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Abstract
The progesterone receptor (PR) with its isoforms and ligands are involved in breast tumori-

genesis and prognosis. We aimed at analyzing the respective contribution of PR isoforms,

PRA and PRB, in breast cancer cell proliferation in a new estrogen-independent cell based-

model, allowing independent PR isoforms analysis. We used the bi-inducible human breast

cancer cell systemMDA-iPRAB. We studied the effects and molecular mechanisms of

action of progesterone (P4) and ulipristal acetate (UPA), a new selective progesterone

receptor modulator, alone or in combination. P4 significantly stimulated MDA-iPRA

expressing cells proliferation. This was associated with P4-stimulated expression of the

anti-apoptotic factor BCL2-L1 and enhanced recruitment of PRA, SRC-1 and RNA Pol II

onto the +58 kb PR binding motif of the BCL2-L1 gene. UPA decreased cell proliferation and

repressed BCL2-L1 expression in the presence of PRA, correlating with PRA and SRC1 but

not RNA Pol II recruitment. These results bring new information on the mechanism of action

of PR ligands in controlling breast cancer cell proliferation through PRA in an estrogen inde-

pendent model. Evaluation of PR isoforms ratio, as well as molecular signature studies

based on PRA target genes could be proposed to facilitate personalized breast cancer ther-

apy. In this context, UPA could be of interest in endocrine therapy. Further confirmation in

the clinical setting is required.

Introduction
Breast cancer, the most frequent cancer in women, is a hormone-dependent disease, with over
70% of sporadic breast tumors expressing estrogen and/or progesterone receptors (PR) [1].
Systemic anti-hormonal treatments used in clinical practice target the estrogen signaling
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pathway [2]. However, in the last decades, significant progress has been made in the under-
standing of the role of PR and its ligands in breast carcinogenesis [3–5].

Progesterone and progestins actions are mediated through their specific nuclear PR, with its
two main isoforms PRA and PRB, in a tissue-specific, isoform-selective and ligand-dependent
manner [3, 6]. Transcriptional activities of PRA and PRB isoforms are not similar, and both
PR isoforms differentially regulate expression of a subset of target genes [7]. PRB functions as a
strong transactivator and its transcriptional activity is down-regulated by the trans-dominant
repressor PRA [8–9]. Progestin-induced cell spreading in ER-positive T47D cells expressing
PR-A and PR-B isoforms was observed in cells overexpressing PRA by affecting cytoskeleton
pathways and cell morphology [10]. Data obtained in MDA-MB 231 cells devoid of ER ex-
pression showed that PRA-transfected cells exhibited distinct morphological changes under
antiprogestin ligands exposure as compared to PRB-transfected cells [11]. In this model co-
transfection of ERα did not modify PRA vs PRB isoforms differences, suggesting an ERα- inde-
pendent mechanism.

PR isoforms have an equimolar and coordinated expression in mammary epithelial cells
under normal physiological conditions [12–13]. Dysregulation of the PRA/PRB ratio with high
PRA expression levels in tumors leads to an impaired PR and ER signaling [12, 14]. Unbal-
anced PRA/B ratio has also been associated with tumor aggressiveness and poorer disease-free
survival, and is observed in pre-neoplastic lesions from patients with breast cancer [3, 7, 12].
PRA is overexpressed as compared to PRB in 40% of ductal in situ carcinoma and invasive
breast lesions [12]. Mutations in BRCA1/2 genes are associated with PRA overexpression in
tumor tissue [15–16] as well as in peritumoral normal breast tissue. Finally, recent data demon-
strated in a large cohort that PRA overexpression is related to a shorter disease free survival in
tamoxifen treated breast cancer patients [17]. These data suggest a direct role of PR in breast
carcinogenesis with a differential contribution of PR isoforms.

New insights into the role of PR ligands in breast carcinogenesis have been highlighted in
the past 20 years. Two large clinical studies have shown an increased risk of breast cancer in
postmenopausal women treated with synthetic progestins combined to estrogens [18–19] as
compared to women receiving estrogen-only treatment, suggesting a tumorigenic role of syn-
thetic progestins.

Furthermore, clinical trials conducted in patients with metastatic, antiestrogen-resistant
breast cancer, showed some efficacy of the antiprogestin mifepristone. In a preliminary study,
administration of mifepristone decreased normal breast cell proliferation in women [20].
Finally, in a BRCA1/P53 conditional breast knock-out mouse model, mifepristone was shown
to prevent mammary tumorigenesis [15]. These data suggested that PR antagonists may con-
tribute to control breast cancer development.

Ulipristal acetate is a recently released selective progesterone receptor modulator routinely
used for emergency contraception [21] and mid to long term leiomyoma treatment [22–23].
This compound exerts mixed agonist/antagonist activities depending on the cellular context
and has been shown to induce apoptosis in cultured leiomyoma cells [24] and in leiomyoma in
vivo [25].

In a model of normal human breast cell culture, the selective progesterone receptor modula-
tor (SPRM), ulipristal acetate (UPA), did not induce cell proliferation [26].

We used the newly established bi-inducible, basal breast cancer cell model, MDA-iPRAB,
where ER expression is absent and PR is expressed independently of estrogens action [6, 27] to
further evaluate the role of PR isoforms in breast carcinogenesis as well as the effects and mech-
anism of action of ulipristal acetate in breast cancer cells. We evaluated the effects of progester-
one and UPA on cell proliferation, and the regulation of the anti-apoptotic marker BCL2-L1, as
well as the molecular mechanisms involved. Overall, our findings propose that UPA induces a
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PRA mediated anti-proliferative effect and could be of interest in the management of human
breast cancer patients.

