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Abstract
Background  Myocardial T1 and extracellular volume 
(ECV) derived from cardiovascular MRIs are more and 
more widely accepted as important markers for diagnosis, 
risk prediction and monitoring of cardiac disease. Yet data 
regarding long-term stability of myocardial T1 mapping 
are lacking. The aim of this study was to investigate the 
long-term stability of native and postcontrast T1 mapping 
values in healthy volunteers.
Methods  18 strictly selected healthy volunteers (52±10 
years, 12 men) were studied on a Philips Achieva 1.5 
Tesla scanner. T1 relaxation times were measured before 
and 15 min after a bolus contrast injection of gadolinium 
diethylenetriamine penta-acetic acid (DTPA) (0.2 mmol/kg) 
using a single-breath-hold modified Look-Locker inversion 
recovery 3(3)3(3)5 sequence. ECV was calculated using 
native and postcontrast T1 times of myocardium and blood 
correcting for blood haematocrit. Exams were repeated 
3.6±0.5 years later under the same conditions and using 
the same scan protocols.
Results  Cardiac biomarkers (high-sensitivity troponin 
T and N terminal pro-brain natriuretic peptide) remained 
unchanged, as well as left ventricular mass, and global 
and longitudinal function. No significant change occurred 
regarding native T1 times (1017±24 ms vs 1015±21 ms; 
P=0.6), postcontrast T1 times (426±38 ms vs 413±20 ms; 
P=0.13) or ECV (22%±2% vs 23%±2%; P=0.3). Native 
T1 time and ECV appeared to be better reproducible than 
postcontrast T1, resulting in lower coefficients of variation 
(ECV: 3.5%, native T1: 1.3%, postcontrast T1: 6.4%) and 
smaller limits of agreement (ECV: 2%/−2%, native T1: 39 
ms/−35 ms, postcontrast T1: 85 ms/−59 ms).
Conclusions  During long-term follow-up, native T1 and 
ECV values are very robust markers, whereas postcontrast 
T1 results appear less stable.

Introduction
Background
Cardiovascular magnetic resonance (CMR) 
T1 mapping represents a quantitative 
imaging technique for the characterisation 
of the myocardium and identifies changes 
in myocardial tissue composition. T1 mapping 
therefore offers the opportunity to detect 

and to quantify pathological changes of the 
myocardium in various heart diseases.1 In 
T1 mapping, parametric maps are generated 
where the signal intensity of each pixel repre-
sents its longitudinal or spin-lattice relaxa-
tion time T1 in milliseconds, which is a time 
constant that describes a specific magnetic 
tissue property. T1 maps can be assessed 
before (native T1) and after (postcontrast 
T1) administration of a gadolinium-based 
extracellular contrast agent. Moreover, the 
extracellular volume (ECV) fraction  can be 
estimated from a combination of native and 
postcontrast T1 values.

Recently, several studies could demonstrate 
characteristic changes in native myocardial 
T1, postcontrast T1 and ECV in different 
forms of ischaemic and non-ischaemic 
heart diseases, including acute2 and early 
states of diseases.3 For instance, changes 
in T1 times can be caused by interstitial 
fibrosis,4 5 oedema6 or amyloid deposition.7 

Key questions

What is already known about this subject?
►► Myocardial T1 and extracellular volume (ECV) 
derived from cardiovascular MRIs are more and 
more widely accepted as important markers 
for diagnosis,  risk prediction and monitoring of 
cardiac disease. Yet data regarding long-term 
stability of myocardial T1 mapping are lacking.

What does this study add?
►► This study investigated the long-term stability 
of native and postcontrast T1 mapping values in 
healthy volunteers.

