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Abstract: In disease states, mesothelial cells are exposed to variable osmotic conditions, with high
osmotic stress exerted by peritoneal dialysis (PD) fluids. They contain unphysiologically high
concentrations of glucose and result in major peritoneal membrane transformation and PD function
loss. The effects of isotonic entry of urea and myo-inositol in hypertonic (380 mOsm/kg) medium
on the cell volume of primary cultures of rat peritoneal mesothelial cells and rat kidney outer
medullary collecting duct (OMCD) principal cells were studied. In hypertonic medium, rat peritoneal
mesothelial cells activated a different mechanism of cell volume regulation in the presence of isotonic
urea (100 mM) in comparison to rat kidney OMCD principal cells. In kidney OMCD cells inflow
of urea into the shrunken cell results in restoration of cell volume. In the shrunken peritoneal
mesothelial cells, isotonic urea inflow caused a small volume increase and activated regulatory
volume decrease (RVD). Isotonic myo-inositol activated RVD in hypertonic medium in both cell
types. Isotonic application of both osmolytes caused a sharp increase of intracellular calcium both in
peritoneal mesothelial cells and in kidney OMCD principal cells. In conclusion, peritoneal mesothelial
cells exhibit RVD mechanisms when challenged with myo-inositol and urea under hyperosmolar
isotonic switch from mannitol through involvement of calcium-dependent control. Myo-inositol
effects were identical with the ones in OMCD principal cells whereas urea effects in OMCD principal
cells led to no RVD induction.

Keywords: cell volume regulation; kidney principal cells; mesothelial cells; organic osmolytes;
osmotic stress

1. Introduction

The maintenance of a constant cell volume in the face of extracellular and intracellular
osmotic perturbations is an issue faced mainly by epithelial cells. Most cells respond
to osmotic challenges by activating specific membrane transport processes that serve to
return cell volume to its normal, initial value [1,2]. These processes are essential for nor-
mal cell function and survival. The adaptive mechanism of recovery after cell shrinkage
in a hypertonic environment is termed regulatory volume increase (RVI), while recov-
ery after cell swelling in a hypotonic environment is termed regulatory volume decrease
(RVD) [3–5]. The key process of RVI and RVD is the gain or loss of intracellular osmoti-
cally active molecules (osmolytes) followed by an influx or efflux of extracellular water,
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respectively. Thus, the molecular counterparts of cell volume regulation are electrolyte
transporters, transport, and synthesis of organic osmolytes allowing the passage of water
according to the osmotic gradient [5,6].

The renal collecting tubule is the key regulator of the extracellular volume and solute
composition of the organism. Since the final composition of the urine is determined
in the collecting duct, where they are exposed to a wide range of osmotic gradients
(from 100–1400 mOsm/Kgr H2O), principal cells are the major cell population of the
collecting ducts and are critical in mediating the fine tuning of urine solute and water
concentrations [7–10]. Therefore, these cells have the most effective mechanisms to maintain
their viability and functionality in an extracellular environment with a highly varying
osmotic pressure [10–12]. They are the most fit cell type for comparison when other
epithelial cells are evaluated regarding their cell volume regulation potential.