Materials and Methods

Cell cultures and treatments
Bi-inducible MDA-iPRAB cell line was derived from human basal breast cancer MDA-MB-
231 cell line (PR-, ERα-) (American Type Culture Collection, Manassas, VA, USA) as previ-
ously described [6]. Briefly, PRA and/or PRB expression could be induced at will by RSL1
(0.5 μM) (Exclusive Chemistry Ltd, Obninsk, Russia) and/or Dox (2 μM) (SigmaAldrich,
Saint-Quentin Fallavier, France), respectively. Cells were grown in DMEMHigh Glucose with
L-glutamine medium (Life Technologies, Saint-Aubin, France), 100 UI/mL penicillin, and
100 μg/mL streptomycin (GE Healthcare,Vélizy-Villacoublay, France) supplemented with 10%
fetal calf serum (Biowest, Nuaille, France). For each experiment, cells were preincubated in ste-
roid-free medium containing 2.5% dextran-coated charcoal treated serum (with DMSO or
inducers) for at least 24 h before hormonal treatment. Ulipristal acetate (UPA) was from HRA
Pharma (Paris, France). Progesterone and mifepristone (RU486) were from Sigma-Aldrich.

Proliferation assays
Parental cells “clone 250” and MDA-iPRAB cells (iPRAB clone 38) (4,000 cells/ per well) were
cultured in 96-well plates in steroid-free medium for 24 h. On day 0, 2, 4, RSL1 (0.5 μM) and/
or Dox (2 μM) were added to fresh steroid-free medium to induce PRA and/or PRB expression,
respectively. Cells were treated at the same time by Vehicle, P4 (1 nM) and/or UPA (1 μM) for
24 h. Cell proliferation assays were performed at day 1, 3, 5 by adding 20 μL of Cell Titer96
AqueousOne solution (Promega, Charbonnières-Les-Bains, France) into each well containing
100 μL of phenol red free culture medium (Life Technologies, Saint-Aubin, France). The plates
were incubated at 37°C for 1 h and absorbance values were measured at 490 nm (A490) using a
photometer (Victor 378, Perkin Elmer, Courtabœuf, France).

Quantitative Real Time PCR
Total RNA was extracted from cells with TRI Reagent (Applied Biosystem) according to the
manufacturer’s recommendations. One μg of total RNA was processed for reverse-transcribed-
qPCR. Briefly, total RNA was treated with DNase I (Biolabs, Evry, France), then reverse-tran-
scribed using the High-Capacity cDNA Reverse Transcription Kit (Life Technologies). cDNA
were analyzed by quantitative RT-PCR using the Power SYBR Green PCRMaster Mix (Life
Technologies) with the indicated primers (300 nM, final concentration) (S1 Table) and a Ste-
pOne Real-Time PCR System (Life Technologies). Relative gene expression was calculated as a
ratio of attomoles normalized by ribosomal rRNA 18S expression in femtomoles or by glyceral-
dehyde-3-phosphate-dehydrogenase (GAPDH) in attomoles.

Immunoblotting
Cells were lysed in lysis buffer (150 mMNaCl, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA,
30 mMNa pyrophosphate, 50 mM Na fluoride, 1% Triton X-100, protease and phosphatase
inhibitor cocktails (Sigma) for 30 min on rotation at 4°C, followed by a centrifugation at
12,000 x g for 15 min at 4°C to clear debris. Samples were resolved by 7.5% sodium dodecyl sul-
fate gel electrophoresis and transferred onto nitrocellulose membranes. Antibodies used were
anti-PR (NCL-L-PGR-312/2, Novocastra Laboratories, île Saint Martin, Nanterre, France),
dilution 1:10,000; anti-Bcl-XL antibody (E18, ab32370, Abcam, France), dilution 1:1,000.
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Control antibodies: anti-α-tubulin antibody (Sigma) and anti-GAPDH (Sigma). Secondary
antibodies: Goat anti-Mouse IgG (H+L) Cross Adsorbed Secondary Antibody (DyLight 800
conjugated, 680 conjugated) and Goat anti-Rabbit IgG (H+L) DyLight 800 conjugated, dilution
1:10,000 (Thermo Fisher Scientific, Rockford, IL, USA). These antibodies were diluted in Phos-
phate Buffered Saline and 0.1% Tween 20 buffer supplemented with 5% nonfat milk and added
to the membranes for 1 h at room temperature or overnight at 4°C followed by incubation with
the indicated secondary antibody for 1 h at room temperature. Target proteins were detected
using Odyssey1 Fc, Dual-Mode Western Imaging (Li-Cor, Lincoln, NE, USA) by Fluores-
cence and quantified.

Chromatin Immunoprecipitation (ChIP)
MDA-iPRA cells were cultured for 36–48 h in DMEM/charcoal-stripped fetal bovine serum
followed by 1 h treatment with P4 (10 nM) and/or UPA (1 μM). ChIP assays were performed
as previously described [28] (#HighCellChIP kit, Diagenode, Seraing, Belgium) with 5 μg of the
appropriate ChIP grade antibodies: Human anti-PR (Anti-PR, sc-7208, Santa Cruz Biotechnol-
ogy, CA); Rabbit anti-SRC1 antibody (M-341, sc-8995,Santa Cruz Biotechnology), rabbit anti-
Polymerase II antibody (H-224, sc-9001, Santa Cruz Biotechnology) and control unrelated
antibody from the #HighCellChIP kit (Diagenode).

Primer design for genomic amplification assays
Design of primer pairs containing PRbs (Progesterone receptor binding sites) was achieved
with the NCBI software Primer BLAST. Human genome was used as database (hg19). Ampli-
con length was kept between 80 and 150 bp. Primers were from Eurogentec (Angers, France).

Statistical Analysis
All data are mean ± SEM. Non-parametric Mann-Whitney statistical U-tests and ANOVA test
(Kruskal-Wallis) were applied to determine all significant differences between experimental
conditions, using the software Prism 5 (GraphPad Software, San Diego, CA). Statistical signifi-
cances are indicated by � or x (1–3 symbols corresponding to P<0.05 or<0.01 or<0.001,
respectively).