How might this impact on clinical practice?
►► The demonstrated long-term stability of T1 
mapping parameters in this study might help to 
establish this technique in clinical routine.

http://www.bcs.com
http://openheart.bmj.com/
http://crossmark.crossref.org/dialog/?doi=10.1136/openhrt-2017-000717&domain=pdf&date_stamp=2018-02-24


Open Heart

2 aus dem Siepen F, et al. Open Heart 2018;5:e000717. doi:10.1136/openhrt-2017-000717

The capability of this technique to quantify the amount 
of diffuse cardiac fibrosis could be demonstrated by 
comparing T1 mapping parameters with histological 
parameters from myocardial biopsies.8–10 Recent studies 
revealed even a prognostic value for T1 mapping in 
patients with aortic stenosis.11 Furthermore, T1 mapping 
might be able to detect early microvascular dysfunction 
in adenosine stress tests.12

Before a diagnostic test is implemented in clinical 
routine, its technical characteristics have to be investi-
gated, in particular with regard to normal values, compa-
rability, reproducibility and stability. Recent studies 
reported normal ranges for healthy subjects and data 
on short-term stability for 1.5 and 3 Tesla. Additionally, 
Piechnik et al13  reported only small differences in native 
T1 in a cohort of 18 healthy volunteers over a period of 
3 years using the shortened modified Look-Locker inver-
sion recovery (MOLLI) technique. 

Study aim
To date, it is unknown however if ECV values of healthy 
individuals change over time or remain constant. 
We sought to investigate the long-term stability of T1 
mapping values including ECV in a cohort of well-charac-
terised, healthy volunteers.

Methods
Study population
Eighteen volunteers were prospectively enrolled between 
2010 and 2011. Recruitment was performed using post-
ings and newspaper advertisement, inviting apparently 
healthy volunteers to participate in a scientific study 
and following a standard protocol. Except for thyroid 
hormone substitution and oral contraceptives, perma-
nent medication was a contraindication. For follow-up, 
these volunteers were enrolled by written invitation in 
2015. All participants gave written informed consent.

Clinical examination and ECG
All subjects underwent clinical examination and 12-lead 
ECG at the baseline visit and at the follow-up visit. Medical 
history, family history, physical examination and ECG 
analysis were performed by two clinically experienced 
physicians and supervised by senior physicians.

Laboratory testing
Extensive blood analyses were performed both at the base-
line visit and at the follow-up visit, including complete 
blood cell count, electrolytes, cardiac biomarkers, liver 
and kidney function tests, and thyroid hormone levels. 
Additionally, test subjects underwent an oral glucose 
tolerance test at the baseline visit. Standard assays were 
used for determination of troponin  T (ECLIA, Roche 
Diagnostics) and N terminal pro-brain natriuretic 
peptide (NT-proBNP) (CLIA, Siemens). Blood samples 
were collected on the same day as the CMR scan was 
performed.

Cardiovascular magnetic resonance
All scans were performed on the same Philips 1.5 Tesla 
MRI scanner (Achieva) with a 32-element cardiac 
receiver coil and vector-ECG gating. Steady-state free-pre-
cession cine sequences were applied in contiguous short-
axis and in three long-axis views (two-chamber, three-
chamber, four-chamber). T1 imaging was performed 
using a MOLLI sequence in a mid-ventricular short-axis 
view during breath-hold in end-expiration14 before and 
15 min after administration of gadolinium diethylenetri-
amine penta-acetic acid /DTPA (Magnograf, 0.2 mmol/
kg body weight). At baseline, an adenosine stress exam-
ination was performed to exclude significant coronary 
artery disease.

Contiguous short-axis stack images were used to 
measure cardiac volumes, left ventricular ejection frac-
tion (LVEF) and myocardial mass in late diastole using a 
commercially available workstation (Philips IntelliSpace, 
V.7.0.1, Best, The Netherlands).

Precontrast and postcontrast T1 maps were generated 
and analysed using a commercial software package for 
cardiovascular image analysis (cvi42, V.5.2, Circle Cardio-
vascular Imaging, Calgary, Canada). Endocardial and 
epicardial borders were defined manually, using an offset 
of 15% to avoid partial-volume effects in the subendocar-
dial and subepicardial layers. Global myocardial T1 values 
were calculated as a mean of all segments with respect to 
the segment’s area. T1 values for blood were gathered by 
manually drawing a region of interest in the left ventric-
ular (LV) cavity.

ECV values were created according to the following 
formula15:

	
ECV = (1 − HCT)

( 1
T1myopost

− 1
T1myopre

)

( 1
T1bloodpost

− 1
T1bloodpre

)�

Statistical analysis
Statistical analysis was performed using MedCalc V.16.4 
statistical software (MedCalc Software, Ostend, Belgium).

