553	c	Emb Gro Sck Stp Pvi Ste]			()	Emb WT	Sthlp	6.30220	ENSPDoooove65773(SMARCA2)	1.20283	CG5942-PB(brm)		CBP15438	0
SWI2/ SNF2	${ }_{\text {sstl- }}$	Y111122A.22	CE4024	G	${ }_{\text {Gro Stp }}^{\text {Luva Pvi Sck }}$		${ }^{0.75}$	(+ ?	Emb Stp Unclassified WT	Swrlp	7.9e-172	ENSP易00333424	6.32251	CG9996-PD (dom)	3.4.244	CBP00109	
		${ }_{\text {FF997.8 }}$		${ }_{\text {G }}$	${ }_{\text {WT }}$			$\stackrel{(-)}{ }$	${ }_{\text {Lva WT }}$	${ }_{\text {Radil }}{ }_{\text {R }}$	${ }^{7} 7.50 .31$	ENSP00000251165(TTF2)	${ }_{4}^{4.30273}$		${ }_{\text {l }}^{\text {lile-59 }}$	${ }_{\text {CBPPo9312 }}$	${ }^{1.7 .150}$
${ }_{\text {SWWI2 SNF2 }}$			${ }_{\text {CEFIIOP3 }}$	${ }_{\text {c }}^{\text {G }}$	${ }_{\text {wT }}^{\text {wT }}$			(-)	Emb WT		${ }_{7}^{\text {7.5.5.59 }}$		${ }_{\substack{3.888 .27 \\ 1.8016}}^{\text {a }}$		2.6e69	${ }_{\text {CBPI }}$ CP5931 1	
$\mathrm{SWW}^{\text {SW/ SNF2 }}$	${ }_{\text {T23H2, }}$	${ }_{\text {T23H2, }}$	${ }_{\text {Cez30397 }}$	${ }^{\text {G }}$	${ }^{\text {wT }}$			(-)	${ }^{\text {WT }}$	${ }_{\text {Rislp }}$	8.1e52	ENSPDoooovenil16(TTF2)	${ }^{1.80888}$	CG2684-PA(1ds)	${ }^{1.3 .3-96}$	${ }_{\text {CBPP9312 }}$	0
${ }_{\substack{\text { SWW12 SNF2 } \\ \text { SWI2 SNF }}}^{\text {S }}$	$\underset{\substack{\text { rad.26 } \\ \text { cbl- }}}{\text { dat }}$		${ }_{\text {CEP3393 }}$	${ }_{\text {c }}^{\text {c }}$	${ }_{\text {WT }}$ (Him)			(-9)	WT ${ }_{\text {WV-induced Emb and a popotosis increased WT }}$	${ }_{\substack{\text { Rad26p } \\ \text { Rad26p }}}$		ENSPDooode296477(RadDS4L2)	${ }_{7,2099}^{2.30173}$			${ }_{\text {CBPI }}^{\text {CBPIO238 }}$	
SWI2/ SNF2	${ }_{\text {FSSH4, } 6}$	F5344.6	СЕе3794	G	wT			(-)	wT	Rad26p	5.6 e-42	ENSPDoooozez5899 (ERCC6)	1.7 e.41	CG5942-PC(brm)	3.7e-16	CBP10262	1.5e-100
${ }_{\substack{\text { SWW12 SNF2 } \\ \text { SWI2 SNF2 }}}^{\text {S }}$			${ }_{\text {Cel }}^{\text {CE27314 }}$	${ }_{C}^{C}$	${ }_{\text {WT }}^{\text {WT }}$		${ }^{0.93}$	$(-)$	${ }_{\text {Ev1 }}$ Evt St Gonad development abormal WT	${ }_{\substack{\text { Raxj5 } \\ \text { Ras } \\ \text { Rap }}}$		ENSPDoobo3 32402(ATRX)				${ }_{\text {CBPO52928 }}^{\text {CBP }}$	${ }_{0}^{0}$
SWI2/ SNF 2	Y116A8C. 13	Y116A8C. 13	CE35647	G	wT			$(-)$	Emb Stres_ ab WT	Rad54p	8.4e-78	ENSP0000336606(RAD54B)	1.1e-100	CG3736-PA (okt)	1.00.87	CBPooos2	1.50-275
SW12/ SNF2		${ }_{\text {F26F } 12.7}$	CE17716		Lva Prl Sck Stp		0.21	(-)	Emb Lva Ste Pharysgeal_ab Unclassified WT	Chalp	1.22130	ENSPOOOOO369716(CHD3)	0	CG8103-PA(Mi-2)		CBP16569	

