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Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot
of the world from which we can learn about the state of natural resources and the built environment.
The components of energy systems that are visible from above can be automatically assessed with these
remote sensing data when processed with machine learning methods. Here, we focus on the information
gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV
deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the
process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains
the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution
images from four cities in California. Dataset applications include training object detection and other
machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive
detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic
correlates of PV deployment.

Design Type data integration objective • observation design

Measurement Type(s) solar photovoltaic array location

Technology Type(s) digital curation

Factor Type(s)

Sample Characteristic(s) City of Fresno • City of Stockton • City of Modesto • City of Oxnard

1Energy Initiative, Duke University, Durham, North Carolina 27708, USA. 2Department of Economics, Duke
University, Durham, North Carolina 27708, USA. 3Nicholas School of the Environment, Duke University, Durham,
North Carolina 27708, USA. 4Department of Electrical & Computer Engineering, Duke University, Durham, North
Carolina 27708, USA. 5Department of Computer Science, Duke University, Durham, North Carolina 27708, USA.

Correspondence and requests for materials should be addressed to K.B. (email: kyle.bradbury@duke.edu).

OPEN

Received: 31 May 2016

Accepted: 18 October 2016

Published: 06 December 2016

www.nature.com/scientificdata

SCIENTIFIC DATA | 3:160106 | DOI: 10.1038/sdata.2016.106 1

mailto:kyle.bradbury@duke.edu


Background & Summary
For many years, aerial photography was the primary source of commercial high-resolution imagery,
including multispectral color orthoimagery (imagery that has been orthorectified so the image lacks
spatial distortion). Since 1999, with the launch of the Ikonos satellite, emerging satellites capable of
high spatial resolution (≤ 50 cm) such as GeoEye-1 (41 cm), WorldView-2 (46 cm)1, and WorldView-3
(31 cm), produce high-resolution panchromatic imagery with average revisit times of 3 days or less. With
both high spatial and temporal resolution, vast quantities of information are available for monitoring and
assessment of our environment and resources in near real-time. Automatic object detection methods
provide the basis for such assessment.

Machine learning techniques, specifically scene categorization and object detection, provide a means
to automate the generation of insight from high-resolution orthoimagery. In scene categorization2–4 a
semantic label is assigned to an image (or scene) as a whole. In object detection5–8, the goal is to identify
all instances in the imagery of a particular object type9–12 such as roads13–18, buildings19–25, vehicles26,27

solar PV arrays28, etc.
The development of supervised object detection techniques requires training data with labelled classes

of objects in order to quantitatively measure performance. Several such datasets are publically available
for object detection. One limitation of existing publicly available datasets is that they include too few
annotated objects for the application of modern classification techniques, such as convolutional neural
networks, which require thousands, or even millions of observations29. The SZTAKI-INRIA benchmark
dataset, for instance, contains 665 labelled buildings in 9 images30. Other datasets have limited geographic
coverage, including the Vaihingen dataset31,32 which provides labelled buildings, roads, trees, cars,
vegetation, and artificial groundcover for three regions of the city of Vaihingen, Germany. Still other
datasets contain cropped images of many object examples, but do not include precise bounding
polygons33,34. In this effort, we developed a dataset with nearly 20,000 solar array annotations from
multiple cities and diverse settings including urban, suburban, and rural landscapes, with each array
identified with a bounding polygon.

Beyond the development of improved object detection algorithms more generally, changes in the
energy system have given rise to the need for related data analytic capabilities. The penetration of
renewable energy systems, for instance, has been increasing rapidly over the past decade, with solar PV
arrays constituting a significant portion of that growth. For grid system operators and decision makers,
detailed building-level or neighbourhood-level information on the power capacity and locations of these
arrays can enable system operators to plan distribution line topologies to ensure electricity reliability with
increased two-way flows of energy. Additionally, building-level or neighborhood-level information on
solar PV enables socioeconomic analyses of rooftop PV deployment and the development of predictive
algorithms for anticipating future PV array locations.