The Kolmogorov-Smirnov test was used to test for 
normal distributions. Categorical data are expressed as 
percentages and continuous variables as mean±SD. For 
comparison of two parametric variables, the paired t-test 
was used. For analysis of the reproducibility of different 
parameters, we used Bland-Altman plots and coefficients 
of variation. A P value of less than 0.05 was considered 
statistically significant.

Results
Clinical parameters and laboratory results
No study subjects reported symptoms or any other 
evidence of cardiac disease at baseline and after follow-up 
(mean interval 3.8±0.6 years). None of the subjects had 
medications on a regular basis. All clinical and ECG 
values were within the normal range at baseline as well 
as at the follow-up visit. There was a small yet signifi-
cant increase of systolic (from 119±10 to 126±9 mm Hg; 
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P<0.001) and diastolic (from 73±10 to 83±8 mm Hg; 
P<0.001) blood pressure, PQ time, QTc time, and heart 
frequency between the two examinations, while all other 
parameters remained stable (table  1). No arrhythmias, 
abnormalities in conduction or signs of ischaemia were 
detected by ECG.

Laboratory values were within normal range at both 
visits, and the detailed data are provided in table 2. No 
significant changes in cardiac biomarkers (high-sensi-
tivity troponin T and NT-proBNP) were observed.

CMR results
All CMR parameters of all subjects were within the 
reference range on both visits, with normal initial stress 
test results. On the follow-up visit, significant changes 
occurred in end-diastolic volume (from  155±31 mL to 
143±28 mL, P=0.01), end-systolic volume (from 60±14 mL 
to 55±12 mL, P=0.01) and stroke volume (from 94±20 mL 
to 88±17 mL, P=0.03), whereas LV mass, LVEF and param-
eters of longitudinal function remained unchanged. All 
parameters are given in table 3.

No significant change occurred in native T1 times 
(baseline: 1017±24 ms vs follow-up: 1015±21 ms; P=0.6; 
figure 1), postcontrast T1 times (baseline: 426±38 ms vs 
follow-up: 413±20 ms; P=0.13; figure 2) or ECV (baseline: 
22±2% vs follow-up: 23%±2%; P=0.3; figure 3). Native T1 
time and ECV were better reproducible than postcon-
trast T1, resulting in better coefficients of variation (ECV: 
3.5%, native T1: 1.3%, postcontrast T1: 6.4%). Limits of 
agreement were smaller in ECV and native compared with 
postcontrast T1 (ECV: 2%/−2%, native T1: 39 ms/−35 
ms, postcontrast T1: 85 ms/−59 ms). Bland-Altman plots 
are given in figure 4.

Gender-wise analysis
Male subjects had a significantly higher body mass index 
(26±1 kg/m2 vs 22±1 kg/m2, P=0.02), but did not differ 

significantly in any other baseline parameter. No differ-
ences in CMR parameters or T1 mapping values could 
be observed between genders except postcontrast T1 
time at baseline visit (male: 443±8 ms, female: 388±14 ms; 
P=0.002). Limits of agreement were smaller in ECV and 
native T1 compared with postcontrast T1 in men (native 
T1: 24/–27 ms, postcontrast-: −95/42 ms, ECV: 2/%–2%) 
as well as in women (native T1: 60/–51 ms, postcontrast 
T1: 48/–73 ms, ECV: 2/%–2%). Accordingly, coefficients 
of variation were better for ECV and native T1 compared 
with postcontrast T1 in men (ECV: 3.0%, native T1: 0.9%, 
postcontrast T1: 6.9%) and women (ECV: 3.9%, native 
T1: 1.7%, postcontrast T1: 5.9%).