Table 1. Continued

Subfamily	Gene	Transcript ${ }^{\text {b }}$	Protein ID	Insert$\mathrm{DNA}^{\mathrm{C}}$	Phenotype of RNAi-treated nematode ${ }^{\text {d }}$	Phenotype code ${ }^{\text {e }}$	Growth retardation index ${ }^{3}$	X-ray sensitivity ${ }^{\text {h }}$	RNAi phenotype data (WormBase WS171) ${ }^{1}$	Highest homology matche (BLASTP analysis) ${ }^{\text {a }}$							
										S. cerevisiae	E value	H. sapiens	Evalue	D. melanogaster	Evalue	c. brigssae	Evalue
SWI2 /SNF2	H06001.2	H06001.2	CE32454	G	wT			(+?)	WT	${ }_{\text {Chdlp }}$	${ }^{1.80} 187$	ENSPDOOOO284099(CHD1)	0	CG3733-PA(Chd1)	0	CBP06671	0
SW12 SNF2	tag-192 $^{\text {a }}$	TO4D1.4	CE18196	c	wT				wT	Chdlp	7.4e-129	ENSP0000307304(CHD7)	0	${ }^{\text {CG3 396-PA(kis) }}$	0	CBP05229	0
SW12 SNF2	chd.3	T14G8. 1	CE03657	c	wT (Him)			(+ ?	wT	Chdlp	6.0e-130	ENSP0000369776(CHD3)	0	CG8103PPA(Mi-2)	0	CBP16569	0
SWI2 SNF2 (far related)	F1982.5	F1982.5	CE20697	G	wT			$(-)$	wT	ND		ENSPPoooo308944(SMARCA3)	2.0008	CG3696-PA (kis)	2.6e06	CBP14951	1.6e06
${ }_{\text {SWTI2 }}$ SNFF2 (far reated)	${ }^{\text {c25F9.5 }}$	${ }^{\text {C2FF9.5 }}$	${ }_{\text {CE174 }}$ CE189\%	${ }_{\text {G }}$	${ }^{\text {WT }}$			(-)	${ }_{\text {WT }}^{\text {WT }}$	ND ND		ENSPPoooo308944(SMARCA3)	${ }_{4}^{9.2006}$	${ }_{\text {CG2684-PA(Ids) }}$		ND ND	
SW12 SNF2 (arar rehted)	${ }_{\text {Y }}^{\text {M } 43788.14}$	${ }^{\text {NOM }}$		${ }_{\text {G }}^{\text {G }}$	${ }_{\text {WT }}^{\text {WT }}$			$\stackrel{(-)}{(-)}$	${ }_{\text {WT }}^{\text {WT }}$	${ }_{\text {ND }}^{\text {ND }}$		${ }_{\text {ND }}$ NPOOOOO30894(SMARCA3)	4.3e-06	${ }_{\text {CG2684PA(Ids) }}$	4.2e07	ND	
SW12 /SNFF (far rehted)		Y43F88.14	${ }^{\text {CEE218988 }}$	G	wT			$(-)$	WT	ND		ND		${ }_{\text {CG }}^{\text {CG644-PA(Ids) }}$ (${ }^{1.3007}$	ND	
SW12 SNF2 (far reated)	C25F9.4	C25F9.4	CEЗ3975		not tested				WT	ND		ND		${ }^{\text {CG2684-PA (Ids-PA) }}$	${ }^{6.1 e 077}$	ND	
SWI2/ SNF2 (far related)	мочс3. 2	M04C3. 2	CE31973		not tested				wT	ND		ND		CG2684-PA (lds)	1.2206	ND	
mcm	mcm-2	Y17G7B.5a	CE19038	c	Emb Gro Lva Pvi Sck Stp \|Ste]				Emb Pvi Ste	Mcm2p	${ }^{6.6 e-176}$	ENSP0000225056(MCM2)	8.7e263	CG7338-PA(Mcm2)	1.5e-253	CBP04361	0
mсм	mcm-3	C25D7. 6	CE03392	G	Emb				Emb Mul Pry Ste	Mcm3p	$2.1{ }^{138}$	ENSP00000298544MCM3)	5.1e202	CG4206-PA(Mcm3)	5.0e-195	CBP08883	0
мсм	mcm-4	Y39GGIOAR. 14	CE21767	G	Emb				Emb Nmo Lva	Cdestp	4.3 el 157	ENSP0000262105 (MCM4)	2.2e-222	CG1616-PA(dpa)	4.2 e219	CBP01027	0
MCM	mcm-5	R10E4.4	CE035588	c	Emb				Emb Mul WT	${ }^{\text {Cdet6p }}$	${ }^{6.7 e-135}$	ENSP(00000216122(MCM5)	${ }^{9.620241}$		3.7e230	${ }^{\text {CBPP02933 }}$	0
м MCM	mcm-6	2K632 1a	CE00415	c	Emb [Pv1 Ste]				Cyk Emb Mul Ste WT	${ }^{\text {Mcmenf }}$	${ }^{1.6 e-164}$	ENSP(0000264156(MCM6)	2.5e-232	CG4039.PA(Mcm6)	${ }^{1.32-217}$	${ }^{\text {CBPO2437 }}$	0
м ${ }^{\text {cm }}$	mcm-7	F32D1.10	CE09874	c	Emb				Emb Mul Pul Ste	Cdct7p	1.20-137	ENSP00000307288(MCM7)	8.20-187	CG4978-PA (Mcm7)	2.4e-187	CBP05176	0
PIF1	CllG6. 2	C11G6. 2	CE05256	G	wT			(-)	wT	Rrm3p	1.9e-16	ENSP00000268033(PFI)	3.6e09	CG333-PA	$7.98-13$	CBP06954	3.00
${ }_{\text {PrF1 }}^{\text {PIF1 }}$		${ }_{\text {F11C3.1 }}$	${ }_{\text {CEOOP347 }}$		${ }_{\text {WT }}^{\text {WT }}$				${ }_{\text {WT }}^{\text {WT }}$	${ }_{\substack{\text { Rrm3p } \\ \text { Rrm3p }}}$	${ }_{8.4016}^{4.10 .066}$						
${ }_{\substack{\text { PIF1 } \\ \text { PIF1 }}}$	YII6FIIA.I pif.l		${ }_{\text {CE22435 }}$	${ }_{\text {G }}^{\text {G }}$	${ }_{\text {WT }}^{\text {WT }}$			$\stackrel{(-)}{(-)}$	${ }_{\text {WT }}^{\text {WT }}$	${ }_{\text {Rem3p }}^{\text {Rriflp }}$	${ }^{8.4 \text { e-16 }}$	ENSP0000268043(PFF1)	${ }_{5}^{2.2 .2009}$	${ }_{\text {CG3233-PA }}^{\text {CG23s-PA }}$	8.0e-10 $1.2 e 97$	${ }_{\text {CBPO6954 }}$	${ }_{2}^{2.20088}$
PIF1(Heliron)	${ }_{\text {F3F3H12. } 6}^{\text {pip }}$	${ }_{\text {F33H12.6 }}$	CE17043	${ }_{\text {G }}$	wT			$(+$)	wT	Pifip	2.0013	ENSPOooooze68033(PF1)	${ }_{2} .0$ eld	CG3238-PA	1.0e-17	CBP13991	${ }_{3.5067}$
PIF1(Helitiron)	F59H6.5	F59H6.5	CE20911	G	wT			$(-)$	wT	Pifip	5.1e13	ENSP00000268033(PFI)	1.1e15	CG323-PA	1.4e-16	CBP13991	1.7e-70
PIF1 (Helitiron)	YI6EIIA. 2	Y16E11A.2	CE15283	G	wT			$(-)$	wT	Pifip	1.5e-12	ENSPoomooz6803(PPF1)	5.3e-15	CG323-PA	1.7e-16	CBP13991	4.3e67
PIF1 (Helitron)	Y2722A. 5	Y27F2A.5	CE26057	c	wT			(+ ?	wT	Piflp	1.1009	ENSP00000268043(PFF1)	1.2e-11	CG3238-PA	2.2e-10	CBP15482	2.8e.32
${ }_{\text {PIF1 }}($ Helitron $)$	Y46822.2	Y4682A. ${ }^{\text {a }}$	${ }^{\text {CEE21950 }}$	${ }_{\text {G }}$	${ }_{\text {WT }}$			$\stackrel{(-)}{(-)}$	${ }_{\text {wT }}^{\text {wT }}$	${ }_{\substack{\text { Pifip } \\ \text { Pifl }}}$	${ }^{2} .5$ - 13	ENSP00002668033(PFIT)	${ }^{6.4 e-16}$	${ }_{\text {CG6233-PA }}$	${ }^{8.5018}$	${ }_{\text {CBP13991 }}$	${ }^{1.8568}$
PIF1(Heliron)	ZK250,9	ZK20.9	CE15283	G	wT			$(-)$	wT	Piflp	$1.5 \mathrm{e}-12$	ENSP00000268043(PIF1)	5.3e-15	CG323-PA	1.7e-16	CBP13991	${ }^{4.36 .67}$
MPH1	dm-2	C01B10. 1	CE33024	G	wT				Rde WT	Mphp	2.5e-08	ENSP000036997(DDX58)	2.1e52	CG6993PA(Dcr-2)	4.4e09	CBP01380	
MPH1	${ }_{\text {dm-3 }}$	D2005.5	CE36120	c	Emb			(+)	Emb WT	Mphlp	2.7e-13	ENSP0000263342(IFH1)	6.9-47	CG6493-PA(Dcr-2)	1.3-13	CBP16208	1.2e-267
MPH1	dm-1	F15B10.2	CE16988	c	wT				Rde WT	Mphlp	5.1 e -13	ENSPOOOOO233642(IFIH1)	1.8e60	CG7922-PA	2.5016	CBP01380	
MPH1	dcr-I	K12H4.8	CE25057	c	Weak Gro [Let Pvi Rup Deb_ab\|		${ }^{0.890 .76]}$	(-)	Egl Esp Gro Let Pvil Rde Rup Loc_ab Unclassified WT	Mphlp	1.2e 10	ENSPOOOOO333745(DICER1)	3.20-257	CG4792-PA(Der-1)	${ }_{3} .6$ e223	CBP05452	0
Rad3	Y50DTA. 2		CE33947	c	Emb Gro Let Lva Sck Stp		${ }_{0} 0.34$		Emb WT	Rad3p	250-161	ENSP00000221481(ERCC2)	4.5e-198	CG9433-Pa(X_{pd})	1.5e-197	CBP03819	1.2e-291
RAD3	Y50D7A.ll	Y500D7. $111^{\text {10 }}$	CE35098	G	Gro Pvi Stp (Adl Emb Rup Sck)		0.62	(+ ?	Rup Pvil Red_brood	Rad3p	5.0e-38	ENSP00000221481(ERCC2)	4.4e-51	CG933-PA (Xpd)	7.2e-4	CBP03819	1.3e-83
RAD3	bch-I	F25H2 23	CE1589	G	wT			(-)	wT	$\mathrm{Chllp}^{\text {P }}$	3.3-44	ENSPooooo322287(RTELI)	1.2 e 117	CG4078.PA	2.1e107	CBP14333	
RAD3	dog-1	F33H2.1	CE17764	c	wT			$(-)$	Inc_mutation WT	Chlp	${ }^{5.80} 38$	ENSP0000259008(BRIP1)	${ }^{4.3} \mathbf{3}-102$	CG4078-PA	1.2e-79	CBP11281	0
Rad3	M03C11. 2	M03C11.2	CE0343	c	wT			(+?)	Emb WT	Chlp	5.0e-77	ENSP00000309665(DDX11)	2.3e-118	CG1403PA	4.7e-117	CBP19197	0
RECQ	rqq-5	Еозаз.2	ceoost	c	WT (Dev_ab)			$(-)$	Inc_mutation WT	Sgslp	29e61	ENSP0000317736(RECQL5)	2.9e-103	CG4879-PB(ReCO5)	1.6e-100	CBP04734	0
RECQ	wn-I	F18C5. ${ }^{2}$	CE31791	c	wT			(-)	Age Clr Dpy Egl Lva Pvi Rup Small Unclassified WT	Sgslp	1.50 -78	ENSP0000298139(WRN)	2.4e-114	CG6920-PA(mus30)	2.2e69	CBP00715	0
RECQ	K02F3.12	ко2F3.12a	CE33668	G	wT			(-)	wT	$\mathrm{Sgss}^{\text {p }}$	2.4.90	ENSP0000318727(RECOL)	3.00-140	CG6920-PA(mus39)	1.3e95	CBG13372	3.12-261
RECQ	him-6	T04A11.6	CE31724	c	WT (Him)			(-)	wT	Sglp	3.00-97	ENSP00000349859(BLM)	4.7e-128	CG6920-PA(mus39)	2.9 ec 132	CBP05142	${ }^{1.3} \mathrm{e}-189$
RVB	nvb-I	C27H6. 2	CE08426	G	Emb Lva Sck \|Let Pvi Ste]				Other helicase-lilike proteins Bud Emb Gro Lva Pvi Stp WT	Rvblp	3.3e-133	ENSP0000318297(RUVBL1)	6.5-137	CG4003-PA(pont)	4.3-140	CBP11169	2.5e-216
RVB	nvb-2	T22D1.10	CE17254	${ }^{\text {G }}$	Emb Lva Sck [Pvi Ste]				Cyk Emb Gro Mul Lva Pvi Sck Ste Stp	Rvb2p	6.5e-139	ENSP00000221413(RUVBL2)	4.9e146	CG9750-PA(rept)	1.1e144	CBP01546	3e-219
SSL2	Y66D12A.15	Y66D12A. 15	CE28998	G	Emb			(+?)	Emb WT	Ssi2p	2.1e 205	ENSP00000285398(ERCC3)	1.1e263	CG8019PA(hay)	8.9e-262	CBP03250	
кU70	cku-70	Y47D3A.A	CE28984		not tested				Age Unclassifed WT	ND		ENSP00003533192(XRCC6)	3.4e21	CG5247-PA(Irbp)	6.3e-08	CBP17736	1.7e-284
Kuso	cıus0	R07E5.8	CE00660	G	wT			$(-)$	Growt__ab Reproduct_ab Unclasified WT	ND		ENSPoomoo329528(XRCC5)	9.1 -15	ND		CBP19221	2.88-280
Twinklelike	F46GIl. 1	F46G11.1	СЕ37646	${ }^{\text {G }}$	WT				WT WT -	ND		EVSP00003099595(PEOL)	1.90-56	CG5924PA	2.3 -41	CBP03429	1.60281
DNA pol theta-like Mop 3 -ilike	polq-1 n nst-l	${ }_{\text {W20.33122 }}$	CEE3s902	${ }_{\text {G }}^{\text {G }}$	${ }_{\text {Grow }}^{\text {Wet Prl Rup Sck Sto }}$		0.49	$\stackrel{(+)}{(-)}$	${ }_{\text {Emb Gro Pul Ste Stp Red fat }}^{\text {ded }}$	${ }_{\text {ND }}{ }_{\text {Br2p }}$	5.9e 20	ENSP(00002664333(POLQ)	${ }^{2}$ 2.8e-110	${ }_{\text {CG6019PA }}$ C(mus308)		${ }_{\text {CBPO2392 }}$	
INTS6-1ike	${ }_{\text {nsh }}^{\text {nic-I }}$	${ }_{\text {FosB4.1b }}$	CE37220		$\begin{aligned} & \text { Gro Let Pvi Rup Sck Stp } \\ & \text { not tested } \end{aligned}$				Emb Lva Ste Loc_ab WT	ND		ENSP000003112260(INTS6)	2.3e60	CG312-PA(f(1)G0060)	1.3e-36	CBP19675	1.1e-151
Plant helicaselike	${ }_{\text {F526333 }}$	${ }_{\text {F52633.3 }}$	${ }_{\text {celoss }}$	${ }_{\text {G }}$	WT			$\stackrel{(-)}{ }$	${ }_{\text {WT }}$	ND		ND		ND		ND ${ }^{\text {CPP13991 }}$	
Plant helicase-like	${ }_{\text {F52 } 23.4}$	F52G3.4	CE10880	${ }^{\text {c }}$	wT			$(-)$	wT	ND		ND		ND		CBP13991	3.1e07

 'Transcripts with suffixes 'a', 'b', or 'c' encode the longest frame and were used for sequence analysis in this study.
'Source of insert DNA for feeding RNAi construct: G, genomic DNA; C, cDNA.

