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Abstract: Dilated cardiomyopathies (DCMs) are a heterogenous group of primary myocardial dis-
eases, representing one of the leading causes of heart failure, and the main indication for heart
transplantation. While the degree of left ventricular dilation and dysfunction are two key deter-
minants of adverse outcomes in DCM patients, right ventricular (RV) remodeling and dysfunction
further negatively influence patient prognosis. Consequently, RV functional assessment and di-
agnosing RV involvement by using an integrative approach based on multimodality imaging is
of paramount importance in the evaluation of DCM patients and provides incremental prognos-
tic and therapeutic information. Transthoracic echocardiography remains the first-line imaging
modality used for the assessment of the RV, and newer techniques such as speckle-tracking and
three-dimensional echocardiography significantly improve its diagnostic and prognostic accuracy.
Nonetheless, cardiac magnetic resonance (CMR) is considered the gold standard imaging modality
for the evaluation of RV size and function, and all DCM patients should be evaluated by CMR at least
once. Accordingly, this review provides a comprehensive overview of the anatomy and function of
the RV, and the pathophysiology, diagnosis, and prognostic value of RV dysfunction in DCM patients,
based on traditional and novel imaging techniques.

Keywords: right ventricular dysfunction; dilated cardiomyopathy; echocardiography; multi-modality
imaging

1. Introduction

Dilated cardiomyopathies (DCMs) are primary myocardial disorders characterized by
left ventricular or biventricular dilation and systolic dysfunction in the absence of either
abnormal pressure or loading conditions or coronary artery disease [1,2]. DCM should
not be regarded as a single disease entity, but rather as the final common response of the
myocardium to a large spectrum of genetic and non-genetic insults. Since it is one of the
leading causes of heart failure (HF), and the most frequent indication for heart transplanta-
tion, in the past few decades, extensive progress has been made in the development and
recognition of newer diagnostic and therapeutic strategies for the management of patients
with DCM. The degrees of left ventricular (LV) dilation and systolic dysfunction have been
demonstrated as two key determinants of adverse outcomes in this population, and LV
reverse remodeling has become the cornerstone of the treatment of DCM patients [3]. How-
ever, adverse right ventricular (RV) remodeling and RV dysfunction both at diagnosis and
during follow-up yield important prognostic implications and have accordingly become
the focus of many authors in recent years [4,5]. Therefore, this review aims to provide an
overview of the RV involvement in DCM patients, as well as the prognostic significance of
RV dysfunction assessed by multi-modality cardiac imaging.
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2. Anatomy and Function of the Normal Right Ventricle

Several anatomic features distinguish the RV from the LV. Being the most anteriorly
situated cardiac chamber, the RV has a complex shape, which partially explains the more
difficult imaging evaluation of the RV compared to the LV. With a crescent shape when
viewed in cross-section, and triangular when looking from the side, the RV consists of
three components: (1) the inlet, containing the tricuspid valve, chordae tendinae, and the
papillary muscles; (2) the trabeculated apical myocardium; and (3) the infundibular or
conal region, which accommodates the outflow tract and supports the pulmonary valve
(Figure 1) [6,7]. Different from the LV, the inlet and outlet components are separated by the
crista supraventricularis, a muscular crest which continues as a parietal band at the level of
the free wall, and as the septomarginal band across the interventricular septum (IVS) [8].
This muscular bridge is involved in the contraction of the tricuspid annulus (TA) and in
pulling the free wall of the RV towards the IVS [8,9]. The RV acts mainly as a volumetric
pump. Since the pulmonary vascular resistance (PVR) is about one-sixth compared to
the systemic resistance, the RV mass is much smaller than the LV mass, and the normal
thickness of the RV free wall does not exceed 5 mm [10]. Furthermore, the RV has a different
myoarchitecture, lacking a well-defined mid-layer. It comprises a superficial layer, with
predominantly circumferentially oriented myocardial fibers, parallel to the atrioventricular
groove, extending from one ventricle to another, and a preponderant subendocardial layer,
which mostly has base-to-apex longitudinally oriented myocytes that are continuous with
septal fibers.
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Figure 1. Right ventricular geometry and function in a normal subject assessed by three-dimensional
echocardiography. (A) Right ventricular volumes and ejection fraction. (B) Multi-slice view of the
right ventricle from the three-dimensional echocardiography data set showing the crescent shape in
cross-section and triangular shape when viewed from the side. (C) Right ventricular geometry and
function in a normal subject by cardiac magnetic resonance. Abbreviations: CO, cardiac output; Dd,
diastolic diameter; EDV, end-diastolic volume; EF, ejection fraction; ESV, end-systolic volume; FAC,
fractional area change; HR, heart rate; LA, left atrium; LD, longitudinal diameter; LV, left ventricle;
LVM, left ventricular mass; RA, right atrium; RV, right ventricle; RVM, right ventricular mass; SV,
stroke volume; TAPSE, tricuspid annulus plane systolic excursion.