Discussion
In this study we could demonstrate that in a cohort of 
strictly selected healthy individuals, (1) native T1, post-
contrast T1 and ECV did not change significantly during a 
long-term follow-up; (2) native T1 and ECV values showed 
less variation between measurements than postcontrast 

Table 1  Clinical characteristics and ECG data

Baseline 
visit

Follow-up 
visit P value

Height (cm) 174±11 174±11 0.67

Weight (kg) 76±16 76±16 0.42

Body mass index (kg/m2) 25±3 25±3 0.43

Age (years) 54±8 58±8 <0.01

Systolic blood pressure (mm 
Hg)

119±10 126±9 <0.001

Diastolic blood pressure 
(mm Hg)

73±10 83±8 <0.001

ECG parameters

Heart rate (1/min) 67±9 62±6 <0.01

PQ (ms) 158±25 163±25 0.06

QRS (ms) 98±10 95±7 0.1

QTc (ms) 398±12 405±10 0.05

Continuous data were expressed as mean±SD. 

Table 2  Laboratory results

Baseline visit Follow-up visit P value

High-
sensitivity troponin T 
(pg/mL)

3.9±1.3 3.9±1.1 0.99

NT-proBNP (ng/L) 68±44 71±48 0.66

GOT (U/L) 21±4 29±15 0.03

GPT (U/L) 22±9 30±36 0.39

Bilirubin (mg/dL) 0.8±0.4 0.8±0.2 0.31

Gamma-GT (U/L) 23±14 31±39 0.42

Creatinine (mg(dL) 0.9±0.1 0.8±0.1 0.02

GFR (mL/min) 96±20 96±17 0.90

Cholesterol (mg/dL) 204±23 201±33 0.44

HDL-cholesterol (mg/
dL)

61±15 57±18 0.08

LDL-cholesterol (mg/
dL)

127±23 123±28 0.26

Haemoglobin A1c (%) 5.5±0.2 5.3±0.2 0.76

CRP (mg/L) 2.5±1.4 2.2±0.8 0.63

Haemoglobin (g(dL) 14.2±1.2 14.3±1.3 0.45

Haematocrit (%) 42±3 41±3 <0.001

TSH (mU/L) 1.4±0.8 1.0±0.4 0.04

Uric acid (mg/dL) 5±1 5±1 0.28

Sodium (mmol/L) 141±2 141±2 0.76

Potassium (mmol/L) 4.2±0.3 4.3±0.2 0.57

Continuous data were expressed as mean±SD.
CRP, C reactive protein; GFR, glomerular filtration rate; GOT, 
glutamic oxaloacetic transaminase; GPT, glutamic pyruvic 
transaminase; Gamma-GT, Gamma-Glutamyltranferase; HDL, 
high-density lipoprotein; LDL, low-density lipoprotein; NT-
proBNP, N terminal pro-brain natriuretic peptide; TSH, thyroid-
stimulating hormone.
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T1; and (3) no significant differences between genders 
could be observed.

T1 mapping is an emerging technique and recently was 
used in numerous single-centre studies. Significant differ-
ences between healthy and diseased subjects could be 
demonstrated for a wide spectrum of cardiomyopathies, 
including dilated cardiomyopathy (DCM),4 5 9 16 hypertro-
phic cardiomyopathy4 5 17–20 and cardiac amyloidosis.7 21–23 
Some studies also elucidated the prognostic value of T1 
mapping in a cohort of patients with DCM,16 24 light-
chain amyloidosis,25 diabetes26 and patients with heart 
failure of different aetiologies.27 An association between 
ECV and short-term mortality in a heterogeneous cohort 
could be demonstrated by Wong et al.28 Before these 
research findings can be translated into clinical applica-
tion, several technical aspects have to be addressed. First, 
various mapping sequences with specific advantages and 
disadvantages and—even more importantly—different 
normal ranges are available, and technical improvement 
is still ongoing. T1 results might vary between different 
vendors and magnetic resonance systems,29 and there is 
a lack of multivendor/multicentre trials. Furthermore, 
the field is heterogeneous regarding the use and dosage 
of contrast agents, cut-off values, quality management, 
image postprocessing and reporting. Due to the novelty 
of the technique and the different technical challenges, 
no universally valid reference values are available yet. In 
a consensus paper edited by an expert consensus group, 
it was suggested that normal values should be established 
at each CMR site for the local set-up.30 In a first multi-
centre, single-vendor approach, Piechnik et al13 provided 
reference values for 1.5 Tesla in a large cohort of 342 
healthy volunteers.  Additionally, mapping values for 
different cardiovascular diseases were provided.31 Dabir 
et al32 provided reference values for 1.5 and 3T based on 
103 healthy subjects, examined in four different centres 
under the same conditions using a standardised mapping 
sequence. Normal values of 1.5T T1 mapping parameters 
based on smaller cohorts were also published by Mess-
roghli et al,14 Gai et al,33 Liu et al,34 von Knobelsdorf-Bren-
kenhoff et al35 and Nacif et al.36 The average values in our 
cohort were closest to the values obtained by Nacif et al, 
using the same sequence with the same flip angle of 35°.