The characteristics of the cell volume regulation mechanisms in mesothelial cells
vesting the pleural and peritoneal cavities are largely unexplored. The only study that
has investigated the osmotic water permeability of human pleural mesothelial cells when
compared to human malignant pleural mesothelial cells has shown that benign mesothelial
cells have a significantly higher osmotic water permeability than malignant counterparts
in baseline as well as after hyperglycemia challenge [13]. In both cells, the osmotic wa-
ter permeability was significantly reduced after aquaporin-1 inhibition by HgCl2. The
osmotic water permeability of the benign mesothelial cells was 0.005 cm/s which is much
lower compared to OMCD principal cells, which have an osmotic water permeability of
0.12 cm/s [10]. In patients with pleural effusions of different etiologies, effusion osmo-
lality ranges from 240 to 340 mOsm/kgr H2O. Pleural mesothelial cells in pathological
conditions (pleural infection or malignancy) have to regulate their volume and adjust to
aniso-osmolality [14]. Likewise, peritoneal mesothelial cells are also exposed to variable
osmotic conditions with ascites formation. A massive increase in osmolality occurs in
patients undergoing peritoneal dialysis (PD). Next to hemodialysis, PD is the standard
renal replacement therapy in patients with acute kidney injury and in patients with chronic
end stage renal disease. In these patients, high volumes of PD fluids are repeatedly infused
into the peritoneal cavity [15]. To achieve adequate removal of water (ultrafiltration) from
the circulation of the mostly oligo- anuric patients, PD fluids contain high concentrations of
glucose creating a hyperosmolar environment ranging between 344 and 511 mOsm/kgH2O,
depending on the glucose concentration [16]. The hyperosmolarity only partially dissipates
until the next PD fluid exchange. In addition, conventional PD solutions have an acidic pH
and contain high amounts of toxic glucose degradation products (GDP), while so called bio-
compatible PD fluids, which separate the glucose from the buffer during sterilization and
storage, have a neutral to physiological pH and are largely devoid of GDP. Despite these
improvements, both types of PD fluids still induce severe transformation of the peritoneal
membrane during chronic PD, most importantly peritoneal fibrosis and hypervasculariza-
tion that ultimately lead to ultrafiltration failure [17–19]. With both types of PD fluids, the
peritoneal mesothelial cell monolayer is progressively lost. The mesothelial cells detach
and undergo apoptosis and mesothelial-to-mesenchymal transition (MMT). MMT cells
invade the submesothelial space where they further aggravate the tissue transformation
process [20].

Taken together, alterations of osmolality are a key driver of mesothelial cell damage.
Understanding exactly how mesothelial cells change their volume while responding to
the severe hyperosmotic stress should provide important insights on osmoprotective
mechanisms and inform the development of more biocompatible solutions. To this end, the
current work studied the plasma membrane transport and cell volume changes on isotonic
gradients of urea and myo-inositol in rat peritoneal mesothelial compared to kidney OMCD
principal cells in a hypertonic environment.
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2. Materials and Methods
2.1. Animals

Adult Wistar rats (200–250 gr) were bred and maintained in standard housing condi-
tions at the Animal Facility of the Institute of Cytology and Genetics (Novosibirsk, Russia).
Rats were fed a standard pellet chow and had free access to water. During the experiments,
the animals were anaesthetized with intraperitoneal (i.p.) injections of sodium thiopental
(10 mg/kg body wt) and were decapitated and, immediately thereafter, their kidneys were
surgically removed.

2.2. Cell Culture

Primary rat peritoneal mesothelial cells and primary principal cells from micro-
dissected fragments of outer medulla collecting ducts (OMCD) were used in the study.
Cell culture was performed in RPMI-1640 cell medium supplemented with 10% BCS, 1%
antibiotics, and 1% L-glutamine in a 5% CO2 humidified incubator at 37 ◦C. All chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, USA) unless otherwise stated.

2.3. Renal Outer Medullary Collecting Duct Suspension Preparation

Renal OMCD suspension was prepared as described previously [8]. Briefly, the kidney
outer medulla zone was placed in a syringe containing ice-cold, calcium-free PBS solution
(PBS: 137 mM NaCl, 4.7 mM Na2HPO4, 2.7 mM KCl, 1.5 mM KH2PO4, 0.5 mM MgCl2, 5.5 mM
glucose, 0.1 mM CaCl2, pH = 7.4). Subsequently, the tissue was squeezed through a needle
(0.45 mm i.d.). The resulting suspension was filtered through a nylon mesh, diluted 10 times
with MEM culture medium and centrifuged (100 g, 10 min, 4 ◦C), then 0.1 mL of suspension
transfer to cover glass covered with Poly-L-lysine (Sigma Aldrich, St. Louis, MO, USA). The
fragments were maintained in MEM cell medium that has normal osmolality.