Results

PRAmediated MDA-iPRAB Cell Proliferation
We used the recently established bi-inducible MDA-iPRAB cell model to study the impact of
PR isoform on human breast cancer cell proliferation [6]. This model results from genetically
modified MDA-MB-231 human breast cancer cell line (PR-), generating various stable cell lines,
MDA-iPR-, iPRA and/or iPRB cells. Two non-steroidal inducible systems, Rheoswitch and T-Rex
were inserted into the same plasmid pZX-TR [6] (S1A Fig) and transfected into MDA-MB-231
cells generating parental and stable “clone 250” cell line. Subsequently, clone 250 cells were stably
transfected with the bi-inducible system, pRheoswitch-PRA and pTRex-PRB, as schematically
depicted on Fig 1A and S1B Fig. This bi-inducible system allows a bi-conditional expression of
both PR isoforms, PRA at 94 kDa and/or PRB at 114 kDa, upon addition of RSL1 and/or Doxycy-
cline (Dox) for 24 h, respectively (Fig 1B), while in the non-induced DMSO vehicle condition, no
PR isoform expression was detected.

Given that the impact of P4 on cell proliferation was reported to be highly dependent on the
cellular context [5, 29], we examined the influence of P4 on MDA-iPRAB cell proliferation.
Unexpectedly, and unlike what we had published before with P4 at 10 nM, here we showed
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through repeated cell proliferation tests that P4 (1 nM) significantly increased MDA-iPRA cell
proliferation at Day 5 (Fig 1C, S2A Fig). Of note, no effect of RSL1 and P4 was observed on cell
proliferation of the parental clone 250, excluding a potential non-specific effect of these com-
pounds (Fig 1C, left histograms). Moreover, P4 did not induce cell proliferation when none of
the PR isoform was induced. In contrast, MDA-iPRB cell proliferation was significantly

Fig 1. Progesterone-dependent activation of MDA-iPRA cell proliferation. (a) Schematic representation of the bi-inducible system inserted into the
MDA-iPRAB cell line in which RSL1 and Dox selectively trigger expression of PRA and PRB isoform respectively, as previously described [6]. (b) PRA and/or
PRB expression in MDA-iPRAB cell lines. MDA-iPRAB cells were incubated with DMSO or inducers, RheoSwitch Ligand (RSL1, 0.5 μM) and/or doxycycline
(Dox, 2 μM) during 24 h. Western blot analysis of whole cell extracts was performed using anti-PR antibody recognizing both PR isoforms (Novocastra) or
anti-tubulin antibody for sample loading control. (c)MDA-iPRAB cell proliferation assays were analyzed on day 1, 3 and 5. Data are expressed as fold
induction compared to vehicle condition arbitrarily set at 1, and are means ± SEM from five independent cell cultures (n = 6 for each experiment. ** indicates
p<0.01 compared to the vehicle-treated cells for each MDA-iPRAB cell line (non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g001
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reduced in the presence of P4 (Fig 1C, right histograms), demonstrating that PRA specifically
mediated cell proliferation in this model. Interestingly, co-expression of both PRA and PRB
isoforms impeded P4-dependent MDA-iPRAB cell proliferation. These results are consistent
with a PRA-mediated proliferative effect and PRB-mediated antiproliferative effect of P4 (Fig
1C).

Anti-proliferative effect of UPA on MDA-iPRA cells
We next examined the effect of the SPRM, UPA, on MDA-iPRA cell proliferation (Fig 2) and
found that UPA at 1 μM alone or in association with P4 significantly inhibited cell proliferation
as early as Day 3 (see also S2A Fig). This was consistent with our previous report showing that
RU486 (Mifepristone) inhibits MDA-iPRA cell proliferation [6]. Of note, in the absence of PR,
UPA has no effect, while UPA inhibited PRB-expressing cells and PRAB-expressing cells pro-
liferation (S2B and S2C Fig). UPA has synergistic effects with P4 in MDA-iPRB cells.

Taken together, we reported the first cellular model in which P4 triggers PRA mediated
human breast cancer cell proliferation in vitro. In this model, we unambiguously demonstrated
that PRA isoform mediated P4-induced cell proliferation that was antagonized by UPA,
highlighting the anti-proliferative role of UPA on human breast cancer cells.

Key PRA target genes involved in human breast cancer cell proliferation:
Effects of P4 and UPA
We have previously identified by microarray analysis on the same MDA-iPRAB cell model, a
subset of potential target gene candidates regulated in a P4-dependent and/or PR isoform spe-
cific manner [6]. Given the importance of PRA isoform, its impact on P4 signaling in

Fig 2. Ulipristal acetate (UPA) inhibits P4-dependent MDA-iPRA cell proliferation.MDA-iPRA cultured
on 96-well plates, were treated with vehicle or P4 (1 nM) and/or UPA (1 μM) in fresh steroid-free medium
containing DMSO or RSL1 (0.5 μM) on day 0, 2 and 4. Cell proliferation assays were performed using
CellTiter96H AqueousOne Solution as described in Materials and Methods. The 490 nm absorbance was
determined on day 1, 3 and 5. Data are expressed as fold induction compared to vehicle condition arbitrarily
set at 1, and are means ± SEM from five independent cell cultures (n = 6 for each experiment). ** indicates
p<0.01 compared to the vehicle-treated cells for each MDA-iPRA cell line while xx indicates p<0.01
compared to the P4-treated cells (non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g002
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mammary tumorigenesis processes such as cell growth, death and migration, and taking into
account its role in mediating cell proliferation, we chose to focus our attention on some PRA-
dependent upregulated (Table 1) or downregulated genes (Table 2) in the presence of P4. It
would be thus possible to correlate P4-stimulated MDA-iPRA cell proliferation to the corre-
sponding gene expression and to further evaluate the activity of the antiprogestin UPA in these
processes. Among PRA-targeted genes transcriptionally stimulated (Fig 3) or inhibited by P4
(Fig 4), we examined the expression of few genes (BCL2-L1, DUSP6,WNT5A, LGR4, TGFβ2,
EREG, F3, F2RL1), owing to their role in apoptosis, cell proliferation, metastasis, invasiveness,
angiogenesis (Tables 1 and 2). We first validated the regulated expression of these genes by RT-
qPCR analysis, after a 6 hr treatment by P4 following the same experimental duration as previ-
ously described [6]. We found that P4 significantly enhanced expression of BCL2-L1 by 25%
(Fig 3A), that of DUSP6 by 50% (Fig 3B), that ofWNT5A by 30% (Fig 3C) while LGR4 expres-
sion was increased by 60% (Fig 3D). Interestingly, we demonstrated that the expression of
these P4-upregulated genes was repressed by UPA alone or in combination with P4, confirm-
ing the antagonistic activity of UPA (Fig 3).