Postcontrast T1 times depend on the dosage of contrast 
agents, the total volume of distribution and the time 
between injection of contrast medium and image acqui-
sition. This may explain why postcontrast T1 had the 
highest coefficient of variation among all parameters 
in our cohort and therefore appeared to be less robust 
than native T1 or ECV. As a derived parameter, ECV 
appears much less dependent on technical confounders 
and field strength. Additionally, ECV has a lower vari-
ability between different vendors than native and post-
contrast T1.29 Indeed, in our study, ECV had a good 

Table 3  CMR parameters

Baseline visit Follow-up visit P value

LVEDD (mm) 48±4 47±3 0.3

LVESD (mm) 32±4 32±3 0.7

EDV (mL) 155±31 143±28 0.01

ESV (mL) 60±14 55±12 0.01

SV (mL) 94±20 88±17 0.03

LVEF (%) 61±4 62±3 0.4

LV mass (g) 83±24 88±26 0.06

MAPSE (mm) 12±3 12±2 0.9

TAPSE (mm) 20±3 19±3 0.5

T1 mapping 
parameters

Native T1 
myocardium (ms)

1017±24 1015±21 0.6

Native T1 blood (ms) 1542±87 1552±63 0.6

Postcontrast T1 
myocardium (ms)

426±38 413±20 0.13

Postcontrast T1 blood 
(ms)

242±33 233±16 0.2

ECV (%) 22±2 23±2 0.3

Continuous data were expressed as mean±SD.
 CMR, cardiovascular magnetic resonance; 
ECV, extracellular volume; ESV, end-systolic volume; EDV, end-
diastolic volume; LV, left ventricular; LVEDD, left ventricular 
end-diastolic diameter; LVEF, left ventricular ejection 
fraction; LVESD, left ventricular end-systolic diameter; 
MAPSE, mitral annulus plane systolic excursion; SV, stroke volume; 
TAPSE, tricuspid annular plane systolic excursion. 

Figure 1  Representative images of native T1 maps and 
plots of individual T1 values at baseline (t0) and follow-up visit 
(t1).

Figure 2  Representative images of postcontrast T1 maps 
and plots of individual postcontrast T1 values at baseline (t0) 
and follow-up visit (t1).
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reproducibility, with just a slightly higher coefficient of 
variation than native T1.

In our cohort, no significant changes could be detected 
between baseline and follow-up scans, but several studies 
reported an age dependency of T1 mapping parameters. 
For instance, an increase of ECV26 37 and a decrease of 
native T1 times with age13 were described. It remains 
unclear whether the observed changes might indicate a 
subclinical disease or the physiological ageing process. 
However, the small sample size in our study should be 
considered as a major limitation in this context.

The finding that native T1 and ECV remain constant 
in healthy volunteers over several years, respectively, the 
long-term stability of T1 mapping parameters in individ-
uals, is an essential precondition for applications such as 
monitoring during therapeutic interventions or assess-
ment of natural disease progression. Of course, our study 
is limited by a small case number and a lack of data for 
different sequences, field strengths, vendors or postpro-
cessing procedures. Nevertheless, the presented data 
endorse the results of previous studies regarding stability 
of T1 measurements.

Conclusion
Myocardial T1 and ECV values are stable over a long-term 
follow-up period in healthy subjects and thus appear suit-
able for longitudinal studies. While a similar reproduci-
bility could be demonstrated for native T1 and ECV, post-
contrast T1 appeared to be less robust.
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