2.4. Isolation of Peritoneal Mesothelial Cells

Pieces of parietal peritoneum (200–300 mg) were taken in sterile conditions and
incubated with a minimal volume of 0.25% trypsin (Trypsin-EDTA solution, Sigma, USA)
for 5 min at 37 ◦C. Then the tissue was transferred to 10–15 mL of calcium free PBS
and shaken for 2 min. The residual tissue was removed from the solution and the cell
suspension was centrifuged at 1500 g for 5 min. The procedure was repeated 3 times.
The cellular sediment was resuspended in 15 mL of culture medium RPMI-1640 (Sigma
Aldrich, USA) with 20% FCS (Sigma Aldrich, USA). A 2 mL aliquot of cell suspension
was transferred to a 35 mm petri dish with cover glasses (22 × 22 mm) (BRAND® cover
glass, Merck KGaA, Darmstadt, Germany) and was grown to 70–90% of confluence in CO2
incubator in RMPI cell medium (37 ◦C, 5% CO2).

2.5. Experimental Conditions Rationale

Incubation of cells in hypertonic medium causes their shrinkage, subsequently inducing
RVI. Typically, RVI is mediated by the increase of the intracellular concentration in osmotically
active agents such as electrolytes and non-ionic molecules. Urea and myo-inositol are the
most important intracellular electroneutral organic osmolytes. The aim of these experiments
was to measure the effects of urea and myo-inositol inflow on the cell volume in a hypertonic
environment. The schematic of the experiment design is shown in Figure 1.

2.6. Water Permeability Measurements

The water permeability was calculated from the value of the initial rate of cell swelling
after changing the osmotic pressure of the medium from 380 to 280 mOsm/kg. The
hypertonic medium (380 mOsm/kg) where the cells were balanced before the measurement
of water permeability was created by the addition of 100 mM mannitol in PBS (that has
normally 280 mOsm/kg). Fluorescence measurements of cell volume were performed by
the calcein quenching method as previously described [10,13,21]. Cell volume changes
were expressed as relative values of calcein fluorescence, an established surrogate of the
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cell volume fluctuations [22]. The cells were loaded with the fluorescent probe Calcein-AM
(5 µM, 20 min at 37 ◦C; Invitrogen, CA, USA). The fluorescence of calcein was continuously
measured with a LED light source, through a Zeiss filter set #09 (BP 450–490 nm excitation,
FT 510 nm dichroic mirror, LP 515 nm emission), a photomultiplier detector with a pinhole
diaphragm in order to be able to select the cells of interest and with a digital oscilloscope
ACK-3102 (Actacom®, RF Moscow, Russian), and saved on a PC. The data acquisition rate
was set to 10 ms. A superfusion chamber was constructed as an acrylic block with a T-shape
current of cell medium. This design makes a fast change of superfusion medium feasible
and minimizes the perturbations of the specimens. The flow rate of the perfusate was set
to 10 mL/min, which resulted in a complete solution exchange in the area of interest in
less than 100 msec. The chamber was mounted on the stage of an inverted microscope
(Axiovert 40, Zeiss, Germany; objective lens with 40×magnification; numerical aperture
0.65; thermal stabilization at 36.8± 0.2 ◦C). The water permeability was calculated from the
rate of the cell volume changes under the osmotic challenge on the basis of the equation [23]:
dV/dt = −AVwPf5Φ. The osmotic water movement is the net flow of volume across a
cell membrane in response to osmotic pressure dV/dt = −PfAVw∆C. The permeability
coefficient can be calculated from the slope (Kr) of the linear plot [10]:

Pf = Kr [AVw(Cin − Cout)]−1. (1)

where (dV/dt) is the rate of cell volume change, Pf is the osmotic water permeability
coefficient, A is the surface area which is significant for water exchange, ∆Φ is the osmotic
pressure difference, ∆C is the osmotic concentration difference, and Vw is the partial molar
volume of water.
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F/F0: Ratio of Fluorescence intensity to the initial fluorescence at time 0 s.