[^1]

Table 2. Comparison of loss-of-function phenotypes of helicase-like genes in S. cerevisiae and C. elegans

Subfamily	C. elegans protein ${ }^{\text {a }}$	E-value of BLASTP analysis in WormBase (WS159) ${ }^{\text {a }}$	Phenotype code of RNAi-treated nematode ${ }^{\text {b }}$	S. cerevisiae ORF ${ }^{\text {c }}$	S. cerevisiae protein	Phenotype code of knockout strain ${ }^{\text {d }}$	Function of yeast protein ${ }^{\text {c }}$
DEAD-box subfamily							
DEAD-box	T07D4.4a	1.8e-70		YOR046C	Dbp5p		Nucleo-cytoplasmic RNA transport
DEAD-box	ZK686.2	5.9e-37		YNR038W ${ }^{\text {e }}$	Dbp6p		Ribosome biogenesis (60S)
DEAD-box	H20J04.4b	7.7e-90		YHR169W	Dbp8p		Ribosome biogenesis
DEAD-box	C24H12.4a	5.2e-75		YLR276C	Dbp9p		Ribosome biogenesis
DEAD-box	Y94H6A.5a	5.2e-130		YDL031W	Dbp10p		Ribosome biogenesis
DEAD-box	C07H6.5 (CGH-1)	2.1e-151		YDL160C	Dhh1p		Decapping and mRNA turnover
DEAD-box	Y71G12B. 8	9.2e-112		YLL008W	Drs1p		Ribosome biogenesis
DEAD-box	B0511.6	3.1e-157		YMR290C	Has1p		Ribosome biogenesis
DEAD-box	Y23H5B. 6	2.2e-115		YJL033W	Hea4p		Ribosome biogenesis, pre-rRNA maturation (40S)
DEAD-box	F53H1.1	6.5e-111		YBR237W	Prp5p		Pre-mRNA splicing
DEAD-box	F55F8.2a	6.4e-44		YBR142W	Mak5p		Ribosome biogenesis (60S)
DEAD-box	R05D11.4	3.8e-72		YGL171W	Rok1p		Ribosome biogenesis, pre-rRNA maturation (40S)
DEAD-box	T26G10.1	4.4e-114		YHR065C	Rrp3p		rRNA maturation (40S)
DEAD-box	ZK512.2	2.5e-68		YFL002C	Spb4p		Ribosome biogenesis, pre-rRNA maturation (60S)
DEAD-box	C26D10.2a (HEL-1)	1.9e-141		YDL084W	Sub2p		Pre-mRNA splicing, mRNA export
DEAD-box	F33D11.10	4.1e-130		YDR021W	Fal1p		Ribosome biogenesis, pre-rRNA maturation (40S)
DEAD-box	Y65B4A. 6	8.6e-130					
DEAD-box	F57B9.6a (INF-1)	1.6e-135		YKR059W	Tiflp		Translation initiation
		1.6e-135		YJL138C	Tif2p		Translation initiation
DEAD-box	F01F1.7	1.2e-68		YDR243C	Prp28p		Pre-mRNA splicing
DEAD-box	F58E10.3a	1.1e-136		YNL112W	Dbp2p_		RNA stability, ribosome biogenesis
DEAD-box	Y71H2AM. 19	2.5e-139(Dbp1p)/2.0e-137(Ded1p)		YOR204W ${ }^{\text {f }}$	Ded1p		Translation initiation
DEAD-box	Y54E10A.9a (VBH-1)	9.9e-129(Dbp1p)/2.1e-126(Ded1p)		YPL119C	Dbp1p		Translation initiation
DEAD-box	F01F1.7/F53H1.1	2.6e-19/4.9e-19		YGL064C ${ }^{\text {g }}$	Mrh4p		Maintenance of mitochondrial DNA
DEAD-box	F58E10.3a	$2.3 \mathrm{e}-88$		YGL078C	Dbp3p		Ribosome biogenesis, pre-rRNA maturation (60S)
DEAD-box	B0511.6	$2.0 \mathrm{e}-43$		YDR194C	Mss116p		Mitochondrial gene expression
DEAD-box	B0511.6	2.3e-38		YKR024C	Dbp7p		Ribosome biogenesis (60S)
DEAD-box	C14C11.6 (MUT-14) ${ }^{\text {h }}$						
DEAD-box	C46F11.4						
DEAD-box	F57B9.3						
DEAD-box	F58G11.2						
DEAD-box	H27M09.1						
DEAD-box	T06A10.1 (MEL-46)						
DEAD-box	Y38A10A. 6						
DEAD-box	Y54G11A. 3						
DEAD-box	Y55F3BR. 1						
DEAD-box	ZC317.1						
DEAD-box (glh)	B0414.6 (GLH-3)						
DEAD-box (glh)	C55B7.1 (GLH-2)						
DEAD-box (glh)	T12F5.3 (GLH-4)						
DEAD-box (glh)	T21G5.3 (GLH-1)						
DDX1-like	F20A1.9						
DEAH-box subfamily							
DEAH-box	C06E1.10 (RHA-2)	2.7e-146		YMR128W	Ecm16p		Ribosome biogenesis (40S)
DEAH-box	K03H1.2 (MOG-1)	5.5e-207		YKR086W	Prp16p		Pre-mRNA splicing
DEAH-box	F56D2.6a	1.3e-227		YGL120C	Prp43p		Pre-mRNA splicing
DEAH-box	C04H5.6 (MOG-4)	1.6e-176		YNR011C	Prp2p		Pre-mRNA splicing

Subfamily	C. elegans protein ${ }^{\text {a }}$	E-value of BLASTP analysis in WormBase (WS159) ${ }^{\text {a }}$	Phenotype code of RNAi-treated nematode ${ }^{\text {b }}$	S. cerevisiae ORF ${ }^{\text {c }}$	S. cerevisiae protein	Phenotype code of knockout strain ${ }^{\text {d }}$	Function of yeast protein ${ }^{\text {c }}$
DEAH-box	EEED8.5 (MOG-5)	3.0e-252		YER013W	Prp22p		Pre-mRNA splicing
DEAH-box	T07D4.3 (RHA-1)	7.3e-82		YLR419W			Unknown
DEAH-box	EEED8.5 (MOG-5)	7.6e-121		YKL078W	Dhr2p		Ribosome biogenesis (40S)
DEAH-box	F52B5. 3						
DEAH-box	T05E8.3						
DEAH-box	Y108F1.5						
DEAH-box	Y37E11AM. 1						
DEAH-box	Y67D2.6						
SKI2 subfamily							
SKI2	W08D2.7	1.1e-173		YJL050W	Mtr4p		Ribosome biogenesis, pre-rRNA processing (60S), nuclear RNA degradation (?), mRNA transport (?)
SKI2	C08F8.2a	8.2e-70		YPL029W	Suv3p		Mitochondrial RNA degradation
SKI2	F01G4.3	$3.2 \mathrm{e}-181$		YLR398C	Ski2p		dsRNA killer propagation, cytoplasmic $3^{\prime}-5$ ' RNA degradation
SKI2	Y46G5A. 4	0		YER172C	Brr2p		Pre-mRNA splicing
SKI2	Y54E2A. 6	3.2e-210/3.4e-316(Y46G5A.4)		YGR271W	Slh1p		Regulation of translation?
SKI2	Y54E2A. 6	2.5e-58		YGL251C	Hfm1p		Crossover control in meiosis
SKI2	C28H8.3						
SKI2	Y46G5A. 6						
SKI2	Y55B1AL. 3						
UPF1 subfamily							
UPF1	F43G6.1b (DNA-2)	4.7e-86		YHR164C	Dna2p		DNA replication, Okazaki fragment maturation
UPF1	Y48G8AL. 6 (SMG-2)	5.1e-212		YMR080C	Nam7p		RNA stability, nonsense-mediated RNA decay
UPF1	Y48G8AL. 6	2.0e-40		YKL017C	Hes1p		DNA replication?
UPF1	Y48G8AL. 6	5.4e-44		YLR430W	Sen1p		tRNA-, snRNA-, snoRNA-maturation
UPF1	Y48G8AL. 6	8.2e-56		YER176W	Ecm32p		Translation termination
UPF1	C05C10.2						
UPF1	C41D11.7						
UPF1	C44H9.4						
UPF1	K08D10.5						
UPF1	R03D7.2						
UPF1	Y80D3A. 2 (EMB-4)						
UPF1	ZK1067.2						
UPF1 (far related)	C44H9.2						
SWI2/SNF2 subfamily							
SWI2/SNF2	M03C11.8	2.2e-114		YAL019W	Fun30p		DNA repair?
SWI2/SNF2	F37A4.8 (ISW-1)	$3.0 \mathrm{e}-207$		YBR245C	Isw1p		Chromatin remodeling, transcription
		4.4e-249		YOR304W	Isw2p		Chromatin remodeling, transcription
SWI2/SNF2	F15D4.1 (BTF-1)	$3.6 \mathrm{e}-122$		YPL082C	Mot1p		Transcription
SWI2/SNF2	Y111B2A. 22 (SSL-1)	$2.0 \mathrm{e}-181$		YDR334W	Swrip		Chromatin remodeling, DNA repair
SWI2/SNF2	H06O01.2	4.0e-180		YER164W	Chd1p		Chromatin remodeling, transcription
SWI2/SNF2	W06D4.6 (RAD-54)	6.9e-160		YGL163C	Rad54p		DNA repair, DNA recombination
SWI2/SNF2	F53H4.1 (CSB-1)	9.8e-91		YJR035W	Rad26p		Transcription coupled repair
SWI2/SNF2	F01G4.1 (PSA-4)	6.9e-220(Snf2p)/1.4e-212(Sth1p)		YOR290C	Snf2p		Chromatin remodeling, transcription
SWI2/SNF2	C52B9.8	1.0e-205(Snf2p)/1.3e-190(Sth1p)		YIL126W	Sth1p		G2 control, chromatin remodeling, transcription
SWI2/SNF2	W06D4.6 (RAD-54)	$3.6 \mathrm{e}-106$		YBR073W	Rdh54p		DNA repair, DNA recombination