In contrast, P4 treatment significantly reduced the expression of TGFβ2 by 60% (Fig 4A),
and that of EREG, F3 and F2RL1 by 70% (Fig 4B, 4C and 4D) in MDA-iPRA cells, as revealed
RT-qPCR analysis. Unexpectedly, UPA alone also inhibited the expression of TGFβ2, F3 and
F2RL1 (Fig 4A, 4C and 4D) but not that of EREG (Fig 4B). However, the P4-dependent down-
regulation of EREG expression was completely prevented by UPA (Fig 4B), consistent with a
full PR antagonist activity of UPA. Of note, a strict correlation was observed between gene
expression in transcriptomic and RT-qPCR analysis (Tables 1 and 2).

Table 1. Up-regulated PRA–target genes in the presence of P4.

Class Gene Name FC FI Function

A+&AB+ DUSP6 Dual specificity phosphatase 6 2 1.5 Transcriptional target of P53 Interaction with PRB:
proliferative transcriptional programs

A+&AB+ BCL2-L1 Bcl-2-like protein 1 1.5 1.2 Overexpression of Bcl-xL: loss of apoptosis

A+&AB+ TNFRSF11A Receptor Activator of Nuclear Factor κ
B (RANK)

1.9 1.6 Mammary cell proliferation, migration, cell invasion.

A+&AB+ WNT5A Wingless-type MMTV integration site
family, member 5A

1.8 1.3 Tumor suppressor gene Proliferation, differentiation,
migration, adhesion, polarity

A+&AB+ LGR4 Leucine-rich repeat-containing G-protein
coupled receptor 4 (GPR48)

1.8 1.6 Promoting cancer cell proliferation (Wnt signaling),
Invasiveness and metastasis

A+&AB+ FOSB FBJ murine osteosarcoma viral oncogene
homolog B

1.8 1.5 Reduced FosB expression: dedifferentiation (breast
tumorigenesis)

A+&AB+ TFPI2 Tissue factor pathway inhibitor 2 2.2 2.6 Low expression: breast cancer progression and poor
outcome

A+&B+ &
AB+

DUSP1 Dual specificity phosphatase 1 1.6 1.6 Cell cycle, dephosphorylation of MAP kinase.
Antiproliferative actions of PR

MDA-iPRAB cells were cultured during 24 h in steroid-free medium containing RSL1 (0.5 μM) and/or Dox (2 μM) to induce expression of PRA and/or PRB.

Cells were treated by vehicle or P4 (1 nM) for 6 hours and a genome wide transcriptomic studies was performed as described in [6]. A total of 999 genes

were affected by PR expression. These genes were separated into three groups: A and B and AB (co-expressed at similar levels relative to physiological

conditions) regrouping genes that are regulated by either by PRA, PRB or PRAB. Tables above represent class A+ genes regulated by PRA in the

presence of the ligand; Class A+&AB+, genes responsive to liganded PRA and their expression may or may not be influenced by PRB co-expression;

Class A±&AB± genes responsive to both liganded and unliganded PRA, and their expression may be influenced by PRB co-expression; Class A+&B+&

AB+, genes that are commonly regulated by liganded PRA, PRB and PRAB. FC calculated either by microarray studies or by RT-qPCR analysis and their

function in the cancer. FC: Transcriptional Fold Change calculated by microarray studies (FC*) and by RT-qPCR (FI, Fold Induction).

doi:10.1371/journal.pone.0140795.t001
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The expression of PRA-regulated genes was also analyzed in MDA-iPRB expressing cells.
As shown in S3 and S4 Figs, expression of these genes did not vary in the presence of P4 and/or
UPA treatment. Thus, we confirmed that BCL2-L1, DUSP6,WNT5A, LGR4, TGFβ2, EREG, F3,
F2RL1 are indeed PRA specific genes and that UPA exerts an inhibitory effect by down regulat-
ing their expression only when PRA is expressed (MDA-iPRA).

Collectively, we demonstrated that the selected genes were specifically regulated by PRA iso-
form in the presence of its natural ligand P4. In addition, we also showed that UPA generally
displayed PRA antagonist properties while, in some cases, UPA exerted a partial progesterone
agonist activity consistent with the SPRM feature of his compound [11, 30].

Regulation of BCL2-L1 protein expression by P4 and UPA in MDA-iPRA
cells
Since P4 stimulated BCL2-L1 mRNA levels (Fig 3A), we next examined the hormone regulation
of the anti-apoptotic factor BCL2-L1, at the protein level. As illustrated in Fig 5A, the 26 kDa
band corresponding to BCL2-L1 protein was significantly increased by 23% in MDA-iPRA cells
upon 24 h exposure to P4 as revealed to quantification of band intensities relative to GAPDH
(36 kDa) (Fig 5B). We also found that P4-stimulated BCL2-L1 expression was antagonized by
UPA treatment which, when applied alone, significantly reduced by 2 fold factor the basal
BCL2-L1 expression (Fig 5B). PRA expression was also quantified relative to loading control
GAPDH (Fig 5C). As anticipated, PRA was significantly downregulated upon P4 exposure
while UPA alone was ineffective in modulating PRA expression in MDA-iPRA cells. Taken
together, we provide direct evidence of P4-stimulated MDA-iPRA cell proliferation, associated
with BCL2-L1 expression, both being fully antagonized by UPA.