Presently, there is no central database of individual solar PV array locations and power capacity in the
United States. There are national- and state-aggregated databases such as those from the U.S. Energy
Information Administration, state-specific databases such as the California Solar Initiative (CSI) dataset35

and the North Carolina Utilities Commission36, and county-specific collections such as those for the City
and County of Honolulu37. Compiling this information currently involves extracting building permit data
county-by-county, scraping public utility commission databases for interconnection documents, or
working with utilities to gain access to the proprietary data under data use agreements.

To provide a publicly available means of generating this granular information for any geographic
region of interest, we created a dataset originally collected to train machine learning object detection
algorithms to develop the process of automatically identifying solar PV locations using high-resolution
orthoimagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar
panels from four cities in California: Fresno, Stockton, Oxnard, and Modesto. This dataset is useful as
both a training dataset for the development of object identification algorithms using remote sensing data
more generally, as well as for focused analyses of the deployment patterns of distributed solar PV.

This dataset may also be of interest to researchers working on:

● object identification in remote sensing data,
● machine learning, including techniques requiring large training datasets (such as convolutional

neural networks),
● socioeconomic analyses of renewable energy resource development, and
● electric power grid and microgrid analysis for distributed generation.

Methods
We constructed this dataset to contain the location and bounding polygon for solar PV arrays within
cities having a large number of solar PV arrays as well as the necessary imagery. Our process is illustrated
in Fig. 1. Through this process, we (1) carefully selected our imagery data, (2) manually annotated the
locations and boundaries of every solar panel in each image using two different annotators, (3) merged
the annotations of each user into a single dataset, and (4) compiled the results.
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Select cities and imagery
The United States Geological Survey (USGS) has an extensive collection of publicly available
high-resolution aerial orthoimagery from across the United States38. Our criteria for selecting a city
were twofold: (a) the resolution of the imagery should be high—no lower than 30cm, and (b) the city
should have many solar arrays. Since solar panels are typically between 1 and 2 meters in length, we
would want every panel to be represented by multiple pixels in the image, and a 30 cm resolution
threshold enables that. Ensuring there are many solar panels in a city was a more challenging task. To
determine how many solar arrays are in a given city, we referred to the California Solar Initiative dataset,
which provides listings of solar arrays by city. The vast majority of those solar arrays were installed after
2012, so we limited our selection to images that had been taken in 2013 or later.

Using these two criteria, we identified the California cities with USGS orthoimagery data38 of 30 cm or
finer, taken during or after 2013, and we sorted them by the number of solar arrays in each city. This
process yielded four cities with 30cm resolution: Fresno (including the neighboring city of Clovis),
Stockton, Modesto, and Oxnard. For Fresno, Oxnard, and Stockton, we included the entire city, but for
Modesto we chose a representative subset of images from the city, since the solar panels were less densely
deployed in this city. We then acquired 601 TIF images38 from these cities to annotate: 412 from Fresno,
94 from Stockton, 75 from Oxnard, and 20 from Modesto. Each image is 5000-by-5000 pixels and
represents an area of 2.25 square kilometers (0.87 square miles, or 556 acres).

Annotate solar arrays
With the USGS data for the four cities, we manually annotated the polygonal boundaries of every solar
array. Using a MATLAB-based graphical user interface (GUI) developed for this purpose, a team of
researchers divided the imagery data and manually drew a polygon around each solar panel seen in the
imagery. As a researcher annotated each image, the GUI would present a subset of the image file, moving
left to right, top to bottom throughout the image to ensure the annotator visually inspected the entirety of
every image. The GUI allowed users to save or delete the polygons they had created and to display
existing polygons that they had previously annotated, to ensure they didn’t duplicate their annotations.