SWI2/SNF2	F01G4.1/C52B9.8	2.2e-105/9.8e-102	YFR038W	Irc5p	Unknown	$\stackrel{Z}{3}$
SWI2/SNF2	Y111B2A. 22 (SSL-1)	$3.7 \mathrm{e}-113$	YGL150C	Ino80p	Chromatin remodeling, transcription, DNA repair	
SWI2/SNF2	F54E12.2	9.5e-46	YBR114W	Rad16p	DNA repair	
SWI2/SNF2	F54E12.2	2.3e-46	YLR032W	Rad5p	Post-replication repair	
SWI2/SNF2	F54E12.2	5.3e-65	YOR191W	Ris1p	Chromatin structure, gene silencing	
SWI2/SNF2	B0041.7 (XNP-1)					
SWI2/SNF2	C16A3.1					
SWI2/SNF2	C27B7.4 (RAD-26)					
SWI2/SNF2	F26F12.7 (LET-418)					
SWI2/SNF2	F53H4.6					
SWI2/SNF2	F54E12.2					
SWI2/SNF2	F59A7.8					
SWI2/SNF2	T04D1.4 (TAG-192)					
SWI2/SNF2	T14G8.1 (CHD-3)					
SWI2/SNF2	T23H2.3					
SWI2/SNF2	Y113G7B.14					
SWI2/SNF2	Y116A8C. 13					
SWI2/SNF2 (far related)	C25F9.5					
SWI2/SNF2 (far related)	F19B2.5					
SWI2/SNF2 (far related)	M04C3.1					
SWI2/SNF2 (far related)	Y43F8B. 14					
SWI2/SNF2 (far related)	C25F9.4					
SWI2/SNF2 (far related)	M04C3.2					
MCM subfamily						
MCM	Y17G7B.5a (MCM-2)	1.2e-180	YBL023C	Mcm2p	DNA replication	
MCM	F32D1.10 (MCM-7)	3.1e-143	YBR202W	Cdc47p	DNA replication	$\stackrel{-}{ }$
MCM	C25D7.6 (MCM-3)	$8.3 \mathrm{e}-141$	YEL032W	Mcm3p	DNA replication	T17
MCM	ZK632.1a (MCM-6)	7.5e-171	YGL201C	Mcm6p	DNA replication	亿.
MCM	R10E4.4 (MCM-5)	1.2e-137	YLR274W	Cdc46p	DNA replication	$\stackrel{\square}{\square}$
MCM	Y39G10AR. 14 (MCM-4)	1.8e-160	YPR019W	Cdc54p	DNA replication	\cong
PIF1 subfamily						
PIF1	Y18H1A. 6 (PIF-1)	$\begin{aligned} & 9.8 \mathrm{e}-83 \\ & 2.0 \mathrm{e}-80 \end{aligned}$	YML061C YHR031C	Pif1p Rrm3p	Maintenance of mitochondrial DNA and telomeres rDNA replication, Ty 1 transposition	
PIF1	C11G6.2					
PIF1	F11C3.1					
PIF1	Y116F11A. 1					
PIF1 (Helitron)	F33H12.6					
PIF1 (Helitron)	F59H6.5					
PIF1 (Helitron)	Y16E11A. 2					
PIF1 (Helitron)	Y27F2A. 5					
PIF1 (Helitron)	Y46B2A. 2					
PIF1 (Helitron)	ZK250.9					
MPH1 subfamily						
MPH1	D2005.5 (DRH-3)	1.0e-12	YIR002C	Mph1p	DNA repair	
MPH1	C01B10.1 (DRH-2)					
MPH1	D2005.5 (DRH-3)					
MPH1	F15B10.2 (DRH-1)					
MPH1	K12H4.8 (DCR-1)					
RAD3 subfamily						
RAD3	Y50D7A. 2	8.8e-161	YER171W	Rad3p	DNA repair, transcription	
RAD3	M03C11.2	9.1e-64	YPL008W	Chl1p	Chromosome segregation	∞

Subfamily	C. elegans protein ${ }^{\text {a }}$	E-value of BLASTP analysis in WormBase (WS159) ${ }^{\text {a }}$	Phenotype code of RNAi-treated nematode ${ }^{\text {b }}$	S. cerevisiae $\mathrm{ORF}^{\mathrm{c}}$	S. cerevisiae protein	Phenotype code of knockout strain ${ }^{\text {d }}$	Function of yeast protein ${ }^{\text {c }}$	\bigcirc
RAD3	Y50D7A. 11							
RAD3	F25H2.13 (BCH-1)							
RAD3	F33H2.1 (DOG-1)							
RECQ subfamily								
RECQ	T04A11.6 (HIM-6)	2.3e-99		YMR190C	Sgs1p		DNA repair, DNA recombination	
RECQ	E03A3.2 (RCQ-5)	1.6e-63						
RECQ	F18C5.2 (WRN-1)	$1.8 \mathrm{e}-78$						
RECQ	K02F3.12	$1.3 \mathrm{e}-89$						
Other helicase-related proteins								
RVB	C27H6.2 (RUVB-1)	1.1e-132		YDR190C	Rvb1p		Chromatin remodeling, transcription	\bigcirc
RVB	T22D1.10 (RUVB-2)	2.2e-138		YPL235W	Rvb2p		Chromatin remodeling, transcription	${ }^{3}$
SSL2	Y66D12A. 15	$1.2 \mathrm{e}-206$		YIL143C	Ssl2p		DNA repair, transcription	1
KU70	Y47D3A. 4 (CKU-70)	>0.01		YMR284W	Yku70p		DNA repair, telomere maintenance	z
KU80	R07E5.8 (CKU-80)	0.0023		YMR106C	Yku80p		DNA repair, telomere maintenance	$\stackrel{\square}{\circ}$
YLR247C	T05A12.4a	5.1e-32		YLR247C			Unknown	\bigcirc
YDR291W ${ }^{\text {j }}$	F18C5.2	1.4e-07		YDR291W	Hrq1		Unknown	\%
YDR332W	R05D11.4	$9.1 \mathrm{e}-08$		YDR332W	Irc3p		Unknown	5
HPR5	Y55B1BR. 3	1.3e-06		YJL092W	Hpr5p		DNA repair	\bigcirc
HMI1	NDi			YOL095C	Hmilp		Maintenance of mitochondrial DNA	
Y'-Hel1	ND			YBL111C			Unknown	
Y'-Hel1	ND			YBL113C			Unknown	$\stackrel{2}{8}$
Y'-Hel1	ND			YDR545W	Yrf1-1p		Unknown	8
Y'-Hel1	ND			YEL077C			Unknown	โ
Y'-Hel1	ND			YER190W	Yrf1-2p		Unknown	©
Y'-Hel1	ND			YFL066C			Unknown	$\stackrel{\rightharpoonup}{0}$
Y'-Hel1	ND			YGR296W	Yrf1-3p		Unknown	$\stackrel{\square}{2}$
Y'-Hel1	ND			YHL050C			Unknown	0
Y'-Hel1	ND			YHR218W			Unknown	\%
Y'-Hel1	ND			YHR219W			Unknown	-
Y'-Hel1	ND			YIL177C			Unknown	-
Y'-Hel1	ND			YJL225C			Unknown	4
Y'-Hel1	ND			YLL066C			Unknown	
Y'-Hel1	ND			YLL067C			Unknown	8
Y'-Hel1	ND			YLR466W	Yrf1-4p		Unknown	8
Y'-Hel1	ND			YLR467W	Yrf1-5p		Unknown	
Y'-Hel1	ND			YML133C			Unknown	
Y'-Hel1	ND			YNL339C	Yrf1-6p		Unknown	
Y'-Hel1	ND			YOR396W			Unknown	
Y'-Hel1	ND			YPL283C	Yrf1-7p		Unknown	
Y'-Hel1	ND			YPR204W			Unknown	
Twinkle-like	F46G11.1							
DNA pol theta-like	W03A3.2 (POLQ-1)							
MOP-3-like	F20H11.2 (NSH-1)							
INTS6-like	F08B4.1b (DIC-1)							
Plant helicase-like	F52G3.3							
Plant helicase-like	F52G3.4							

No. 4$]$
search against the InParanoid database (version 4.0 updated April 2005, http://inparanoid.cgb.ki.se/). Several putative orthologs were identified as reciprocal best BLAST hits with an E-value $<1.0 \mathrm{e}-30$ between S. cerevisiae and C. elegans. Suffixes ' a ' and ' b ' indicate variants with the highest homology to the yeast protein. ${ }^{b}$ Phenotype code (C. elegans): The phenotypes of RNAi-treated nematodes are indicated by gray-scale coding: Emb in black, Lva and Gro in dark gray, and WT (no phenotype) in light gray. Empty code: no data (not tested). A phenotype code for the most intense phenotype is indicated. ${ }^{\text {c Classification and functions of yeast helicase-like proteins are according to the yeast RNA helicase database by }}$ Linder and colleagues. ${ }^{\mathrm{d}}$ Phenotypes of the corresponding knockout strains were mainly obtained from the Saccharomyces Genome Database and our previous report ${ }^{8}$ and shown by phenotype codes: lethal in black, slow growth in dark gray, and viable in light gray, no data in white. ${ }^{\text {e }}$ The proteins surrounded with bold lines are a putative orthologous pair based on BLASTP scores, but were not in the InParanoid database. The Ku70 and Ku80 homologs in yeast and nematodes are described in the Saccharomyces Genome Database and WormBase. ${ }^{\mathrm{f}}$ Two pairs of yeast proteins (Snf2p and Sth1p, Ded1p and Dbp1p) with two C. elegans orthologs are surrounded by dashed lines. ${ }^{\circ}$ The yeast proteins with BLAST scores lower than that of the putative homologs or without any sequence homologies to C. elegans proteins are indicated in separated box for each subfamily. ${ }^{\text {h }}$ C. elegans proteins without significant similarities to yeast helicase-like proteins are also indicated separately. ${ }^{\mathrm{i}} \mathrm{ND}$, not detected. Several C. elegans proteins with E-values greater than $1 \mathrm{e}-10$ when compared with the Y^{\prime}-Hell proteins were omitted because the similarities were to low-complexity regions in the amino acid sequences. ${ }^{j}$ Twenty-five budding yeast-specific proteins including subtelomere-specific helicase-like proteins and four yeast proteins (Hrq1p, Hpr5p, Hmilp, and Irc3p) and six C. elegans (higher eukaryote)-specific proteins (DIC-1, NSH-1, POLQ-1, F46G11.1, F52G3.3, and F52G3.4) were detected.
T. Eki et al.
then removed. The eggs on this second RNAi plate were used for phenotypic analyses of F1 progeny. HT115(DE3) with vector alone was used as control bacteria for mock RNAi treatments. For double-RNAi treatment, $50 \mu \mathrm{~L}$ of culture suspension equally mixed with growing bacteria for each target gene was seeded on RNAi plates for dsRNA expression.