PRA recruitment on BCL2-L1 gene
To better elucidate the molecular mechanisms by which P4-activated PRA regulated BCL2-L1
gene expression in MDA-iPRA cells and based on previous studies performed in T47D cells

Table 2. Down-regulated PRA–target genes in the presence of P4.

Class Gene Name FC FI Function

A+ F2RL1 Coagulation factor II receptor-
like 1

-1.9 0.7 Constitutive migration of MDA MB-231 Up regulation of VEGF

A+&AB
+

EREG Epiregulin -1.7 0.7 Breast tumor progression (paracrine mechanism)

A+&AB
+

F3 Coagulation factor III (tissue
factor)

-2.4 0.7 Promigratory, invasive, proangiogenic phenotype

A+&AB
+

TGFB2 Transforming growth factor-
beta 2

-1.8 0.6 Breast cancer invasion Tumor suppressive (early stages) Malignant
conversion and progression (later stages)

A+&AB
+

ADRB2 Beta-2 adrenergic receptor -1.7 0.6 Genetic variation and polymorphism: risk for breast cancer

A+&AB
+

GJB2 Gap junction beta-2 protein,
connexin 26

-1.8 0.5 Invasion of ductal breast carcinomas

MDA-iPRAB cells were cultured during 24 h in steroid-free medium containing RSL1 (0.5 μM) and/or Dox (2 μM) to induce expression of PRA and/or PRB.

Cells were treated by vehicle or P4 (1 nM) for 6 hours and a genome wide transcriptomic studies was performed as described in [6]. A total of 999 genes

were affected by PR expression. These genes were separated into three groups: A and B and AB (co-expressed at similar levels relative to physiological

conditions) regrouping genes that are regulated by either by PRA, PRB or PRAB. Tables above represent class A+ genes regulated by PRA in the

presence of the ligand; Class A+&AB+, genes responsive to liganded PRA and their expression may or may not be influenced by PRB co-expression;

Class A±&AB± genes responsive to both liganded and unliganded PRA, and their expression may be influenced by PRB co-expression; Class A+&B+&

AB+, genes that are commonly regulated by liganded PRA, PRB and PRAB. FC calculated either by microarray studies or by RT-qPCR analysis and their

function in the cancer. FC: Transcriptional Fold Change calculated by microarray studies (FC*) and by RT-qPCR (FI, Fold Induction).

doi:10.1371/journal.pone.0140795.t002
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[27], ChIP assays were performed to examine PRA recruitment on one genomic target motif,
already established on BCL2-L1 gene [31]. We chose the intragenic PR-binding sequence
located at +58 kb downstream Transcription Start Site (TSS) of BCL2-L1 gene as schematically
depicted in the genomic structure of the human BCL2-L1 gene (Fig 6A). P4 treatment induced
a significant 40-fold increase in PRA recruitment on the well-documented +58 kb response ele-
ment of the BCL2-L1 gene, in comparison to the vehicle condition. Furthermore, UPA in com-
bination with P4 markedly reduced P4-stimulated PRA enrichment on this PR-binding site
(P< 0.001). Interesting enough, UPA alone was able to stimulate PRA recruitment by a 10-fold
factor (Fig 6) as well as a substantial recruitment of the well-known SRC1 coactivator however
to a lesser extent than that induced by P4 (2 vs 8 Fold) (S5A Fig). However, under these experi-
mental conditions, as opposed to P4, UPA was unable to promote RNA Polymerase type II

Fig 3. Hormonal regulation of P4-PRA-upregulated genes. (a) BCL2-L1, (b) DUSP6, (c)WNT5A, (d) LGR4mRNA expression levels were determined in
MDA-iPRA cells. Cells were treated for 6 h with vehicle, P4 (1 nM) and/or UPA (1 μM) in steroid-free medium, following 24 h induction of PRA expression
using RSL1 (0.5 μM). RT-qPCR analyses were performed as described in Materials and Methods. Data are expressed as fold induction compared to vehicle
condition arbitrarily set at 1, and are means ± SEM from three independent cell cultures measured in duplicate. *, **, *** symbols indicate p< 0.05, 0.01 and
0.001 respectively compared to the vehicle-treated MDA-iPR- cells while x, xx, xxx symbols indicate p<0.05, 0.01 and 0.001 respectively compared to the V
or P4-treated MDA-iPRA cells (non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g003
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recruitment into the pre-initiation complex assembly (S5B Fig), required for transcriptional
regulation. This finding is consistent with the UPA-dependent repression of BCL2-L1 expres-
sion (see Figs 3 and 5).