The distinct hemodynamic environment (low vascular resistance, increased pulmonary
artery distensibility) explains the organized fashion in which the RV contracts. The contrac-
tion of the RV resembles a peristaltic motion, with the inlet and apical regions contracting
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first, and the conal one 20 to 50 ms later [11]. The flow patterns within the RV are smoother
compared to the vortex-like flow organization of the LV [10,12]. The contraction of the
longitudinal fibers is responsible for the drawing of the TA towards the apex and shortening
of the RV long axis. This longitudinal shortening accounts for a significant percentage of
RV contraction and remains important in pressure-overload states [13]. Contraction of the
circumferential fibers produces a bellows effect, with an inward motion of the RV free wall.
Finally, the contraction of the LV drags the RV free wall through the IVS at the points of
attachment, contributing to generating more than 20% of the RV stroke volume (SV) [14].
Thus, these non-longitudinal motion components play an important role in the normal
functioning of RV [15].

3. Right Ventricular Dysfunction

The RV performance is the result of the interaction between contractility, afterload,
and preload. Through the concept of ventricular interdependence, the size, shape, and
compliance of one ventricle affect the other. Consequently, RV function is directly influenced
by the systolic ventricular interdependence, through the IVS. The diastolic ventricular
interdependence is mostly related to the degree of pericardial constraint [16]. The two main
conditions that impact and dictate RV function are hemodynamic overload, both in terms
of pressure and/or volume overload, and intrinsic RV contractile dysfunction [10]. These
mechanisms frequently coexist. The prevalence of RV dysfunction in the setting of DCM has
been reported to be 34–65% [4,17,18]. The adverse RV remodeling may result from any of
the aforementioned conditions: pressure overload (pulmonary arterial hypertension, PAH),
volume overload (significant tricuspid regurgitation, TR), primary myocardial disease, or a
combination of them [10,19]. For example, in DCM patients affected by hereditary muscular
dystrophies [20], RV longstanding volume overload and dysfunction [21] can develop in
the context of a direct atrial myopathic process that contributes to the development of AF,
and consecutive atrial secondary TR [22,23].

On one end, the development of PAH secondary to left-sided cardiac disease has a
complex pathophysiology that involves the interplay between the LV, the left atrium (LA),
and the mitral valve (MV) apparatus [19]. The enlargement and increase in the sphericity
of the LV are responsible for the occurrence of functional mitral regurgitation (MR), which
combined with both impaired systolic and diastolic LV function usually leads to adverse
LA remodeling and loss of the LA reservoir, conduit, and pump functions, as well as
decrease in the barrier-like role of the LA between the pulmonary circulation and the
LV [24]. A stiff and non-compliant LA further contributes to the backward transmission
of the increased hydrostatic pressure to the pulmonary vascular bed. The persistently
elevated hydrostatic pressure then induces pulmonary vascular remodeling, and finally
leads to an increase in the PVR [25–27]. Nonetheless, isolated post-capillary pulmonary
hypertension is also possible [28]. However, irrespective of the etiology of PAH, in the
setting of chronic pressure overload, the RV initially passes through a homeometric phase,
with preserved volumes and function, and a compensatory increase in wall thickness
to reduce the wall tension. If left untreated, the heterometric phase of RV maladaptive
remodeling occurs, with progressive RV dilation and dysfunction [10,29,30]. Nevertheless,
the diastolic function of the RV can also be impaired.