2.5. Phenotypic analyses of RNAi-treated animals

The hatching rate of the eggs was determined as described previously. ${ }^{24}$ RNAi-treated animals for 12 h were transferred onto a new RNAi plate to lay eggs for 12 h . F1 eggs laid on the RNAi plate were cultured for 24 h . Subsequently, the numbers of hatched larvae and dead eggs were scored to determine the hatching rate. The experiments were repeated at least twice. Growth of hatched F1 progeny was monitored by body length measurements as described previously. ${ }^{22}$ The growthdefect phenotypes were tentatively classified as larval arrest (Lva), slow growth (Gro), and normal growth (WT), using the growth retardation index, as described in the legend of Table 1. Brood size of RNAi-treated animals was examined in two ways as described in the legend of Supplementary Table S2. X-ray sensitivity assay of RNAi-treated animals was performed as described in the legend of Tables 3 and 4 .

3. Results

3.1. Identification of helicase-like genes in C. elegans

In this study, we have expanded our analyses of helicase family members from unicellular eukaryote S. cerevisiae to a multicellular animal, the nematode C. elegans. A sequence homology search, with known helicase-like proteins as the queries, identified 134 gene products in the recent C. elegans protein data in the public nematode database WormBase ${ }^{25}$ (release WS162). These proteins were classified into 10 subfamilies (DEAD-box, DEAHbox, SKI2, UPF1, SWI2/SNF2, MCM, PIF1, MPH1, RAD3, and RECQ) on the basis of a modified classification of yeast helicase-like proteins and one group of 'other helicase-like proteins' containing 11 orphan proteins (Table 1). Three subfamilies (DEAD-box, DEAHbox, and SKI2) contain many proteins involved in aspects of RNA metabolism, including ribosome biogenesis, pre-mRNA splicing, RNA degradation, and translation. ${ }^{2,3}$ A number of the proteins in the MCM, ${ }^{26}$ PIF1, ${ }^{27}$ RAD3, and RECQ ${ }^{6}$ subfamilies play roles in DNA-mediated reactions, and the SWI2/SNF2 members act primarily in chromatin remodeling and/or DNA metabolism. ${ }^{4,5}$ The total number of helicase-like proteins in C. elegans (134 proteins) was greater than the number of yeast helicase-like proteins (103 proteins including 21 subtelomeric helicase-like proteins). ${ }^{28}$ Among the genes identified were six nematode homologs of mammal- and

Table 3. Influence of X-ray irradiation on the viability of F1 progeny from RNAi-treated animals

X-ray dose (Gy)	Hatching rate (\%)		
	Control	D2005.5 (RNAi)	rad-51 (RNAi)
0	$91.8(n=622)$	$32.5(n=382)$	$62.4(n=86)$
40	$62.8(n=756)$	$0.6(n=313)$	$3.2(n=313)$

The cDNA fragments corresponding to D2005.5 and rad-51 (Y43C5A.6) were amplified from phage cDNA clones yk331a2 and yk401c3 (a kind gift of Dr Y. Kohara, National Institute of Genetics, Japan), respectively, by PCR with the primer set yk5'-F (5^{\prime}-TGGCGGCCGCTCTAGAACTAGTGGATC- 3^{\prime}) and yk3'-SmaR (5^{\prime}-TTCCCGGGTGAATTGTAATACGACTCACTATAG GGCG-3'). These cDNAs were used for X-ray-induced embryonic lethality assay. The genomic DNA fragment ($\sim 2.3 \mathrm{~kb}$) corresponding to Y66D12A. 15 was amplified from C. elegans genomic DNA (N2 strain) by PCR using the primer set Y66Dex1-3F (5^{\prime}-AAGCTTGAAAAACCCAGAAAAATGGCA-3') and Y66Dex1-3R (5^{\prime}-TTCCACTCCAACCTTGGTCGCATCGGC-3'). These fragments were cloned into the dsRNA expression vector, and the nucleotide sequences were confirmed by sequencing. Four young adult worms were fed bacteria-expressing dsRNA to the target gene on an RNAi plate for 18 h and were subsequently X-ray-irradiated (Radioflex 320CG, RIGAKU, Tokyo) at a rate of $2 \mathrm{~Gy} / \mathrm{min}$. Irradiated animals were transferred onto a fresh RNAi plate, cultured for 2 days to lay eggs and then removed. After 24 h , the hatching rate of eggs laid on the plate was determined. The total numbers of eggs counted are indicated in parentheses.

Table 4. Influence of X-ray irradiation on the growth of F1 progeny from RNAi-treated animals

		Body length (mm)	
	Control	D2005.5 (RNAi)	gei-17 (RNAi)
Mock irradiated	$0.932 \pm 0.062(n=40)$	$0.923 \pm 0.076(n=32)$	$0.919 \pm 0.116(n=43)$
Significance relative to control $(P$-value)		0.521	0.560
X-ray irradiated (40 Gy)	$0.992 \pm 0.076(n=56)$	$0.726 \pm 0.208(n=18)$	$0.826 \pm 0.211(n=31)$
Significance relative to control $(P$-value)		<0.0001	<0.0001

The genomic DNA fragment corresponding to gei-17(W10D5.3) was amplified using the primer set W10D5.3-F (5'-CGCTTCCACTTCCATTCTACGATG-3') and W10D5.3-R (5'-GGCCATTCCAGATGGAGATGAGCC-3'). The D2005.5 cDNA fragment ($\sim 1.5 \mathrm{~kb}$) was amplified from a C. elegans embryo cDNA library using the primers D1-BF (5^{\prime}-CCGGGATCCA TCGTTGATCTGATGCCTGCGATGG-3') and ZAP-R (5^{\prime}-GAATTGTAATACGACTCACTATAGGGC- 3^{\prime}). The D2005.5 cDNA and gei-17 genomic DNA fragment were used for an X-ray-induced growth retardation assay. The growth of larvae from RNAi-treated animals was monitored by determining the mean body length of the animals. The mean \pm standard deviation values of body length of animals at 3 days after X-ray or mock irradiation were determined and are indicated. Numbers of animals measured are in parentheses. Statistical significance of the differences in mean body length between control and RNAitreated animals in each group was analysed by Student's t-test (significance at $P<0.05$) using the software package JMP IN5.1.2J (SAS Institute, Cary, USA).
plant-specific helicase-like genes (polq-1, nsh-1, dic-1, F46G11.1, F52G3.3, and F52G3.4) and five C. elegansspecific SNF2-like genes (C25F9.4, C25F9.5, M04C3.1, M04C3.2, and Y43F8B.14). Six Helitrons, a novel class of mobile genetic elements encoding a 'rolling circle' replication protein and a helicase ${ }^{29,30}$ (F33H12.6, F59H6.5, Y16E11A.2, Y27F2A.5, Y46B2A.2, and ZK250.9), were also identified.

Drosophila melanogaster, Homo sapiens, and Caenorhabditis briggsae proteins homologous to each C. elegans protein are presented in Table 1. Most helicaselike genes were well conserved between C. elegans and C. briggsae, with the exception of the C. elegans-specific SNF2-like genes, several PIF1-like genes including the Helitrons, and plant helicase-like gene homologs (F52G3.3 and F52G3.4). Although homologs of the Helitrons, F52G3.3, and F52G3.4 were detected in plants (data not shown), these three gene groups were
not conserved in humans or flies. We detected putative human and fly homologs of many genes from the known subfamilies, as well as the orphan genes, but we were unable to find putative counterparts of several DEADbox genes including four glh genes, some of the UPF1and SWI2/SNF2-like genes, and most of the PIF1 members, in addition to the C. elegans-specific SNF2like genes and two plant helicase-like genes (Table 1).

3.2. Phenotypic analyses of C. elegans RNAi-treated for helicase-like genes

Of the 134 genes identified in this study, 49 corresponded to genes of known function; however, the functions of the remaining genes are unknown. Therefore, we used the feeding RNAi method to identify loss-of-function phenotypes of uncharacterized helicase-like genes to aid in ascertaining the function of the gene products. We

Figure 1. Typical phenotypes of F1 progeny from nematodes RNAi-treated for helicase-like genes. Typical images of the F1 progeny from eggs laid by RNAi-treated P0 animals on RNAi plates for control [vector alone (A)], mcm-6(ZK632.1) RNAi (B), W08D2.7 RNAi (C), ZK686.2 RNAi (D), Y50D7A.11 RNAi (E), and cgh-1 (C07H6.5) RNAi $[(\mathbf{F})$ and (\mathbf{G}) in a threefold enlarged image] are shown. The progeny were cultured on RNAi plates supplemented with dsRNA-expressing bacteria for 3 days after laying, and images were then captured. The RNAi phenotypes shown are embryonic lethal (Emb in Table 1) (B), larval arrest (Lva) (C), slow growth (Gro) (D), slow growth and sterile progeny (Gro Stp) (E), and protruding vulva (Pvl) (F and G). Arrows indicate protruded vulva (F) and resultant abdominal burst (G). Bar: 1 mm .
prepared 129 dsRNA expression constructs with cDNA or genomic DNA fragments of the target genes, and E. coli transformants expressing dsRNA were fed to P0 animals to examine the RNAi-induced phenotypes of the resultant F1 progeny. Typical culture images of the F1 progeny 3 days after hatching are shown in Fig. 1. The control progeny from mock-treated P0 animals grew to adults and laid F2 eggs (Fig. 1A). In contrast, eggs laid by RNAi-treated animals for $m c m-6$, encoding a subunit of the replicative MCM helicase, ${ }^{26}$ exhibited an embryonic
lethal phenotype (Fig. 1B). RNAi for the uncharacterized genes W08D2.7 and ZK686.2 encoding a yeast Ski2p-like protein and a DEAD-box protein caused larval growth arrest (Fig. 1C) and growth retardation (Fig. 1D), respectively, suggesting that both gene products are essential for development and/or larval growth. RNAi for Y50D7A.11 which encodes an ERCC2-like protein caused a progeny sterile phenotype (no F2 eggs in the culture) with growth retardation (Fig. 1E). In addition to embryonic lethality and sterility, ${ }^{31}$ we observed an

RNAi-induced developmental abnormality (a protruding vulva phenotype in Fig. 1F) and increased mortality (Fig. 1G) among F1 survivors of $c g h-1(R N A i)$ animals.
In this study, we examined primarily embryonic lethality and growth-defect phenotypes. Fig. 2 shows growth curves of F1 larvae from animals treated with for 22 helicase members. Growth of progeny from T26G10.1(RNAi) and B0511.6(RNAi) was almost completely arrested (Fig. 2); however, RNAi-induced growth retardation was variable in progeny among the targeted genes. For example, growth rates of progeny from F58E10.3(RNAi), Y23H5B.6(RNAi), and mock-treated animals were calculated to be 3.4, 8.7, and $17.6 \mu \mathrm{~m} / \mathrm{h}$, respectively (Fig. 2). The level of growth defects in the progeny is represented as the growth retardation index in Table 1.