Discussion
We have exploited an original human breast cancer cell-based system in which cell prolifera-
tion is stimulated by progesterone through PR, using the recently established bi-inducible, ER
negative, MDA-iPRAB cell line [6]. Several breast cancer cell models have been generated to
study steroid effects, mostly focusing on the impact of estrogens and anti-estrogens [32–34].
The effects of progesterone and progestins on breast cancer cell proliferation in vitro drew con-
tradictory results [35], although proliferative effects of progesterone have been reported in the
ER+, PR+ T47D and MCF-7 breast cancer cells, without distinction between PR isoforms

Fig 4. Hormonal regulation of P4-PRA-downregulated genes. (a) TGFβ2, (b) EREG, (c) F3, (d) F2RL1mRNA expression levels were in MDA-iPRA cells.
Cells were treated for 6 h with vehicle, P4 (1 nM) and/or UPA (1 μM) in steroid-free medium, following 24 h induction of PRA expression using RSL1 (0.5 μM).
RT-qPCR analyses were performed as described in Materials and Methods. Data are expressed as fold induction compared to vehicle condition arbitrarily
set at 1, and are means ± SEM from three independent cell cultures measured in duplicate. *, **, *** symbols indicate p<0.05, 0.01 and 0.001 respectively
compared to the vehicle-treated MDA-iPR- cells while x, xx, xxx symbols indicate p< 0.05, 0.01 and 0.001 respectively compared to the V or P4-treated
MDA-iPRA cells (non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g004
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Fig 5. Hormonal regulation of BCL2-L1 protein expression in MDA-iPRA cells. Following 24 h induction of PRA expression using RSL1 (0.5 μM), MDA-
iPRA cells were incubated in the presence or absence of P4 (1 nM) and/or UPA(1 μM) in steroid-free medium for 24 h. (a)Western blot analysis of whole cell
extracts (35 μg Protein) loaded on a 12% acrylamide gel, membranes were incubated overnight with a 1:1,000 dilution of anti-BCL2-L1 antibody (anti-Bcl-XL
antibody, E18, ab32370, Abcam, France), and an anti-PR antibody recognizing both PR isoforms (Novocastra) or anti-GAPDH antibody (G9545—anti-
GAPDH antibody produced in rabbit). (b) Band intensities of BCL2-L1 (26 kDa) and GAPDH (36 kDa) used as a sample loading control were quantified and
BCL2-L1/GAPDH ratio were determined and expressed in arbitrary units and normalized to vehicle. Relative BCL2L1 protein expression is presented. (c)
Band intensities of PRA (94 kDa) and GAPDH (36 kDa) used as a sample loading control were quantified and PRA/GAPDH ratio were determined and
expressed in arbitrary units and normalized to vehicle. Relative PRA expression is presented as well. Histograms are means ± SEM of three independent
experiments. ** Symbol indicates p<0.01 compared to the vehicle-treated MDA-iPRA cells while xx symbol indicates p<0.01 compared to the P4-treated
MDA-iPRA cells (non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g005
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(review in [36]). Cell proliferation was evaluated in ER negative MDA-MB 231 cells transfected
with each PR isoforms and cell proliferation inhibition by progesterone was observed in both
cases [11]. In this report, progesterone was used at 0.1 μM and cells cultured in red phenol free
DMEM supplemented with 5% charcoal treated fetal calf serum, while we used 2.5% FCS and
1 nM progesterone [11]. Progestin-stimulated cell proliferation has been reported to depend
on progesterone concentration, mode of administration (continuous vs discontinuous) and
may involve cross-talks with growth factors [36]. This may explain the discrepancy between
our results and this study. We previously published that unliganded MDA-iPRA cells prolifer-
ate to a lesser extent than MDA-iPRB cells [6], in this study, we confirmed these findings (data
not shown). We repeatedly and reproducibly observed that progesterone stimulated MDA-
iPRA cell proliferation in 6 independent experiments (n = 6 per experiment). This is in accor-
dance with PRA cells expressing increased responsiveness to stimulatory effects of progestins,
as compared to cells expressing PRB reported by others [36–37].

Fig 6. Progesterone enhances PRA recruitment on the intragenic region of BCL2-L1 gene. (a) Schematic representation of BCL2-L1 gene structure. It
contains 3 exons. The genomic PR target motif previously identified [31] is located downstream the 3’end at position +58 kb of the transcription start site of
BCL2-L1 gene. The proposed PR response element (PRE) is illustrated on which the pre-initiation complex containing PR isoform, steroid receptor
coactivator 1 (SRC1) as well as the RNA polymerase type 2 (Pol II) binds. (b)MDA-iPRA cells treated for 1 h with P4 (10 nM) and/or UPA (1 μM), were fixed
and lysed and chromatin extracts subjected to ChIP assays using PR antibody (Anti-PR, sc-7208, Santa Cruz Biotechnology, CA) or unrelated rabbit IgG
antibodies used as negative control. Immunoprecipitated and eluted DNA fragments were analyzed by real-time qPCR using primer pair encompassing
genomic sequence of the +58 kb site of the BCL2-L1 gene. Histograms represent the fold induction of PRA enrichment compared to vehicle condition
arbitrary set at 1 and are means ± SEM of four independent experiments performed in triplicates. Statistical difference is indicated as compared to vehicle
condition for PRA-induced cells treated by V (***, p<0.001), or by P4 (xxx, p<0.001) (Non-parametric MannWhitney t-tests).

doi:10.1371/journal.pone.0140795.g006
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One major advantage of our cell-based system is that one might selectively evaluate the
effects of PR, its isoforms and ligands independently of estrogenic effects, since proliferation of
this ER- cell line is estrogen-independent. Moreover, the bi-inducible PR expression by non-
steroid inducers is genomically stable, the non-induced cell line constituting a reliable negative
control [6]. We cannot exclude that the absence of ERα (and estrogens) might modify the
expression of co-regulators required for PR signaling and thus influencing transcriptional
responses to PR isoforms. However data from previous reports did not show any influence of
ERα transfection on PR ligands induced morphological changes in PR transfected MDA-MB
231 cells [11]. Taking into account these limitations, our studies provide new insights into the
understanding of the functional consequences of imbalanced PRA/PRB ratio in the context of
human breast cancer cells.

Interestingly, as opposed to the already known P4-biphasic regulation of cell proliferation
observed in estrogen dependent T47D-YB cell line constitutively expressing PR-B [38], we
report that P4 stimulates cell proliferation of bi-inducible MDA-iPRAB cells only when PRA
isoform is expressed, while P4 exerts an anti-proliferative effect in PRB-expressing cells, with-
out any biphasic effect. This underlines intrinsic differences in cell lines, in particular the MDA
MB cell line is derived from a basal breast cancer [39] while the T47D cell line is derived from a
luminal breast cancer [40].

In this model as well, PRA and PRB exhibit distinct transcriptional activities and regulate
specific gene transcription. We have previously shown that PRA coexpression potentiated
PRB-mediated cancer cell migration and that PR isoforms differentially regulated expression of
major players of cell migration [41] such as urokinase plasminogen activator (uPA), its inhibi-
tor plasminogen activator inhibitor type 1 (PAI-1), uPA receptor (uPAR), and β1-integrin,
which affect focal adhesion kinase (FAK) signaling. PRA, as well as PRB, interacted with FAK
complexes, whose degradation was coupled to a progestin-dependent turnover of PRA and
PRB.

Our previous transcriptomic data allowed us to select PRA specific target genes [6]. Among
PRA-modulated genes involved in breast tumorigenesis (Tables 1 and 2), we more specifically
evaluated by quantitative RT-PCR and confirmed that BCL2-L1, DUSP6,WNT5A, LGR4
expression were upregulated in the presence of progesterone, and that TGFβ2, EREG, F3,
F2RL1 were down regulated in the presence of progesterone.

BCL2-L1 is one of the most important regulators of programmed cell death. Deregulation of
BCL2-L1 expression contributes to oncogenic transformation of normal cells [42–43]. In our
MDA-iPRA model, P4 stimulates BCL2-L1 transcript and protein expression, while BCL2-L1
expression was not regulated by P4 in the MDA-iPRB cell line. Induction of anti-apoptotic fac-
tors of the Bcl family by progestins has been reported in endogenously PR-expressing T47D
cells [35, 44], however the specific role of PR isoforms has not been directly evaluated.

WNT5A and LGR4 regulate cell polarity, proliferation, survival and aberrant regulation
often leads to pathological conditions including cancer [45]. In T47D cells, it has been demon-
strated that PRB-induced transcriptional up-regulation of WNT1 leading to activation of epi-
dermal growth factor receptor (EGFR) and c-Src and Erk1/2 [46]. Here, we report that PRA
mediates the P4-induction and UPA-inhibition of the expression of bothWNT5A and LGR4,
suggesting an essential function of PRA-mediated, P4 triggered- breast cancer cell
proliferation.

DUSP6 (the dual specificity phosphatase 6, MKP3) is a negative regulator of the MAPK
pathway [47]. Previous studies demonstrated a direct interaction between PRB and DUSP6
[47], our study confirms that DUSP6 is a PRA-target gene up-regulated by P4 in MDA cells.

TGFβ2 and EREG (Epiregulin) were shown to be down regulated by progesterone in the
presence of PRA in our model [48–49]. This is in accordance with previous data suggesting

PRA and Breast Cancer

PLOS ONE | DOI:10.1371/journal.pone.0140795 October 16, 2015 13 / 19



that PR isoforms expression correlated negatively with other members of the same gene family
associated with tumor aggressiveness such as EREG and TGF alpha [50].

Our results thus suggest a specific role of PRA in breast carcinogenesis, including modula-
tion of regulatory factors of cell proliferation, invasion, apoptosis, and angiogenesis. This may
constitute a trail for further molecular characterization of breast tumors, where the evaluation
of a panel of specific PRA target genes could be used to further identify poor prognosis tumors.
Indeed, breast cancer is now considered as a plural disease whose molecular signature analysis
is routinely used to define personalized therapeutic schemes [51].

In addition, our data bring new insights in the isoform specific molecular mechanisms of
action of PR and its ligands. It has been shown that over 60% of PR binding sites are located
more than 10 kb from the transcription start site [52]. Here we showed that PRA is recruited to
an intragenic PR-binding site (PRbs) located at +58 Kb downstream transcription start site of
BCL2-L1 and close to the 3’-end of the gene. This PRb was previously reported to serve as a
highly active hormone-dependent binding site [31]. The canonical coactivator SRC1 and the
Pol II were also recruited to this +58 Kb site, in a P4 enhanced way. To our knowledge, this is
the first report of a direct evaluation of PRA interaction with molecular partners in PR+ basal
breast cancer cells, while almost all previous PR microarrays studies were performed on lumi-
nal breast cancer cells [53]. This issue has been only addressed once [54], functional analyses
were conducted in estrogen-dependent T47D cells, however ChIP experiments were conducted
in non mammary HeLa cells and did not specifically evaluate PRA recruitment.

To evaluate the potential activity of PR antagonists on PRA-mediated cell proliferation, we
used the recently marketed selective progesterone receptor modulator (SPRM), ulipristal ace-
tate (UPA), a specific, highly selective PR antagonist with no agonist activity towards other ste-
roid receptors [55], with mixed PR agonist/antagonist properties depending on the tissue [56].
Of interest, we showed that UPA inhibited MDA-iPRA cell proliferation. The anti-proliferative
effect of UPA was restricted to PRA-expressing cells, independently of the presence of P4 while
it exerts partial agonist activity on MDA-iPRB cells. ChIP experiments demonstrated that UPA
partially inhibited PRA, SRC1 and Pol II recruitment on BCL2-L1 PR-binding site in the pres-
ence of P4, while UPA alone weakly enhanced PRA and SRC1 recruitment only. This absence
of Pol II recruitment in the presence of UPA correlated with the lack of UPA-induced PRA-
mediated BCL2-L1expression, and is consistent with UPA inhibitory effect on both P4-induced
BCL2-L1 transcript and protein. This may be correlated as well to the inhibition of cell prolifer-
ation in the presence of UPA, as already observed for other tumor types in vivo [24]. PRB inter-
action with SRC1 in the presence of a non-commercially available SPRM (asoprisnil) has been
reported using transactivation assays in T47D cells [57]. To our knowledge this is the first
report on the molecular mechanism of action of UPA.

Our data suggest that PRA expression is associated with increased human breast cancer cell
proliferation, further stimulated by P4. We also show that UPA is able to decrease cell prolifer-
ation in this PRA expressing model. This effect of UPA includes basal as well as progesterone
stimulated cell proliferation. Thus, our findings suggest that UPA might be of interest in the
adjuvant treatment of breast cancer, more specifically in ER- PR+ tumors.

In sum, we propose that future characterization of breast cancer should include PR isoforms
evaluation to better specify tumor phenotype, and/or its molecular signature independently of
estrogen signaling. Most notably, this should evaluate PRA target genes to identify poor prog-
nosis tumors, and potential candidates for SPRM adjuvant therapy. This obviously requires
prior confirmation in the clinical setting.
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Supporting Information
S1 Fig. Schematic representation of stably transfected plasmids inserted into the parental
clone 250 and the bi-inducible system applied to generate MDA-iPRAB cells for the condi-
tional PR isoform expression in MDA-MB-231 cells [6]. (a) The two regulatory proteins sys-
tems RheoSwitch and T-Rex were inserted in the same plasmid pZX-TR besides the zeocin
resistance gene. (b) PRA and/or PRB expression was induced under the control of two promot-
ers used to establish the secondary stable MDA-iPRAB cell line. Addition of RSL1 and/or Dox
selectively induces PRA or PRB isoform, respectively. In their absence, no PR expression is
induced.
(EPS)

S2 Fig. P4 and UPA regulation of MDA-iPRA cell proliferation (a), MDA-iPRB cell prolif-
eration (b) and MDA-iPRAB cell proliferation (c). Following 24 h induction of PRA expres-
sion using RSL1 (0.5 μM), and PRB expression using Dox (2 μM) cultured MDA-iPRA in
96-well plates, were treated with vehicle, P4 (1 nM) and/or UPA (1 μM) for 5 d. Cell prolifera-
tion assays were performed on day 0, 3 and 5 using CellTiter 96H AqueousOne Solution as
described in Materials and Methods. Data are expressed as fold induction (a) and absorbances
(b, c) compared to vehicle-treated MDA-iPRA cells (a) and vehicle-treated MDA-iPRB cells
(b) and vehicle treated MDA-iPRAB cells (c) and are mean of 6 independent determinations. �,
��, ��� symbols indicate p<0.05, 0.01 and 0.001 respectively compared to the vehicle-treated
MDA cells (non-parametric ANOVA test (Kruskal-Wallis).
(EPS)

S3 Fig. Regulation of P4-dependent and PRA-selective upregulated genes (a) BCL2-L1, (b)
DUSP6, (c)WNT5A, (d) LGR4mRNA expression levels were determined in MDA-iPRB
cells. Cells were treated for 6 h with vehicle, P4 (1 nM) and/or UPA (1 μM) in steroid-free
medium, following 24 h induction of PRB expression using Dox (2 μM). RT-qPCR analyses
were performed as described in Materials and Methods. Data are expressed as fold induction
compared to vehicle condition arbitrarily set at 1, and are means ± SEM from three indepen-
dent cell cultures measured in duplicate. �, symbol indicates p< 0.05 compared to the vehicle-
treated MDA-iPRB cells while x, xx, xxx symbols indicate p< 0.05, 0.01 and 0.001 respectively
compared to the V or P4-treated MDA-iPRB cells (non-parametric MannWhitney t-tests).
(EPS)

S4 Fig. Regulation of P4-dependent and PRA-selective downregulated genes (a) TGFβ2, (b)
EREG, (c) F3, (d) F2RL1mRNA expression levels were determined in MDA-iPRB cells.
Cells were treated for 6 h with vehicle, P4 (1 nM) and/or UPA (1 μM) in steroid-free medium,
following 24 h induction of PRB expression using Dox (2μM). RT-qPCR analyses were per-
formed as described in Materials and Methods. Data are expressed as fold induction compared
to vehicle condition arbitrarily set at 1, and are means ± SEM from three independent cell cul-
tures measured in duplicate. No statistical difference was detected.
(EPS)

S5 Fig. SRC1 and Pol II recruitment to the BCL2-L1 gene.MDA-iPRA cells treated for 1 h
with P4 (10 nM) or UPA (1 μM), were fixed and lysed and chromatin extracts subjected to
ChIP assays using SRC1 antibody (Rabbit anti-SRC1 antibody, M-341, sc-8995, Santa Cruz
Biotechnology) or Pol II antibody (Rabbit anti-Polymerase II antibody, H-224, sc-9001, Santa
Cruz Biotechnology). Immunoprecipitated and eluted DNA fragments were analyzed by real-
time qPCR using primer pair encompassing genomic sequence of the +58 kb site of the BCL2L1
gene. Histograms represent the fold induction of SRC1 (a) or Pol II (b) enrichment compared
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to vehicle condition arbitrary set at 1 and are means ± SEM of three independent determina-
tions.
(EPS)

S6 Fig. Regulation of FKBP5, a PRB-dependent gene.mRNA expression levels were deter-
mined in MDA-iPRB cells. Cells were treated for 6 h with vehicle, P4 (1 nM) and/or UPA
(1 μM) in steroid-free medium, following 24 h induction of PRB expression using Dox (2μM).
RT-qPCR analyses were performed as described in Materials and Methods. Data are expressed
as fold change compared to vehicle condition arbitrarily set at 1, and are means ± SEM from
three independent cell cultures measured in duplicate. �, ��, ��� symbols indicate p<0.05, 0.01
and 0.001 respectively compared to the vehicle-treated MDA-iPRB- cells, while x, xx, xxx sym-
bols indicate p< 0.05, 0.01 and 0.001 respectively compared to the V or P4-treated MDA-iPRB
cells (non-parametric ANOVA test (Kruskal-Wallis).
(EPS)

S1 Table. List of Primer sequences of genes.
(DOCX)
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