On the other end, the myopathic involvement of the RV in DCM is multifactorial and
depends on the underlying etiology. Thirty to forty percent of patients with DCM have
biventricular involvement, with the same myopathic process affecting both ventricles. One
strong predictor of RV dysfunction is a reduced LVEF [31]. Furthermore, due to the systolic
ventricular interdependence, the impaired systolic function of the IVS in DCM patients can
lead to an important reduction in RV SV [16,31]. The diastolic ventricular interdependence
plays a secondary role in determining RV dysfunction in the setting of LV overload [32].
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4. Multi-Modality Imaging Evaluation of the Right Ventricle

RV function has been shown to significantly impact patient prognosis in several
cardiac conditions [4,31,33–36], thus highlighting the importance of its accurate functional
evaluation by the use of multi-modality imaging consisting of echocardiography, cardiac
magnetic resonance (CMR), and cardiac computed tomography (CCT) in a complementary
fashion [37,38].

4.1. Echocardiography

Although not considered the gold-standard technique for the evaluation of the RV due
to multiple considerations (position, complex geometry, difficult endocardial tracing, load-
dependency), transthoracic echocardiography (TTE) remains the first-line imaging modality
used for the assessment of the RV due to its wide availability and cost-efficiency. The func-
tional evaluation of the RV by TTE is usually based on two-dimensional echocardiography
(2DE). However, advanced echocardiographic techniques, such as speckle-tracking echocar-
diography (STE) and three-dimensional echocardiography (3DE), have become mandatory
for the accurate quantification of the RV function [38–41]. Table 1 provides an overview
of the advantages, disadvantages, and prognostic value of the main echocardiographic
parameters used for the assessment of RV systolic function.

4.1.1. Tricuspid Annulus Plane Systolic Excursion by M-Mode Echocardiography

TA plane systolic excursion (TAPSE) measurement by M-mode echocardiography
evaluates the systolic motion of the TA towards the RV apex at the level of the lateral TA
(Figure 2) [42]. However, it has significant limitations (i.e., it assesses the longitudinal
systolic function of the RV at the level of one segment and cannot be utilized to evaluate
the global RV systolic performance; it is highly dependent on load and angle, leading to
over- or underestimation of RV function) [43]. Increased afterload is often associated with
a reduced TAPSE, without an actual decrease in RV longitudinal systolic function [44]. An
increased RV preload can lead to overestimation of the RV function when its quantification
is based on this sole parameter [45]. However, it remains an accessible parameter that has
adequate reproducibility.J. Cardiovasc. Dev. Dis. 2022, 9, x FOR PEER REVIEW 6 of 17 
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Figure 2. Right ventricular function assessed by M–mode (TAPSE), upper panel, and tissue Doppler
imaging (S’ wave velocity), lower panel in (A) a normal subject, (B) a patient with dilated cardiomy-
opathy and normal right ventricular size and longitudinal dysfunction, and (C) a patient with dilated
cardiomyopathy and biventricular involvement, yet normal right ventricular longitudinal function.
Abbreviations as in Figure 1.



J. Cardiovasc. Dev. Dis. 2022, 9, 359 5 of 16

Table 1. Advantages, disadvantages, and prognostic significance of the main echocardiographic
parameters of right ventricular systolic function.