We compared our results with RNAi phenotype data in the public WormBase (WS171) and most phenotypes were in agreement (Table 1). Furthermore, we successfully obtained several new phenotypes; for instance, RNAi for two DEAD-box subfamily members, C24H12.4 and Y'1G12B.8, resulted in larval arrest and slow growth, respectively. RNAi for Y66D12A.15, which encodes an ortholog of the human ERCC3-like protein, and psa-4, which is required for embryonic development, ${ }^{32}$ resulted in embryonic lethality in the current study. [These phenotypes in Y66D12A.15 (RNAi) and psa-4(RNAi) were not previously present in the database (WS162), but have been recently confirmed in the updated version (WS171) during revision of the manuscript.] On the other hand, it was reported that RNAi for dna-2, F20A1.9, F52B5.3, F59A7.8, M03C11.2, M03C11.8, Y116A8C.13, and Y37E11AM. 1 caused an embryonic lethal phenotype, but no growth defect and/or visible abnormalities were observed in our experiments even using the RNAihypersensitive rrf-3 mutant ${ }^{33,34}$ as a host (data not shown). The discrepancies of RNAi experiments are summarized in Supplementary Table S1.

In this study, we examined effects of suppression of 39 germline- or oocyte-expressed helicase-like genes on brood size by feeding RNAi from L1 stage or from L4 stage (Supplementary Table S2). Reduction in brood size was observed in F55F8.2(RNAi) and T05E8.3(RNAi) animals in the L4 RNAi experiments. In the L1 RNAi experiments, suppression of F56D2.6 and C08F8.2 caused significant reductions of brood size; however, reduction was due to sterility in P0 animals by F56D2.6 RNAi and to embryonic lethality by C08F8.2 RNAi (data not shown). Reduced brood size in C08F8.2(RNAi) and F55F8.2 (RNAi) animals has been observed previously by others. ${ }^{35}$

3.3. An RNAi-mediated screen for helicase-like genes involved in resistance to X-ray irradiation

We tried to identify genes that play important roles in specific conditions - in this case, X-ray irradiation-and
applied the feeding RNAi technique to screen for genes involved in protection against X-ray-induced DNA damage. Assuming that dysfunctions in candidate genes would cause hypersensitivity to X-rays, animals RNAitreated for 87 helicase-like genes that were dispensable for embryonic survival were tested for their X-ray sensitivity. RNAi-treated P0 animals were irradiated with X-rays (40 Gy), and the hatching rate of the resultant F1 progeny was examined. Several candidate genes were detected, but only D2005.5(drh-3) RNAi reproducibly enhanced the sensitivity to X-rays (Table 1). The hatching rate of the F1 progeny from drh-3(RNAi) animals without X-ray irradiation was 32.5% due to embryonic lethality induced by RNAi alone; however, the viability of F1 progeny from irradiated $d r h-3(R N A i)$ animals markedly decreased to 0.6% (Table 3). A similar X-ray hypersensitivity was observed in rad-51(RNAi) animals, in which DNA double-strand break repair and meiotic homologous recombination were suppressed. ${ }^{36,37}$ X-rayinduced growth retardation was also observed in the F1 progeny from drh-3(RNAi) animals. The F1 progeny from drh-3(RNAi) and gei-17(RNAi) animals without irradiation developed normally. However, F1 larvae from irradiated animals exhibited a slow-growth phenotype (Table 4). The gei-17 gene encodes a putative E3 SUMO ligase that participates in embryonic DNA damage responses in C. elegans, and the gei-17(RNAi) embryo is sensitive to other DNA-damaging agents. ${ }^{38,39}$

4. Discussion

4.1. Identification of helicase family members and RNAi-based phenotypic analyses in C. elegans

This is the first survey of members of helicase-like genes in C. elegans. In this study, several novel members of helicase family were identified by a systematic BLAST-based homology search, including two plant helicase-like genes of F52G3.3 and F52G3.4 and five C. elegans-specific SNF2-like genes. It should be noted that the current total number of helicase-like genes (134 genes) is tentative. For example, both Y50D7A.2 and a neighboring gene, $Y 50 D 7 A .11$, may be a split single gene encoding the C. elegans ortholog ERCC2 (see the legend of Table 1).

In this study, we identified 51 helicase-like genes that are required for viability and/or developmental growth of C. elegans. This percentage (39.5\% of 129 genes tested) was significantly higher than the number of phe-notype-positive genes from several genome-wide RNAi analyses $\left(\sim 10 \%^{35,40}\right.$ to $\left.27 \%^{41}\right)$, suggesting the biological importance of helicase-like genes in cellular function. The number of genes required for embryonic development and/or larval growth was variable among the subfamilies. For example, many members of the DEAD-box (63.9% of the members), DEAH-box (54.5\%), MCM (100\%), and MPH1 (50\%) subfamilies exhibited development- and

Figure 2. Influence of RNAi treatment of helicase family genes on larval growth. The growth of F1 larvae from eggs laid by RNAi-treated P0 animals was monitored by measuring the body length of progeny. The resultant growth curves of progeny of animals (N2 strain) that were RNAi-treated for the indicated 10 genes (T26G10.1 to Y23H5B.6) in the DEAD-box subfamily are shown together with the growth curve of progeny without RNAi-treatment [control (A)]. The growth curves obtained from RNAi experiments for the genes in other subfamilies are shown with their control growth curve [control (B)] as follows: Y54E10A.9(vbh-1) from the DEAD-box subfamily; C06E1.10(rha-2), F56D2.6, and T05E8.3 from the DEAH-box subfamily; W08D2.7 from the SKI2 subfamily; Y80D3A.2(emb-4) in the UPF1 subfamily; F26F12.7(let-418) and Y111B2A.22(ssl-1) from the SWI2/SNF2 subfamily; Y50D7A.11 from the RAD3 subfamily; and F20H11.2(nsh-1) as an orphan member, respectively. Experiments for C08F8.2 (SKI2 subfamily) and F37A4.8(isw-1) (SWI2/SNF2 subfamily) indicated in bold letters were carried out using the rrf-3 mutant as a host because of weak slow-growth phenotypes of the RNAi-treated N2 animals, and the resultant growth curves of progeny of control (open triangle) and RNAi-treated (closed triangle) animals are shown. The calculated growth rate for each population was $17.5 \mu \mathrm{~m} / \mathrm{h}[\mathrm{control}(\mathrm{A})], 0.7$ (T26G10.1), 1.5 (Y71H2AM.19), 3.3 (B0511.6), 3.4 (C24H12.4), 4.0 (ZK512.2), 4.5 (Y94H6A.5), 5.1 (F55F8.2), 5.5 (ZK686.2), 8.4 (H20J04.4), 8.7 (Y23H5B.6), 12.5 [control (B)], 6.8 (Y54E10A.9(vbh-1)), 2.7 (C06E1.10(rha2)), 3.0 (F56D2.6), 7.4 (T05E8.3), 3.2 (W08D2.7), 9.1 (Y80D3A.2(emb-4)), 2.6 (F26F12.7(let-418)), 9.1 (Y111B2A.22(ssl-1)), 7.6 (Y50D7A.11), 6.0 (F20H11.2($n s h-1$)), 8.5 (C08F8.2) and 12.5 (rrf-3 control), and 8.3 (F37A4.8(isw-1)) and 11.8 (rrf-3 control).
growth-defects by RNAi. In contrast, relatively few of the PIF1 (0%), RECQ (0%), UPF1 (10%), or SWI2/SNF2 (15.4\%) subfamily members showed such defects (Supplementary Table S3). These results are consistent with our previous phenotypic analysis using knockout strains of yeast helicase-like genes. ${ }^{8}$ The difference in the incidence of these phenotypes among the subfamilies could be accounted by the biological roles in the members in each subfamily. It is interesting that the suppressions of half of the genes ($d c r-1$ and $d r h-3$) in the MPH1 subfamily cause growth-defects or embryonic lethality. This suggests biological importance of RNAi in viability and larval growth in C. elegans because both gene products act in RNAi. ${ }^{42,43}$ We found some discrepancies in RNAi-induced phenotypes between our experiments and the studies reported in WormBase (Supplementary Table S1). We newly found larval arrest and slow-growth phenotypes caused by C24H12.4 RNAi and Y71G12B.8 RNAi, respectively. C24H12.4 and Y ${ }^{7} 1$ G12B.8 encode putative homologs of the yeast DEAD-box proteins Dbp9p and Drs1p, respectively. Since both yeast proteins are required for ribosomal RNA biogenesis ${ }^{11,44}$ and essential for viability in yeast, ${ }^{3,8}$ our observations on both genes are probably significant (see the legend of Supplementary Table S1 for other discrepancies).