Once the annotator completed the image, the vertices of each polygon that had been drawn were saved
as pixel coordinates within that image. From those vertices we computed the centroid of each polygon
and saved those along with the pixel coordinates. The pixel coordinates were then converted into
longitude and latitude coordinates through two steps. First the Universal Transverse Mercator (UTM)
coordinates were estimated as linear interpolations of the pixel distance from the northwest and southeast
vertices of the USGS orthoimage containing the solar array. The UTM coordinates were then converted
to latitude and longitude coordinates using the datum for that image file.

Manual solar panel annotation on the scale of this dataset (over 19,000 distinct objects) required steps
to ensure quality and to prevent incorrect labelling or omission of solar arrays. To ensure each solar array
was accurately identified in the data, two annotators processed each image file independently.

Merge annotations
The results from each annotation were compared with one another and merged, with a confidence value
provided to account for the level of agreement between the two annotators. After two annotators

Figure 1. Flowchart showing the dataset generation process. This includes (1) selecting imagery from four

cities, (2) manually annotating solar array polygons, (3) merging the polygons identified by multiple

annotators, and (4) compiling the resulting dataset.
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identified solar array polygons in each image, we merged (via a union) those polygons that overlap,
producing a single, non-redundant set of solar array polygons. The confidence value that we associate
with each merged polygon was calculated by applying the Jaccard Similarity Index39 which, in our case, is
the intersecting area between two polygons divided by the unioned area between those polygons.
Assuming the area of one polygon is A and a second polygon is B, the Jaccard index, J(A, B), describing
the similarity between those two polygons is given by Equation (1).

JðA;BÞ ¼ A\Bj j
A∪Bj j ð1Þ

The Jaccard index is bounded such that 0≤ J(A, B)≤ 1, which makes interpreting the results clear. A
value of zero indicates the two polygons are disjoint, without overlap, while a Jaccard index of one
indicates that A and B are identical, completely overlapping polygons.

For a small number of polygons in the dataset, there is overlap between more than two polygons. For
these rare cases, all overlapping polygons were unioned and the reported confidence value was given as
the sum of the pairwise intersections divided by the total unioned area. In this way, we defined the
confidence value for N polygonal areas as given in Equation (2).

A1;A2; ¼ ;ANð Þ ¼
P
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We restricted the index of Equation (2) to a maximum value of 1. This allows for every solar array that
was identified to have an associated confidence value based on the degree of agreement between
annotators.

Compile data
The compiled data for all annotated polygons along with other identifying metadata linking the polygon
to the image file and longitude and latitude coordinates were placed in a MATLAB cell array and
uploaded to the Figshare data repository (Data Citation 1). The resulting collection of data is shown
across the four cities in Fig. 2, where both the location and size of the solar arrays (in square meters) can
be seen.

Data Records
The solar array polygon location and extent data as well as the imagery data used to generate this dataset
are available as a collected repository of four sets of files (Data Citation 1). The primary dataset within
that collection (Data Citation 2) consists of the table of solar panels in four formats with equivalent
information to enable these data to be as easily accessed as possible: JSON, GeoJSON, MATLAB (.mat)
and comma-separated values (CSV) files. A complete listing of each field, its contents, the format of the
data, and the units of the data is given in Table 1.

The first of the files is in JavaScript Object Notation (JSON) data-interchange format. The JSON file is
titled SolarArrayPolygons.json and each object in this array has fields that correspond to those described
in Table 1. The second of the files is a GeoJSON file, SolarArrayPolygons.geojson, which has the latitude
and longitude coordinates of each array stored along with all of the properties of each array (described in
Table 1), including the pixel-based coordinates.

For the MATLAB format, a single file titled SolarArrayPolygons.mat contains ‘data’, the cell array
containing all of the columns described in Table 1, as well as an array called ‘fields’ which includes the
name of each column of the cell array ‘data’.