Echocardiography RV Function Advantages Disadvantages Prognostic Value in DCM

TAPSE - M-mode
- longitudinal
- free wall basal

segment

- easily obtained
- fast
- reproducible
- wide availability

- angle-dependent
- load-dependent
- does not

evaluate global
RV function

- predicts survival and
the need for LVAD or
cardiac
transplantation

S’ wave velocity
- tissue Doppler

imaging

- longitudinal
- free wall basal

segment

- easily obtained
- fast
- reproducible
- wide availability

- angle-dependent
- load-dependent
- does not

evaluate global
RV function

- predicts survival

Tei index

- tissue Doppler
imaging

- pulsed-wave
Doppler

- global systolic
and diastolic

- easily obtained
- fast
- wide availability

- less useful in
irregular heart
rhythms

- not specifically
addressed in DCM
patients

RV FAC - two-dimensional - global

- easily obtained
- wide availability
- evaluates both

longitudinal and
radial shortening

- load dependent
- poor

reproducibility
- dependent on

image
- quality
- neglects RV

outflow
- contribution

- predicts survival and
the need for LVAD or
cardiac
transplantation

RVFWLS - speckle-tracking - longitudinal
- entire free wall

- less angle- and
load-dependent

- highly
- reproducible
- detects

subclinical RV
dysfunction

- less availability
- dependent on

image quality
- post-processing

is necessary

- predicts survival and
risk for heart failure
decompensation

- additive or superior
to classical RV
parameters

RVEF
- three-

dimensional - global

- does not imply
geometrical
assumptions

- considers the
contribution of
all RV
components

- valuable after
cardiac surgery

- validated against
CMR

- limited
availability

- highly
dependent on
image quality

- post-processing
and training are
necessary

- predicts survival
superior to other RV
parameters

RV-PA coupling
- depending on

the parameter
used

- reflects RV
contractility in
relation to
afterload

- TAPSE/sPAP is
validated against
RHC-derived
parameters

- the advantages
of respective
parameters of RV
function apply

- inapplicable in
patients without
tricuspid
regurgitation

- the limitations of
the respective
parameter of RV
function apply

- predicts survival and
the risk for heart
failure hospitalization

Abbreviations: LVAD, left ventricular assist device; RVFWLS, right ventricular free wall longitudinal strain;
RV-PA, right ventricular pulmonary artery; other abbreviations as in Figure 1.

A TAPSE < 16 mm is considered suggestive of RV systolic dysfunction [42]. The prognos-
tic role of TAPSE in patients with non-ischemic DCM has been extensively studied. Venner
et al. found that patients with DCM and preserved RV function had significantly higher
survival rates compared to those with RV systolic dysfunction defined by a TAPSE < 15 mm,
irrespective of the degree of LV dysfunction. Major adverse cardiac event-free survival
rates at 1 and 2 years were 64% and 55%, respectively, compared with the patients which
had preserved RV function, whose survival rates were 87% and 79%, respectively. A re-
duced TAPSE appeared as an independent predictor for major cardiac events [17]. Ghio
et al. demonstrated that in DCM patients a TAPSE ≤ 14 mm emerged as an independent
predictor of death or urgent cardiac transplantation [46]. Furthermore, Ishiwata et al. found
TAPSE to be independently associated with the primary composite outcome consisting
of left ventricular assist device (LVAD) implantation or all-cause death in patients with
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non-ischemic DCM [47]. The prognostic role of the RV has also been assessed in acute HF
patients with different EF ranges by Roger Hullin et al., who demonstrated that an increase
in TAPSE secondary to decongestive HF treatment was associated with a lower incidence
of the combined outcome, irrespective of the LVEF [48]. The prognostic significance of RV
systolic dysfunction defined as TAPSE < 17 mm was also confirmed by Dziewiecka et al.
in a large study on 545 DCM patients, however not irrespective of LVEF [49]. In contrast,
Kawata et al. did not find any association between TAPSE reduction and the outcome
consisting of LVAD implantation or cardiac death within one year when compared to other
RV functional parameters in DCM patients with advanced HF [50].

4.1.2. S’ Wave Velocity by Tissue Doppler Imaging

The systolic velocity of the lateral TA by tissue Doppler imaging (TDI) is another mea-
surement of RV longitudinal function (Figure 2) [43]. Furthermore, similar to TAPSE, despite it
being angle-dependent and not able to assess global RV systolic function, it is easily obtainable
and has been used for the stratification of patient prognosis. An S’ wave < 9.5 cm/sec defines
RV systolic dysfunction [49]. De Groote et al. showed that although RV ejection fraction
(RVEF) had the highest accuracy for predicting patient survival, the measurement of both
RVEF and S’ wave velocity provided increased prognostic value compared to the sole
use of RVEF [51]. In another study on patients with HF, Dokainish et al. demonstrated
the independent association of the S’ wave velocity with the outcome [52]. However, a
small retrospective study on DCM patients with advanced HF did not find any correlation
between a reduced S’ wave velocity and the chosen outcome [50].

4.1.3. Right Ventricular Myocardial Performance Index by Tissue Doppler
Imaging/Pulsed Doppler

The RV myocardial performance index (RV MPI) or Tei index is a unitless parameter
which provides information about global systolic and diastolic RV function. It can be
measured either with TDI or pulsed Doppler (PW) by dividing the total isovolumic time
(isovolumic contraction time, ICT, plus isovolumic relaxation time, IRT) to the ejection
time (ET). The TDI method has the advantage of simultaneously recording time intervals
from the same cardiac cycle. Since this measurement is based only on time intervals, it
surpasses the limitations of RV shape and geometry. However, it is less useful in irregu-
lar heart rhythms. Proposed cut-offs for an abnormal RV MPI are >0.43 (PW) and >0.54
(TDI) [53]. Impaired RV global function is defined by a high RV MPI. In case of systolic
dysfunction, ICT is prolonged and ET is shortened, while a prolonged IRT is encountered in
both systolic and diastolic dysfunction. Some authors suggest there is a correlation between
TDI-derived RV MPI and RV ejection fraction and RV fractional area change [54]. The prog-
nostic role of RV MPI has been studied in different cohorts with HF with reduced ejection
fraction (HFrEF). In a study by Enrico Vizzardi et al. on patients with moderate HF, an
RV MPI > 0.38 along with a reduced TAPSE predicted the prognosis at 5-year follow-up [55].
Field et al. demonstrated that RV dysfunction, defined as an increased RV MPI value, was
associated with adverse outcomes in a population of advanced HF patients referred to
cardiac resynchronization therapy (CRT). Each 0.1-unit increase in RV MPI was associated
with a 16% increased risk of MACEs (defined as death of all-cause, cardiac transplantation,
or ventricular assist device placement) [56]. Although, to the best of our knowledge, no
studies have specifically addressed the prognostic value of Tei index in DCM, it is an easily
obtainable parameter which requires little experience in the evaluation of the RV.

4.1.4. Right Ventricular Fractional Area Change by Two-Dimensional Echocardiography

RV fractional area change (FAC) is obtained by measuring RV end-diastolic and end-
systolic areas after manually tracing the RV endocardial borders in the RV-focused apical
4 chamber (A4C) view (Figure 3) [53]. RV FAC evaluates both the longitudinal and the radial
shortening of the RV. Despite being relatively easy to acquire, suboptimal image quality
and the numerous RV trabeculations can sometimes lead to inaccurate measurements.
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Furthermore, RV FAC measurement neglects the contribution of the RV outflow to the RV
global contractile function [57]. An RV FAC < 35% defines RV systolic dysfunction [42].
In DCM patients, a reduced RV FAC, with a cut-off value of 26.7%, was associated with
increased risk of LVAD implantation or cardiac death within one year [50]. In another
large study on 512 patients with DCM by Merlo et al., RV dysfunction, defined as an RV
FAC < 35%, was independently associated with the primary outcome of death or heart
transplantation, and its independent predictive value was maintained over time, suggesting
an additive prognostic value during long-term follow-up [5]. Finally, the results of the study
by Ishiwata et al. were consistent with previous findings demonstrating that a reduced RV
FAC is an independent predictor of LVAD implantation and all-cause death [52].
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4.1.5. Right Ventricular Strain by Speckle-Tracking Echocardiography

The systolic performance of the RV can be evaluated with the use of myocardial
deformation imaging techniques. The current recommendation in clinical practice is to
evaluate the RV free wall longitudinal strain (FWLS) in the RV-focused A4C view by STE
(Figure 4) [53,58]. The RV global longitudinal strain (GLS) can, however, be measured by
including the IVS in the analysis, with adequate inter- and intra-observer variability [59,60].
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The RV FWLS has incremental prognostic value compared with the conventional indices of
RV systolic function in patients with various cardiac diseases [35,61–64], including DCM.
Vijiiac et al. demonstrated the prognostic significance of RV dysfunction in DCM patients,
as patients with more impaired RVFWLS, RVGLS, and RVEF had higher risk of event
occurrence, defined as cardiac death, nonfatal cardiac arrest, or acute worsening of HF
requiring hospitalization [65]. Conversely, Seo et al. showed that only RV FWLS (and not
RV GLS), with a cut-off value of −16.5%, was an independent predictor of the outcome in
patients with DCM [66]. Garcia-Martin et al. found that RV GLS is a superior determinant
of HF decompensation compared with RV FWLS in patients with left heart disease [67].
Ishiwata et al. showed that a reduced RV GLS, especially when combined with a reduced
RV FAC, is a valuable predictor of adverse events in patients with DCM [52]. However,
the exact superiority of either RV FWLS or RV GLS over the other in predicting patient
prognosis remains to be demonstrated.
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4.1.6. Right Ventricular Ejection Fraction by Three-Dimensional Echocardiography

The aforementioned limitations of classical RV function parameters assessed by 2DE
(i.e., the geometric assumptions involved in their quantification, and the fact that they
do not take into account the contribution of all RV components to the RV contraction)
can be overcome by the use of 3DE [57]. Furthermore, RVEF by 3DE is the only RV
functional echocardiographic parameter accurate enough in assessing RV function after
cardiac surgery (Table 1) [53]. Still, RV assessment by 3DE is challenging in the presence
of suboptimal acoustic windows which make endocardial border detection burdensome,
irregular heart rhythms, or abnormal septal motion. It is recommended to use full volume
data sets and multi-beat acquisition. The precise reconstruction of RV geometry and
obtainment of reliable RV volumes and RVEF calculations rely on optimal spatial and
temporal resolution [68,69], and involve the use of a dedicated software for the 3DE RV
analysis (Figure 5).
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A 3DE RVEF < 45% is consistent with RV dysfunction [53]. Despite the fact that 3DE
underestimates RV volumes and EF compared to CMR [70], 3DE RV volumes and EF have
been validated against CMR [71]. Leibundgut et al. found a small difference in RV volumes
calculations and no significant difference in RVEF measurement between 3DE and CMR [72].
Accordingly, the functional evaluation of the RV by 3DE is a valuable alternative to CMR. In
the study by Vijiiac et al. 3DE RVEF, with a cut-off value of 43.4%, predicted the outcome in
DCM patients and remained independently associated with patients’ mortality even after
correcting for other echocardiographic confounders [65]. D’Andrea et al. demonstrated the
correlation between 3DE RVEF and VO2 peak %, as well as its independent association with
the functional capacity of patients with DCM patients [73]. The prognostic value of 3DE
RVEF is furthermore confirmed in several studies on patients with various cardiovascular
diseases, including DCM [36,74,75].

All the aforementioned echocardiographic parameters, each with several advantages
and limitations, have proven useful in diagnosing RV dysfunction in DCM patients, es-
pecially when the evaluation follows a multiparametric approach. Furthermore, recent
studies suggest that the presence and pattern of RV dysfunction influence the response to
HFrEF therapies. Yanis Bouali et al. evaluated two HFrEF phenotypes undergoing treat-
ment with sacubitril/valsartan (S/V). Among the dissimilarities between the phenotypes,
TAPSE (16 ± 4 mm vs. 19 ± 4 mm), RVFWLS (−19 ± 5% vs. −21 ± 4%), and RVFAC
(31 ± 9% vs. 38 ± 9%) were found to be significantly lower at the initiation of therapy
compared to follow-up. The phenotype with more significant RV failure at baseline had
worse prognosis during the treatment period. However, the evolution of RV function
was characterized by a significant improvement in TAPSE, RVFAC, and RVFWLS in both
groups. Moreover, the improvement in TAPSE was correlated with both LVEF and LV GLS.
These findings support the belief that there is a connection between LV and RV reverse
remodeling in patients undergoing HF therapies which have been mainly attributed to
LV dysfunction [76]. A systematic review and meta-analysis on the effect of S/V on the
RV function in patients with HFrEF showed that RV systolic performance, evaluated by
TAPSE and S’ wave velocity, improves after S/V treatment initiation [77]. Accordingly, not
only LV function parameters, but also easily obtainable indices of RV function, such as
TAPSE, S’ wave velocity, and RVFWLS should be measured when evaluating the response
to treatment in HFrEF patients.

Finally, dimensional and functional RV parameters obtained by echocardiography
are helpful in differentiating physiological RV remodeling found in athlete’s heart from
the pathological RV remodeling encountered in conditions such as arrhythmogenic right
ventricular cardiomyopathy (ARVC). Although the RV dimensional remodeling has a
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dissimilar pattern in the two conditions [78], with the dynamic exercise-induced remodeling
characteristic of athlete’s heart being represented by a moderate increase in RV main
body and a mild increase in RVOT size, and important RVOT dilation being found in
ARVC [79], RV function parameters are much more effective in distinguishing between
the two. RV FAC, S’ wave velocity, and RVFWLS are usually normal in athlete’s heart
compared to ARVC [80,81]. However, the studies on RV strain show contrasting results,
some authors describing supernormal values, and others lower values (generally confined
to the basal segment) in athlete’s heart compared to ARVC [82]. Furthermore, a lower
reference value has recently been proposed for RVFAC in athletes (<32%) compared to
the general population [71]. Nonetheless, the majority of these findings reinforce the
importance of a multiparametric RV evaluation when differentiating physiological from
pathological RV remodeling.

4.1.7. Right Ventriculo-Arterial Coupling Evaluation Using Invasive Versus
Non-Invasive Parameters

Pressure–volume loops (PVL) derived from right heart catheterization (RHC) are
considered the gold-standard methods for the evaluation of RV function in relation to
the afterload. The relationship between RV contractility and afterload is described as
right ventriculo-arterial coupling (RVAC), and is defined as the ratio between end-systolic
elastance (Ees) and arterial elastance (Ea). A normal Ees/Ea reflects an optimal balance
between RV mechanical work and oxygen consumption [83,84]. In left-sided heart failure
with secondary PH, once maladaptive RV remodeling and dysfunction occur, the RVAC
is also impaired. However, RVAC by invasively derived PVL by RHC are not routinely
performed. As such, echocardiographic surrogates of RVAC have been proposed, including
TAPSE/sPAP (systolic pulmonary artery pressure), RVFAC/sPAP, RVLS/sPAP, RV end-
systolic volume/stroke volume (ESV/SV), and RVEF/sPAP. TAPSE/sPAP has been found
to be a valuable non-invasive measure of RVAC in patients with PH [85]. Despite the fact
that the prognostic significance of the previously mentioned non-invasive RVAC surrogate
parameters has been extensively evaluated in patients with left-sided HF and secondary PH-
related RV dysfunction, the results are variable and sometimes conflicting. In a prospective
observational study, Bosch et al. found that TAPSE/sPAP and RVLS/sPAP are associated
with the composite outcome of death and HF hospitalization after a mean follow-up of
2 years [86]. Furthermore, a reduced TAPSE/sPAP predicted CRT non-responders, but
it did not predict survival at four years in a study on HF patients by Braganca et al. [87].
TAPSE/sPAP was associated with lower survival and the need for LVAD implantation or
cardiac transplant in different HFrEF cohorts [18,88–91]. In a study on DCM patients, five
non-invasive echocardiographic surrogates of RVAC were evaluated as potential rehos-
pitalization predictors (TAPSE/sPAP, RVLS/sPAP, RVFWLS/sPAP, 3D RVEF/sPAP, 3D
RV SV/ESV). Although all five surrogates were more impaired in DCM patients requiring
rehospitalization for HF exacerbation, only RVFWLS/sPAP and 3D RVEF/sPAP remained
independently associated with the composite outcome of hospitalization for decompen-
sated HF and death [92]. Accordingly, non-invasive RVAC has significant prognostic value
and should be used for patient risk stratification.

4.2. Cardiac Magnetic Resonance

The assessment of RV systolic function in patients with DCM started more than
2 decades ago, with the evaluation of RVEF by invasive techniques with limited clinical
applicability, such as thermodilution or contrast ventriculography [93–95]. Nowadays,
CMR is considered the gold-standard imaging modality for the evaluation of RV volumes
and EF (Figure 6), and due to its non-invasive character and high accuracy, its applications
have been widely extended over time. Besides RV volumes and EF assessment, CMR can
also differentiate physiological from pathological RV remodeling thanks to its ability to
detect tissue abnormalities (fat infiltration, late gadolinium enhancement) [4,79]. CMR
evaluation in DCM patients has a class IIa indication for the exclusion of an ischemic etiol-
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ogy [96], and might indicate the etiology of cardiac dysfunction by the use of myocardial
tissue characterization techniques [94]. Furthermore, the evaluation of DCM patients by
CMR provides important prognostic information [4,95]. Accordingly, DCM patients have
been extensively studied by CMR, and yet CMR data regarding the prognostic value of
RV systolic dysfunction in DCM patients are still emerging. Gulati et al. prospectively
evaluated 250 DCM patients, demonstrating that patients with RV dysfunction, defined
by an RVEF < 45%, had a 4-fold increase in all-cause mortality or cardiac transplantation
compared to patients with preserved RV function [4]. Becker et al. evaluated 216 DCM
patients by CMR and demonstrated that RV dysfunction was strongly associated with the
risk of all-cause mortality and ventricular arrhythmias [96]. Pueschner et al. prospectively
evaluated 423 DCM patients, confirming the findings that RV systolic dysfunction is an
independent predictor of cardiac mortality, especially in patients with RVEF < 25% (nearly
5-fold higher compared to patients without RV dysfunction) [31]. Consequently, CMR
evaluation in DCM patients is clinically relevant, and all DCM patients should be evaluated
by CMR at least once [94]. Finally, CMR-derived RV volumes, mass, and EF have high
inter- and intra-observer reproducibility, both in patients with normal and dilated RV [4,95].
However, several factors still limit its wide use (i.e., time consuming, expensive, patients
with different types of cardiac devices which are CMR-incompatible).
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5. Conclusions

RV dysfunction is common and yields an unquestionable prognostic significance
in DCM patients. In several studies, RV dysfunction emerged as a predictor of adverse
events both at baseline and during long-term follow-up. Compared to the classical echocar-
diographic parameters such as TAPSE, S’ wave velocity, Tei index, and RVFAC, more
advanced imaging techniques, namely RV strain by STE, RVEF by 3DE and CMR, and
non-invasive echocardiographic surrogates of RVAC, provide improved risk stratification in
DCM patients. Multimodality cardiac imaging is of paramount importance for the accurate
evaluation of RV systolic function in DCM patients, providing diagnostic, prognostic, and
therapeutic implications.
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