In the water permeability measurements, the cells were incubated in a solution of
PBS supplemented with 100 mM of mannitol until the fluorescent signal became stable
and then the solution was rapidly replaced with normal PBS (280 mOsm kg−1) and the
apparent water permeability was measured.

2.7. Measurement of the Effect of Urea and Myo-Inositol on Cell Volume

The cells were balanced in hypertonic medium that was created by the addition of
100 mM of mannitol in PBS (380 mOsm/kg) before the measurement of the effect of isotonic
100 mM urea or myo-inositol in PBS solution (380 mOsm/kg). The parameters of the cell



Biomolecules 2021, 11, 1452 5 of 10

volume changes as a result of isotonic urea or myo-inositol entry that were measured were
the initial rate of cell volume change and the characteristic time of RVD.

2.8. Measurement of the Intracellular Calcium

Cells were loaded with the Fluo 4 AM indicator (10 mM) for 30 min at 37 ◦C and
were then placed on a microscope stage with thermal stabilization at 36.8 ± 0.2 ◦C in PBS
solution. Emitted fluorescence intensities were obtained using the experimental setup
described above (PMT with a pinhole diaphragm through a Zeiss filter set #09).

2.9. Statistical Analyses

Data are presented as means ± SE. Statistical significance was evaluated using un-
paired t test when comparing two variables. A value of p < 0.05 was considered significant.

3. Results
3.1. Experiments of Rat OMCD Principal Cells on Isotonic Myo-Inositol and Urea Switch in
Hypertonic Environment

Primary rat kidney OMCD principal cells in experiments in a hypertonic environment
with fast isotonic switch from mannitol to myo-inositol resulted in cell swelling within 2 s
and a subsequent RVD activation (typical plot shown in Figure 2A). The characteristic time
of RVD and thus cell volume decrease was 10.6 ± 0.13 s (Figure 2B; n = 18). This effect was
not seen, however, during the isotonic switch from mannitol to urea (typical plot shown in
Figure 2C). In this case, urea influx caused cell swelling that significantly restored the initial
cell volume of the cells to nearly 90% and was not accompanied by RVD (Figure 2D; n = 18).
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Figure 2. Effect of isotonic gradients (100 mM) of myo-inositol and urea on the cell volume of rat
primary OMCD principal cells. A typical recording profile with myo-inositol incubation is given
in (A) and the profile of the mean and SE of 18 experiments in (B). Typical recording profile of rat
primary outer medullary collecting duct principal cells incubated with urea (C) and profile of mean
and SD of 18 experiments (D). The (B,D) are the second part of the curves of (A,C) respectively,
reflecting cell volume changes. They are normalized to the starting volume and the mean values of
every point are used to get the mean profiles.
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3.2. Experiments of Rat Parietal Peritoneum Mesothelial Cells on Isotonic Myo-Inositol and Urea
Switch in Hypertonic Environment

Primary rat parietal peritoneal mesothelial cells swelled after the isotonic change of
mannitol to myo-inositol within 2 s and then the mechanism of RVD led to cell volume
decrease, as shown in Figure 3A. The kinetics of RVD mechanism was 10.5 ± 0.2 s (n = 18;
Figure 3B), which was similar to the results obtained in the OMCD principal cells. A similar
cell reaction was observed when the isotonic switch involved a change from mannitol to
urea, where urea entered the cells and led to cell swelling within 2 s, which was followed
by RVD (characteristic plot in Figure 3C). The characteristic time of RVD and thus cell
volume decrease in this case was 6.2 ± 0.10 s (Figure 3D; n = 18). Taken together, the RVD
was signigicantly faster in the case of urea compared to myo-inositol in rat primary parietal
peritoneal mesothelial cells.
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Figure 3. Effect of isotonic gradients (100 mM) of myo-inositol and urea on the cell volume of rat
primary peritoneal mesothelial cells. A typical recording profile with myo-inositol incubation is
given in (A) and the profile of the mean and SE of 18 experiments in (B). Typical recording profile of
rat peritoneal mesothelial cells incubated with urea (C) and profile of mean of 18 experiments (D).
The (B,D) are the second part of the curves of (A,C) respectively, reflecting cell volume changes. They
are normalized to the starting volume and the mean values of every point are used to get the mean
profiles.