These data are also presented in an alternative, and perhaps more broadly accessible CSV format.
There are three CSV files. The file polygonDataExceptVertices.csv contains the 19 fields of Table 1, which
is all of the data except for the vertices of the bounding polygons for each array. The vertices are
presented in two files, both containing the same polygons: one file contains the coordinates of the vertices
as pixel (x,y) values with respect to the image that contains the polygon (polygonVertices_PixelCoordi-
nates.csv) while the other file contains latitude and longitude coordinates for each vertex
(polygonVertices_LatitudeLongitude.csv). These two CSV files with polygon vertices also contain a
column (the second column of the files) with the number of vertices in the polygon, to make reading the
data from the CSV files more straightforward. The polygon ID field, which is the first column in all of
these files, links the information between each of the CSV files.

All imagery data is from the USGS High Resolution Orthoimagery collection and can be found in Data
Citations 3–6. For Fresno (Data Citation 3), Stockton (Data Citation 4), and Modesto (Data Citation 5),
each image file actually has two files associated with it: oIMAGENAME>.tif, which is the image file
itself, and oIMAGENAME>.tif.xml, which is the USGS metadata for the corresponding image. The
image names correspond to the ‘image_name’ field of Table 1 found in the files described earlier (Data
Citation 2). The Oxnard imagery (Data Citation 6) also has a set of image files oIMAGENAME>.tif, but
only one metadata file for the entire imagery set, which is cirgis_2013_12inch_metadata.xml.
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Technical Validation
The task of manually annotating objects in remote sensing imagery to produce ground truthed data is
tedious, requiring many person-hours to complete. There are three potential sources of error in this
dataset that we controlled for: (1) missed solar arrays, (2) regions that are not solar arrays, but are labelled
incorrectly as solar arrays, (3) inaccurately drawn polygons around solar arrays. We discuss each of these
sources of error, and describe our approach to minimizing the effect of that error.

1. Missed solar arrays. Relying on human annotators requires that the annotator actually see the solar
array, and it is not always the case that every annotator will see every array. We systematized this
process through our annotation GUI to ensure that the eyes of each annotator passed over every
(collectively exhaustive) subimage of each image to maximize the probability of visual detection for
each solar array. Additionally, two annotators processed every image we annotated to further reduce
the probability of missing a solar array.

Figure 2. Location and area (m2) of the manually annotated solar arrays for the Fresno, Oxnard,

Stockton, and Modesto regions.
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2. Incorrectly identified solar arrays. Solar panels, although typically quite visually distinct, may
occasionally be confused for other objects, including solar thermal collectors, skylights, or various
pieces of rooftop equipment. Sun glare and time of day can also change the appearance of objects in
satellite imagery. We provided training for annotators to make them aware of these pitfalls so that they
were informed as to what a solar array typically looks like and to ensure consistency between
annotators.

3. Incorrectly drawn polygons. The accuracy of the polygons drawn around each solar array is subject to
the resolution of the image and the precision of the annotator. As an assay, we computed the Jaccard
index as part of the annotated polygon merging process to provide a measure of agreement between
each annotation. These values were analysed below and suggest that typically when two annotators
both identify a solar array, their annotations strongly agree. In all cases, but particularly relevant when
there is disagreement between annotators, we provide the Jaccard index for each final annotation so
that users may filter the data based on the needs of their application.

Analysis of confidence values
The Jaccard Similarity Indices provide an indication of how similar any two polygonal annotations are,
and whether or not only one or both of the annotators identified a region as a solar array. Across the
19,863 polygons in the dataset, Fig. 3a shows that on average, across all the images, about 30% of
polygons were identified by only one annotator; therefore, 70% were identified by two annotators. The
annotators were visually scanning hundreds of square miles of land for relatively small features within
the image, therefore it is not surprising for an individual annotator to miss some number of solar arrays.
The distribution of Jaccard Index values shown in Fig. 3b demonstrates that for those polygons identified
by more than one annotator, the Jaccard Index was high on average, and Fig. 3c shows that 99.4% have a
Jaccard Index greater than 0.5, 95% have a Jaccard Index greater than 0.69, and 50% have an Index
greater than 0.86. For reference, assuming both polygons consisted of about 24 pixels in an image, a
Jaccard index of 0.86 is a difference of about 4 pixels.