4.2. Loss-of-function phenotypes of helicase family members diverged in C. elegans

The putative C. elegans orthologs of yeast helicase-like proteins were identified and are shown in Table 2 with their loss-of-function phenotypes. The MCM subfamily members ${ }^{26}$ and two RUVB-like proteins ${ }^{45}$ were completely conserved and required for viability in both species. The DEAD-box, DEAH-box, SKI2, UPF1, and SWI2/ SNF2 subfamilies contained two classes of proteins, those that were conserved in both species and those that were species-specific. For example, 21 putative orthologous pairs of the DEAD-box members were well conserved. In contrast, we could not detect any putative nematode homologs corresponding to the four yeast proteins Mrh4p, Dbp3p, Dbp7p, and Mss116p, or any yeast homologs of 15 nematode proteins. Budding yeast contain one or two members of the PIF1, MPH1, RAD3, and RECQ subfamilies; however, the number of members in each of these subfamilies had increased in C. elegans, and many of these divergent proteins are conserved in humans (Table 1). Twenty-five budding yeastspecific proteins and six higher eukaryote-specific proteins were also detected (Table 2). We found a high degree of conservation of loss-of-function phenotypes for homologs in both organisms. The majority (20 of 22 proteins) of putative C. elegans orthologs of yeast essential DEADbox members caused embryonic lethality or growthdefect phenotypes by their depletion (Table 2). Similar phenotypic conservation of essential homologs in both
species was also found in members of the DEAH-box, SKI2, MCM, and RAD3 subfamilies, as well as in the RUVB-like and SSL2-like proteins, suggesting that these putative conserved orthologs play similar essential cellular roles in Celegans as in their yeast counterparts (Table 2). Interestingly, depletions of the subfamily members which have diverged in C. elegans were rarely able to induce growth-defect phenotypes (i.e. only nine of 67 genes tested across the subfamilies).

Because of the detection of diverged members in C. elegans, we assigned all helicase-like genes and pseudogenes to the six C.elegans chromosomes to examine the distribution of the extranumerary genes in the genome. The BLAST-based sequence homology searches identified 10 candidate gene pairs, three highly related gene pairs, and two gene clusters in the helicase-like genes (Supplementary Table S4) and mapped to chromosomes (Supplementary Fig. S1). Six putative gene pairs (glh-1 and glh-2, glh-4 and T08D2.3, F33D11.10 and Y65B4A.6, F57B9.3 and inf-1, F53H1.1 and Y73B3B.5, and mut-14 and ZC317.1) belonged to the DEAD-box subfamily (Supplementary Fig. S1A). At least two partners of the paired genes were pseudogenes (T08D2.3 and $\left.Y^{7} 3 B 3 B .5\right)$. Four pairs of putative duplicated genes were identified among the SWI2/SNF2 (let-418 and chd-3), SKI2 (Y46G5A.4 and Y46G5A.6), PIF1 (C11G6.2 and Y116F11A.1), and MPH1 (drh-1 and drh-2) subfamilies (Supplementary Figs S1C, D, G and $\mathrm{H})$. In addition, two clusters of C. elegans-specific SNF2-like genes and Helitrons in the PIF1 subfamily were found on the terminal regions of chromosomes V and II, respectively, suggesting that these genes might have been generated by a few rounds of gene duplications (Supplementary Figs S1C and G; see the figure legend).

RNAi for the subfamily members diverged in C. elegans poorly induced growth-defect phenotypes (Table 2). This phenomenon may indicate a functional redundancy with paralogous proteins or diverged members in C. elegans. In fact, two diverged DEAD-box members, GLH-1 and GLH-4, are known to play redundant functions in germline development. Kuznicki et al. ${ }^{46}$ showed that double RNAi for $g l h-1 / 4$ was required for significant sterile phenotype. Since some of paired proteins (e.g. LET-418 and CHD-3) have redundant functions, ${ }^{47}$ we assumed that the products of duplicated genes with unknown function (i.e. Y67D2.6 and Y108F1.5, or C11G6.2 and Y116F11A.1) may be the case. However, none of the detectable phenotypes in animals treated with double RNAi for these paired genes were observed (data not shown).

4.3. Expression profiles of helicase-like genes in C. elegans and influence of RNAi for germlineenriched genes

We examined the expression profiles of the helicase-like genes, using four published genome-wide expression
studies of C. elegans genes ${ }^{48-51}$ (Supplementary Table $\mathrm{S} 2)$. Reinke et al. ${ }^{51}$ identified germline-enriched and sexregulated genes and classified the genes into several expression categories. Assignment of helicase-like genes in each subfamily to each expression category revealed that many helicase-like genes (58 of 134 genes) were categorized as 'intrinsic' and 'oogenesis-enriched' genes (Supplementary Table S5A). The fraction of helicaselike genes (21.6%) in the oogenesis-enriched category is significantly higher than that of C. elegans genes in general (5.7% of the total genes), suggesting an expression bias for helicase family members in oogenesis in hermaphrodites. Dominant expression of helicase-like genes in the embryonic stages was also detected in another study 50 (Supplementary Table S5B). The data reported by Jiang et al. ${ }^{48}$ show sex-biased expression of the heli-case-like genes $(12.7 \%$ of helicase-like genes versus 27.6% of total C. elegans genes in male; 32.1 versus 24.7% in hermaphrodites in Supplementary Table S5C). This is also consistent with the high proportion of heli-case-like genes in the oogenesis-enriched genes. Assignment of the helicase-like genes to the C. elegans gene expression map ${ }^{49}$ also indicates that helicase-like genes were relatively concentrated (1.9- to 4.2 -fold) in six mountains ($2,5,7,11,20$, and 25) out of 46 mountains, and mountains 2,7 , and 11 contain predominantly oocyte- and germline-enriched genes ${ }^{49}$ (Supplementary Table S6). In addition, the dominant expression of PIF1 or SKI2 members in males is interesting, because three of three and three of six genes in the PIF1 and SKI2 subfamilies, respectively, appeared in the 'male dominant groups' (Supplementary Table S5C), and this may implicate these genes in male-specific functions such as spermatogenesis. Most Helitrons of the PIF1 members were poorly expressed in the aforementioned studies.

Since oogenesis-enriched expression of many helicase-like genes suggests potential roles of their gene products in the development and proliferation of germ cells, we examined the effect of suppression of 39 germline-enriched genes on brood size by RNAi, and reduced reproductive capacity in F55F8.2 (RNAi) and T05E8.3(RNAi) animals was detected (Supplementary Table S2). F55F8.2 encodes a homolog of yeast-splicing factor Prp28p, and the T05E8.3 gene product is similar to yeast $\operatorname{Prp} 22$ p and a putative homolog of human DHX33 (Table 1). This indicates that both gene products play important roles in the reproduction in C. elegans. In the L1 RNAi analysis, suppression of F56D2. 6 and C08F8.2 caused a significant reduction in brood size because of sterility in P0 animals and of embryonic lethality, respectively, suggesting that F56D2.6, encoding a putative homolog of yeast-splicing factor Prp43p, is required for reproduction, and as a putative homolog of yeast mitochondrial RNA helicase Suv3p, C08F8.2 plays an essential role in embryonic viability. In the previous study by Colaiacovo et al., ${ }^{52}$ four helicase-like genes have been identified in an RNAi-based screen for genes involved
in chromosome morphogenesis and nuclear organization in C. elegans germline. We also found several detectable phenotypes in dcr-1 (RNAi) and ruvb-2(RNAi) animals, but did not find weak phenotypes reported in rha-1(RNAi) and $C 27 B 7.4(R N A i)$ animals (Table 1).

4.4. Identification of drh-3 gene involved in resistance to X-ray-induced DNA damage

In this study, we succeeded in identifying D2005.5(drh3) as a gene for protection against X-ray irradiation. Four Dicer-like proteins in the MPH1 subfamily, including DRH-3, have recently been shown to play an important role in RNAi. ${ }^{43}$ It remains to be resolved why depletion of the RNAi factor DRH-3 causes X-ray hypersensitivity in C. elegans. Previous RNAi-based studies have shown that some helicase family members are implicated in resistance to X-ray-induced DNA damage. Boulton et al. ${ }^{53}$ showed that RNAi of rad-54 and Y116A8C. 13 caused DNA repair defect phenotypes. Recently, van Haaften et al. ${ }^{54}$ performed a genome-wide screen for C. elegans genes that protect cells against ionizing radiation to identify three helicase-like genes D2005.5, Y80D3A.2, and isw-1. Although D2005.5 was commonly detected in the screens by us and van Haaften et al., we failed to find marked X-ray-dependent phenotypic defects in the progeny of Y80D3A.2(RNAi) or isw-1(RNAi) animals (Table 1). Several genes including rad-54 or RecQ-like helicase genes are thought to be involved in DNA repair of X-ray-induced DNA damage; however, these genes were not always detected in previous RNAi-based screens. In order to isolate more candidate genes, several technical improvements in the screens may be required, including more sensitive assay systems (e.g. use of reporter animals ${ }^{55}$), RNAi-based screens using rrf-3 mutants, ${ }^{34}$ or soaking RNAi-mediated screens. ${ }^{41}$

In conclusion, we have identified helicase-like genes in C. elegans and characterized loss-of-function phenotypes of these genes. The results obtained from phenotypic analyses, comparative analyses, chromosome mapping, and a study of the expression patterns of helicase family members will be useful for studying helicase-mediated molecular reactions governing dynamic regulation of DNA, RNA, and chromatin. Furthermore, characterization of DRH-3 will elucidate functional interactions between the resistance to X-ray irradiation and RNAi.

Supplementary material

Supplementary Data: Supplementary data are available online at dnaresearch.oxfordjournals.org.

Funding

This work was supported in part by Grants-in-Aid for Scientific Research (C) (No. 17590057), on Priority

Areas Genome Biology, and the 21st Century COE Program Ecological Engineering for Homeostatic Human Activities, from the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.E.), the Human Frontier Science Program (HFSP-RGP0012/2004-C), and Solution Oriented Research for Science and Technology from the Japan Science and Technology Agency (J071501010) (F.H.), and the special research program of the Toyohashi University of Technology, the Naito Foundation, and the REIMEI Research Resources of Japan Atomic Energy Research Institute (T.E.).

Acknowledgements: We would like to thank Drs A. Fire and Y. Kohara for kindly providing vectors and cDNA clones, and the Caenorhabditis Genetics Center for mutant strains. We are also grateful to M. Nakamura, T. Ohgake, R. Hayashi and other laboratory members for helpful discussions and technical support.