3.3. Comparison of RVD Kinetics of Myo-Inositol between Rat Primary OMCD Principal and
Parietal Peritoneal Mesothelial Cells

The original rate of cell swelling in isotonic myo-inositol and urea was faster in
primary rat kidney OMCD principal cells in comparison to parietal peritoneal mesothe-
lial cells as it can be seen by the coefficients of the relative cell volume linear regres-
sion. In fact, evaluation of the initial rate of cell swelling showed that the principal
cells have higher permeability for both myo-inositol and urea and that urea enters both
cell types faster than myo-inositol. More specifically, for myo-inositol in principal cells
the regression coefficient was r = 0.0088 ± 0.00018 (±0.000156 95%CI) and in peritoneal
mesothelial cells r = 0.0069 ± 0.00097 (±0.0000841 95%CI). Regarding urea in principal cells
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r = 0.0194 ± 0.00033 (±0.000286 95%CI) and in peritoneal mesothelial cells r = 0.0109 ± 0.00018
(±0.000156 95%CI).

3.4. Comparison of RVD Kinetics Relative to Intracellular Calcium between Rat Primary OMCD
Principal and Parietal Peritoneal Mesothelial Cells

Changes in the concentration of intracellular calcium ([Ca2+]i) during regulatory vol-
ume changes were assessed using the fluorescent probe Fluo4. Every tonicity change in
the extracellular medium in our experiments disturbed the cell volume. In these instances,
spikes of [Ca2+]i were observed as the cells were challenged by hypertonic medium that
contained mannitol, or when the mannitol content of the medium was changed for either
myo-inositol or urea with the same osmotic concentration. In the experiments with syn-
chronized fluorescence profiles of calcein and Fluo-4, the concurrent changes in cell volume
(calcein) and [Ca2+]i (Fluo-4) could be seen, demonstrating that the peaks of calcium corre-
spond to the cell volume changes (Figure 4). Mesothelial cells exhibit RVD for myo-inositol,
similar to primary OMCD principal cells, and exhibit RVD for urea challenge, which is
different than the reaction in principal OMCD cells, where swelling without RVD occurs in
primary OMCD principal cells. Thus, we speculate that there could be differences in the
urea transporters.
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Figure 4. Effect of isotonic gradients (100 mM) of myo-inositol and urea on the cell intracellular
calcium. Synchronized profiles for Calcein (black plot-1 demonstrating cell volume) and Fluo4 (red
plot-2 demonstrating [Ca2+]i) in rat primary mesothelial cell experiments with (A) myo-inositol and
(B) urea. Synchronized profiles for Calcein and Fluo4 in rat primary outer medullary collecting duct
principal cells in experiments with (C) myo-inositol and (D) urea.

4. Discussion

Cells that face osmotic challenges due to changes in extracellular osmolality adapt their
volume through modifying the intracellular solute content so as to adapt by either inducing
RVD (in case of cell swelling) or RVI (in case of cell shrinkage) [2]. These mechanisms
are mediated by membrane transport activation as well as metabolic processes that result
in net solute loss or gain and return to the initial resting cell volume [2,5]. During these
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transport processes, the intracellular solute content and volume is changed [23]. Urea and
myoinositol are two key osmolytes in kidney physiology and pathophysiology [5,24,25].
Urea is a critical molecule for the nephron countercurrent exchange mechanism that defines
the capacity of the nephrons to concentrate urine and thus avoid excess water loss. In this
aspect, it serves as one of the osmolytes that aids in the maintenance of the hyperosmotic
environment in the renal medulla interstitium [26,27]. The cells of the renal medulla also
contain high concentrations of osmolytes like myo-inositol, i.e., organic osmolytes pro-
duced by the cells in order to tolerate great osmotic gradients without affecting intracellular
protein functions as it is the case with high ionic strength [3,28]. Therefore, the cells of the
renal medulla are the best model to study the effects of osmolytes in cell volume regulation
since tolerance to steep changes in the extracellular osmolality is an integral part of their
homeostasis. All other cells of the human body may experience hyperosmolality under
certain conditions, but obviously their volume regulation mechanisms should be less pow-
erful. During persistent hyperosmolar conditions, the inorganic ions need to be replaced by
compatible electrically neutral organic osmolytes that do not disturb protein function [1].
Urea and inositol could be identified as important electroneutral organic osmolytes, of
which transmembranous transport could be involved in volume regulation [2,28].

PD treatment is based on the infusion of glucose rich, hyperosmolar PD fluids in
the peritoneal cavity in order to remove excess water together with ions and metabolic
byproducts (such as urea). In this setting the peritoneal mesothelial cells are chronically
exposed to fluctuating but persistently hyperosmolar conditions, a key factor of mesothe-
lial cell degradation. Nonetheless their cell volume regulation properties have scarcely
been studied. Under hyperosmolar stress MeT-5A mesothelial cells have lower water
permeability than principal OMCD cells, mediated mainly by AQP1 function [13].

We now demonstrate that parietal peritoneal mesothelial cells have urea and myo-
inositol permeability, but at lower rates than principal OMCD cells. In both cell types
the entry of urea is faster than that of myo-inositol and in both cell types myo-inositol
gradients caused cell swelling and induced RVD. In contrast, urea induced similar reac-
tions in peritoneal mesothelial cells, while the RVD response was absent in the principal
OMCD cells, since they underwent a swelling process that allowed them to recover to their
initial volume. The transport mechanism of urea in the principal OMCD cells is not well
understood and it is not clear why RVD activation was not achieved, but it may be due to
the fact that these cells are physiologically exposed to high urea concentrations and may
have developed adaptative protection mechanisms that are not present in cells such as
mesothelial cells.

Another finding of interest is the comparable intracellular calcium response to the
isotonic switch of osmolytes in both cell types. The short intracellular calcium spikes were
similar. They reflect activation of calcium-dependent processes including some control
cell permeability and cell volume regulation [29]. This finding deserves more in-depth
investigation in order to assess the calcium reaction related differences in the molecular
mechanisms involved in the transport of osmolytes in two cell types.

Myo-inositol intracellular concentrations increased progressively in mesothelial cells
in response to hypertonic stress, similar to PD conditions. At the molecular level this occurs
by increasing the levels and activity of the sodium/myo-inositol cotransporter [30]. The
higher urea than myo-inositol permeability rate in mesothelial cells could be explained by
the fact that urea enters the cells by means of facilitated diffusion, whereas myo-inositol
enters by means of secondary active transport, which is limited by the abundance of
substrate and membrane cotransporter lifetime. The distribution of urea transporters in
mesothelial cells is currently unknown but is of interest, since urea is osmotically active
and a surrogate parameter of small solute toxin removal by PD, i.e., a biomarker of PD
efficiency. We provide essential information of key response mechanisms of peritoneal
mesothelial cells to hyperosmolality compared to OMCD cells, as present for example in
patients with ascites. To better understand the mesothelial cell type specific response in
the setting of PD, experiments including high extracellular glucose exposure should be



Biomolecules 2021, 11, 1452 9 of 10

amended. On the other hand, molecular weight of glucose and myo-inositol is identical,
and both are cotransported with sodium, suggesting similar kinetics with glucose as shown
here for myo-inositol.

5. Conclusions

We provide the first evidence that peritoneal mesothelial cells under isotonic switching
in hyperosmolar conditions exhibit significant RVD reactions in response both in the case
of myo-inositol and urea. Myo-inositol effects were identical with the ones in OMCD
principal cells, whereas urea effects in OMCD principal cells led to no RVD induction.
Future studies should aim at identifying the molecular counterparts of these fast processes
and the translational potential of these findings in disease settings and treatments such
as PD.
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