Usage Notes
The ground truth data files are provided in .json, .geojson, .csv and .mat formats. For most users the .json
or .geojson files will likely be the preferred format. The comma separated value (CSV) format should also
be readily accessible and the polygonDataExceptVertices.csv file contains information that can be used

Field Field/Column Name Description Format Units

Polygon ID polygon_id Unique identifier for each polygon Integer N/A

Centroid Latitude centroid_latitude Latitude of the centroid of the polygon bordering the solar array given Double Decimal Latitude

Centroid Longitude centroid_longitude Longitude of the centroid of the polygon bordering the solar array given Double Decimal Longitude

Centroid Pixel y-coordinate centroid_latitude_pixels Pixel y-coordinate of the centroid of the polygon bordering the solar array with
respect the image file containing the solar array (origin is 0,0)

Double Pixels

Centroid Pixel x-coordinate centroid_longitude_pixels Pixel x-coordinate of the centroid of the polygon bordering the solar array with
respect the image file containing the solar array (origin is 0,0)

Double Pixels

City city Name of the city the solar array is located in String N/A

Area of Polygon (pixels) area_pixels Area of the solar array in square pixels Double Pixels2

Area of Polygon (meters) area_meters Area of the solar array in square meters Double Meters2

Image Name image_name Name of the image file containing this solar array String N/A

Latitude Northwest Corner of
Image Coordinates

nw_corner_of_image_latitude Latitude of the northwest corner of Image containing this solar array Double Decimal Latitude

Longitude Northwest Corner of
Image Coordinates

nw_corner_of_image_longitude Longitude of the northwest corner of Image containing this solar array Double Decimal Longitude

Latitude Southeast Corner of
Image Coordinates

se_corner_of_image_latitude Latitude of the southeast corner of Image containing this solar array Double Decimal Latitude

Longitude Southeast Corner of
Image Coordinates

se_corner_of_image_longitude Longitude of the southeast corner of Image containing this solar array Double Decimal Longitude

Datum datum Datum of Image String N/A

Projection projection_zone Projection Zone of Image String N/A

Resolution resolution Resolution of Image Integer Meters2/Pixel

Jaccard Index jaccard_index Jaccard Similarity Index of the merged polygons Double N/A

Polygon Vertices (Pixels y,x) polygon_vertices_lat_lon Array Vertices of the Polygon in Pixels Array of [2 × 1] vectors of doubles Latitude, Longitude

Polygon Vertices (Lat,Lon) polygon_vertices_pixels Array Vertices of the Polygon in Latitude, Longitude Array of [2 × 1] vectors of doubles Pixels

Table 1. Data field descriptions.
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easily to get locations and sizes of all of the solar arrays in the dataset. Extracting the polygon vertices
from either polygonVertices_PixelCoordinates.csv or polygonVertices_LatitudeLongitude.csv can be
accomplished by reading in each row of data, knowing the first two columns are the ID and the
number of vertices, then using the number of vertices to extract exactly that many pairs of coordinates
from that row. The .mat file may be opened by either MATLAB or Octave, and is in a cell array format to
make extracting the polygon vertices of each solar array boundary easier to access and use. The imagery
files from the USGS are TIF files that are readable in most computational environments.

This dataset contains both geographic coordinates (longitude and latitude) as well as pixel coordinates.
In processing the data, the use of pixels coordinates removes the need for a full GIS environment, for
those who prefer to conduct an image processing or machine learning analysis without projecting the
data into a specific coordinate system.

Additionally, since each solar array entry in the dataset contains a reference to the image file that
contains it, a user may choose to select a smaller subset of images, or even just a single image and the
dataset can be filtered to only those solar array polygons occurring in that image.
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