References

1. Tuteja, N. and Tuteja, R. 2004, Unraveling DNA helicases. Motif, structure, mechanism and function, Eur. J. Biochem., 271, 1849-1863.
2. Tanner, N. K. and Linder, P. 2001, DExD/H box RNA helicases: from generic motors to specific dissociation functions, Mol. Cell, 8, 251-262.
3. Cordin, O., Banroques, J., Tanner, N. K. and Linder, P. 2006, The DEAD-box protein family of RNA helicases, Gene, 367, 17-37.
4. Lusser, A. and Kadonaga, J. T. 2003, Chromatin remodeling by ATP-dependent molecular machines, BioEssays, 25, 1192-1200.
5. Durr, H., Flaus, A., Owen-Hughes, T. and Hopfner, K. P. 2006, Snf2 family ATPases and DExx box helicases: differences and unifying concepts from high-resolution crystal structures, Nucleic Acids Res., 34, 4160-4167.
6. Hickson, I. D. 2003, RecQ helicases: caretakers of the genome, Nat. Rev. Cancer, 3, 169-178.
7. Gorbalenya, A. E. and Koonin, E. V. 1993, Helicases: amino acid sequence comparisons and structure-function relationships, Curr. Opin. Struct. Biol., 3, 419-429.
8. Shiratori, A., Shibata, T., Arisawa, M., Hanaoka, F., Murakami, Y. and Eki, T. 1999, Systematic identification, classification, and characterization of the open reading frames which encode novel helicase-related proteins in Saccharomyces cerevisiae by gene disruption and Northern analysis, Yeast, 15, 219-253.
9. Libri, D., Graziani, N., Saguez, C. and Boulay, J. Multiple roles for the yeast SUB2/yUAP56 gene in splicing, Genes Dev., 2001, 15, 36-41.
10. Colley, A., Beggs, J. D., Tollervey, D. and Lafontaine, D. L. Dhr1p, a putative DEAH-box RNA helicase, is associated with the box C + D snoRNP U3, Mol. Cell. Biol., 2000, 20, 7238-7246.
11. Daugeron, M. C., Kressler, D. and Linder, P. 2001, Dbp9p, a putative ATP-dependent RNA helicase involved in

60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p, RNA, 7, 1317-1334.
12. Kuusk, S., Sedman, T., Joers, P. and Sedman, J. 2005, Hmilp from Saccharomyces cerevisiae mitochondria is a structure-specific DNA helicase, J. Biol. Chem., 280, 24322-24329.
13. Shen, X., Mizuguchi, G., Hamiche, A. and Wu, C. 2000, A chromatin remodelling complex involved in transcription and DNA processing, Nature, 406, 541-544.
14. Krogan, N. J., Keogh, M. C., Datta, N., et al. 2003, A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1, Mol. Cell, 12, 1565-1576.
15. Longman, D., Johnstone, I. L. and Caceres, J. F. 2000, Functional characterization of SR and SR-related genes in Caenorhabditis elegans, EMBO J., 19, 1625-1637.
16. Kawano, T., Fujita, M. and Sakamoto, H. Unique and redundant functions of SR proteins, a conserved family of splicing factors, in Caenorhabditis elegans development, Mech. Dev., 2000, 95, 67-76.
17. Jones, D., Crowe, E., Stevens, T. A. and Candido, E. P. 2002, Functional and phylogenetic analysis of the ubiquitylation system in Caenorhabditis elegans: ubiquitinconjugating enzymes, ubiquitin-activating enzymes, and ubiquitin-like proteins, Genome Biol., 3, RESEARCH0002.
18. Hope, I. A., Mounsey, A., Bauer, P. and Aslam, S. 2003, The forkhead gene family of Caenorhabditis elegans, Gene, 304, 43-55.
19. Keating, C. D., Kriek, N., Daniels, M., et al. 2003, Wholegenome analysis of 60 G protein-coupled receptors in Caenorhabditis elegans by gene knockout with RNAi, Curr. Biol., 13, 1715-1720.
20. O'Brien, K. P., Remm, M. and Sonnhammer, E. L. 2005, Inparanoid: a comprehensive database of eukaryotic orthologs, Nucleic Acids Res., 33, D476-D480.
21. Sijen, T., Fleenor, J., Simmer, F., et al. 2001, On the role of RNA amplification in dsRNA-triggered gene silencing, Cell, 107, 465-476.
22. Harada, H., Kurauchi, M., Hayashi, R. and Eki, T. 2007, Shortened lifespan of nematode Caenorhabditis elegans after prolonged exposure to heavy metals and detergents, Ecotoxicol. Environ. Saf., 66, 378-383.
23. Timmons, L., Court, D. L. and Fire, A. 2001, Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans, Gene, 263, 103-112.
24. Ohkumo, T., Masutani, C., Eki, T. and Hanaoka, F. 2006, Deficiency of the Caenorhabditis elegans DNA polymerase η homologue increases sensitivity to UV radiation during germ-line development, Cell Struct. Funct., 31, 29-37.
25. Schwarz, E. M., Antoshechkin, I., Bastiani, C., et al. 2006, WormBase: better software, richer content, Nucleic Acids Res., 34, D475-D478.
26. Ishimi, Y. 1997, A DNA helicase activity is associated with an MCM4, -6 , and -7 protein complex, J. Biol. Chem., 272, 24508-24513.
27. Boule, J. B. and Zakian, V. A. Roles of Pif1-like helicases in the maintenance of genomic stability, Nucleic Acids Res., 2006, 34, 4147-4153.
28. Yamada, M., Hayatsu, N., Matsuura, A. and Ishikawa, F. Y'-Help1, a DNA helicase encoded by the yeast subtelomeric

Y' element, is induced in survivors defective for telomerase, J. Biol. Chem., 1998, 273, 33360-33366.
29. Kapitonov, V. V. and Jurka, J. 2001, Rolling-circle transposons in eukaryotes, Proc. Natl Acad. Sci. USA, 98, 8714-8719.
30. Poulter, R. T., Goodwin, T. J. and Butler, M. I. Vertebrate helentrons and other novel Helitrons, Gene, 2003, 313, 201-212.
31. Navarro, R. E., Shim, E. Y., Kohara, Y., Singson, A. and Blackwell, T. K. cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans, Development, 2001, 128, 3221-3232.
32. Sawa, H., Kouike, H. and Okano, H. Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans, Mol. Cell, 2000, 6, 617-624.
33. Simmer, F., Tijsterman, M., Parrish, S., et al. 2002, Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi, Curr. Biol., 12, 1317-1319.
34. Simmer, F., Moorman, C., van der Linden, A. M, et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions, PLoS Biol., 2003, 1, E12.
35. Rual, J. F., Ceron, J., Koreth, J., et al. 2004, Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library, Genome Res., 14, 2162-2168.
36. Takanami, T., Mori, A., Takahashi, H. and Higashitani, A. 2000, Hyper-resistance of meiotic cells to radiation due to a strong expression of a single recA-like gene in Caenorhabditis elegans, Nucleic Acids Res., 28, 4232-4236.
37. Rinaldo, C., Bazzicalupo, P., Ederle, S., Hilliard, M. and La Volpe, A. 2002, Roles for Caenorhabditis elegans rad-51 in meiosis and in resistance to ionizing radiation during development, Genetics, 160, 471-479.
38. Holway, A. H., Hung, C. and Michael, W. M. 2005, Systematic, RNA-interference-mediated identification of mus-101 modifier genes in Caenorhabditis elegans, Genetics, 169, 1451-1460.
39. Holway, A. H., Kim, S. H., La Volpe, A. and Michael, W. M. 2006, Checkpoint silencing during the DNA damage response in Caenorhabditis elegans embryos, J. Cell. Biol., 172, 999-1008.
40. Kamath, R. S., Fraser, A. G., Dong, Y., et al. 2003, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature, 421, 231-237.
41. Maeda, I., Kohara, Y., Yamamoto, M. and Sugimoto, A. Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi, Curr. Biol., 2001, 11, 171-176.
42. Tabara, H., Yigit, E., Siomi, H. and Mello, C. C. 2002, The dsRNA binding protein RDE-4 interacts with RDE-1,

DCR-1, and a DExH-box helicase to direct RNAi in C. elegans, Cell, 109, 861-871.
43. Duchaine, T. F., Wohlschlegel, J. A., Kennedy, S., et al. 2006, Functional proteomics reveals the biochemical niche of C. elegans DCR-1 in multiple small-RNA-mediated pathways, Cell, 124, 343-354.
44. Venema, J. and Tollervey, D. Ribosome synthesis in Saccharomyces cerevisiae, Annu. Rev. Genet., 1999, 33, 261-311.
45. Jonsson, Z. O., Dhar, S. K., Narlikar, G. J., et al. 2001, Rvb1p and Rvb2p are essential components of a chromatin remodeling complex that regulates transcription of over 5% of yeast genes, J. Biol. Chem., 276, 16279-16288.
46. Kuznicki, K. A., Smith, P. A., Leung-Chiu, W. M., Estevez, A. O., Scott, H. C. and Bennett, K. L. 2000, Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans, Development, 127, 2907-2916.
47. von Zelewsky, T., Palladino, F., Brunschwig, K., Tobler, H., Hajnal, A. and Muller, F. 2000, The C. elegans Mi-2 chro-matin-remodelling proteins function in vulval cell fate determination, Development, 127, 5277-5284.
48. Jiang, M., Ryu, J., Kiraly, M., Duke, K., Reinke, V. and Kim, S. K. Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans, Proc. Natl Acad. Sci. USA, 2001, 98, 218-223.
49. Kim, S. K., Lund, J., Kiraly, M., et al. 2001, A gene expression map for Caenorhabditis elegans, Science, 293, 2087-2092.
50. Baugh, L. R., Hill, A. A., Slonim, D. K., Brown, E. L. and Hunter, C. P. Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome, Development, 2003, 130, 889-900.
51. Reinke, V., Gil, I. S., Ward, S. and Kazmer, K. 2004, Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans, Development, 131, 311-323.
52. Colaiacovo, M. P., Stanfield, G. M., Reddy, K. C., Reinke, V., Kim, S. K. and Villeneuve, A. M. A targeted RNAi screen for genes involved in chromosome morphogenesis and nuclear organization in the Caenorhabditis elegans germline, Genetics, 2002, 162, 113-128.
53. Boulton, S. J., Gartner, A., Reboul, J., et al. 2002, Combined functional genomic maps of the C. elegans DNA damage response, Science, 295, 127-131.
54. van Haaften, G., Romeijn, R., Pothof, J., et al. 2006, Identification of conserved pathways of DNA-damage response and radiation protection by genome-wide RNAi, Curr. Biol., 16, 1344-1350.
55. Pothof, J., van Haaften, G., Thijssen, K., et al. 2003, Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi, Genes Dev., 17, 443-448.

[^0]: Edited by Yuji Kohara
 \dagger Current address: Molecular Genetics Laboratory, Department of Biology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan.

 * To whom correspondence should be addressed. Tel. +81 532-446907. Fax. +81 532-44-6929. E-mail: eki@eco.tut.ac.jp
 (C) The Author 2007. Kazusa DNA Research Institute.

[^1]:

