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ABSTRACT

Bacteria and archaea employ dedicated signal
transduction systems that modulate gene expres-
sion, second-messenger turnover, quorum sensing,
biofilm formation, motility, host-pathogen and bene-
ficial interactions. The updated MiST database pro-
vides a comprehensive classification of microbial
signal transduction systems. This update is a re-
sult of a substantial scaling to accommodate con-
stantly growing microbial genomic data. More than
125 000 genomes, 516 million genes and almost
100 million unique protein sequences are currently
stored in the database. For each bacterial and ar-
chaeal genome, MiST 3.0 provides a complete sig-
nal transduction profile, thus facilitating theoretical
and experimental studies on signal transduction and
gene regulation. New software infrastructure and dis-
tributed pipeline implemented in MiST 3.0 enable reg-
ular genome updates based on the NCBI RefSeq
database. A novel MiST feature is the integration of
unique profile HMMs to link complex chemosensory
systems with corresponding chemoreceptors in bac-
terial and archaeal genomes. The data can be ex-
plored online or via RESTful API (freely available at
https://mistdb.com).

INTRODUCTION

All living organisms need to constantly adapt to chang-
ing environmental conditions to ensure survival. The evo-
lutionary success of bacteria and archaea is dependent on
the ability of these unicellular organisms to rapidly sense

and respond to changes inside and outside their cell. While
eukaryotes employ complex signal transduction cascades,
bacteria and archaea utilize simpler signal transduction
systems. The best studied mode of signal transduction in
prokaryotes is two-component signaling (TCS) (1). TCS
systems are comprised of two dedicated proteins, a sensor
histidine kinase and a dedicated response regulator; some
systems contain additional auxiliary components. The most
abundant signal transduction systems in prokaryotes, so-
called one-component systems (OCS), combine sensory and
regulatory functions in a single protein (2). Usually, these
functions reside in two distinct domains, sensory and reg-
ulatory, although they also can be present in a single do-
main or distributed between multiple domains within a sin-
gle protein. Chemosensory systems that involve several ded-
icated proteins and a specialized version of a histidine ki-
nase comprise the most complex mode of signal transduc-
tion in bacteria and archaea (3,4). Functional diversity of
signal transduction (linking numerous signals to various
types of responses via different modes) is reflected in ex-
treme sequence variation of input and output domains, do-
main shuffling, and variability of interacting modules, thus
presenting a major challenge for genomic identification and
logical classification of signal transduction components.
The microbial signal transduction (MiST) database was es-
tablished as a comprehensive signal transduction classifica-
tion system and has served as a useful community resource
since 2007 (5,6).

Exponential growth of DNA sequencing data presents
substantial challenges to processing, storing, and retriev-
ing genomic information (7). The MiST 2.0 database (6)
was designed to work with the genomic data of a moder-
ate size. It contained 966 complete and 157 draft bacterial
and archaeal genomes, which collectively contain >245 000
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signal transduction proteins. Currently, the NCBI RefSeq
database (Release 95) contains genomes of 58 611 bacte-
rial and archaeal species and hundreds of millions of gene
and protein sequences, and these numbers continue to grow.
To accommodate a vast amount of ever-growing genomic
data, the MiST database has been completely redesigned
and rewritten from the ground up. The new software ar-
chitecture and robust computational pipeline of MiST 3.0
enable efficient processing and storage of constantly grow-
ing data. Currently, MiST3 contains >125 000 genomes,
516 million genes, and almost 100 million unique protein
sequences. It is the only resource that provides a compre-
hensive classification of signal transduction in bacterial and
archaeal genomes. Microbial two-component signal trans-
duction systems are also classified in the P2CS database (8).

SIGNAL TRANSDUCTION CLASSIFICATION
SCHEMES

Signal transduction proteins and pathways are complex
and there is no single, ‘gold standard’ way of classifying
them. The current version of MiST utilizes two classifi-
cation schemes: to categorize signal transduction proteins
(provided as ‘Genomic distribution of signal transduction
proteins’ tables) and to catalog signal transduction domains
(provided as a ‘Signal transduction profile’ graph).

Classification of signal transduction proteins

For signal transduction proteins, we use the ‘complexity’
scheme – one-component, two-component, and chemosen-
sory systems (2). In addition to classifying pathway com-
ponents, this scheme allows separating intracellular and
extracellular signal transduction pathways: >97% of one-
component systems are intracellular sensors and the vast
majority of two-component systems contain extracellular
sensors (2). The disadvantage of this scheme is that it does
not provide a clear separation by protein function for some
categories and, in contrast, splits some of the function-
ally related proteins into different categories. For example,
the majority of transcription factors and serine/threonine
(ser/thr) kinases would be found in the same category of
one-component systems; on the other hand, c-di-GMP-
cyclases will be split between the three main categories (one-
component, two-component or chemosensory) depending
on their associated domains and pathways.

An alternative scheme involves classification by protein
function, e.g. placing chemoreceptors, histidine kinases, c-
di-GMP-cyclases and phosphodiesterases, ser/thr kinases
and other key signal transduction proteins in separate cate-
gories (9). While this scheme emphasizes the functional role
of a protein, it has its own shortcomings. For example, the
same category of response regulators contains such func-
tionally unrelated proteins as transcription factors and c-
di-GMP-cyclases, as long as they are associated with the
receiver domain. In the case of chemosensory pathways,
this scheme splits their components between several cate-
gories providing no connection between the elements of the
same pathway. We would like to emphasize that our current
protein classification scheme does provide functional cat-
egorization for several major signal transduction families:

chemoreceptors, histidine kinases, response regulators, and
extracytoplasmic sigma factors. In the future, we plan to
implement an additional classification scheme based exclu-
sively on the protein function, so the users can chose which
option to use based on the nature of their inquiry.

Classification of signal transduction domains

Signal transduction pathways contain various protein do-
mains: many of them are unique to signal transduction,
whereas others can play roles in other processes. Here
again, there is no simple and unambiguous way for their
classification. We present a summary of signal transduc-
tion domains for each genome as a graph titled ‘Signal
transduction profile’. We classified these domains in seven
major categories: (i) input (sensory), (ii) output (regula-
tory), (iii) chemotaxis (domains specific to chemosensory
pathways), (iv) transmitter (transmit information from in-
put), (v) receiver (receive information from transmitter), (vi)
ECF and (vii) unknown (any domain, whose role in sig-
nal transduction is not understood, but it is found in as-
sociation with a known signal transduction domain). Input
domains are further characterized as (a) cofactor-binding,
(b) enzymatic (enzyme-like ligand-binding domains), (c)
protein–protein interactions (e.g. domain known to pro-
mote protein-protein interactions), (d) signaling (domains
associated with signal transduction, but not fully under-
stood), (e) small-ligand binding, and Unknown (the same
definition as above). Output domains include the follow-
ing subcategories: (a) DNA binding (the majority of tran-
scription factors), (b) RNA binding, (c) enzymatic (EAL,
GGDEF, Guanylate cyc domains), (d) protein–protein in-
teractions. Because this scheme classifies domains, not pro-
teins, the same multi-domain protein would appear in var-
ious categories. For example, if a protein has a domain,
whose role in signal transduction is unknown, and a well-
annotated signal transduction domain (e.g. GGDEF), it
will be listed both in the ‘unknown’ subcategory of the ‘in-
put’ category and in the ‘enzymatic’ subcategory of the ‘out-
put’ category. Systematic exploring of the ‘unknown’ sub-
categories might lead to the discovery of novel signal trans-
duction domains and understanding the roles of other do-
mains in signal transduction. The list of more than 400 pro-
tein domains implicated in bacterial and archaeal signal
transduction, their annotations and references is provided
as Supplementary Table S1 and it is available on the MiST
3.0 Help page, where each domain is hyperlinked with cor-
responding entries in the Pfam database.

NEW FEATURES AND IMPROVEMENTS

Distributed computational pipeline

A vast number of constantly growing bacterial and ar-
chaeal genome sequences requires efficient ways to process
and store them and imposes strict demands on the hard-
ware. In order to address these challenges we developed a
flexible database structure and a distributed computational
pipeline, which can run on virtually unlimited number of
nodes with a network bandwidth being the only limita-
tion. The pipeline automatically downloads and processes
genomes from the NCBI RefSeq database, predicts protein
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features, identifies and classifies signal transduction pro-
teins, and saves all this data to the MiST database. The sig-
nal transduction proteins are classified based on our hier-
archical rule system (6) and specific profile hidden Markov
models (HMMs). Low-complexity regions and coiled-coils
are identified in addition to protein domains as important
features for protein function inference. Separate modules
that can run independently of each other perform all steps
of the pipeline. After installation of Docker (https://www.
docker.com/) images, each step of the pipeline runs as a con-
venient command-line application with very few, well doc-
umented, parameters. The pipeline is designed to easily and
regularly upload new genomes as they become available and
to identify their signal transduction profiles, thus keeping
the MiST database up to date.

Although MiST3 is primarily focused on signal transduc-
tion, it stores precomputed features of all proteins encoded
in NCBI RefSeq genomes. All NCBI RefSeq genomes and
the encoded proteins can be explored using convenient fea-
tures implemented in MiST without running external soft-
ware. Moreover, proteins of interest can be analyzed in a
batch for a set of genomes using the MiST API, which pro-
vides many opportunities for large-scale comparative ge-
nomic analyses.

New elaborate database schema

The genomic data is highly linked. To facilitate storage of
and interaction with this data, we designed a database struc-
ture, which logically distributes all the genomic data in sev-
eral mutually related tables reflecting their natural relations.
The key tables and their relations are listed in Supplemen-
tary Table S2. Such a schema allows efficient interaction
with the rich genomic data and provides a way to extend
the database structure. Understanding the underlying data
structure will help researchers to use MiST API most effec-
tively.

RESTful API

We developed a RESTful API, which allows (i) program-
matic access to all the data using a variety of identi-
fiers and parameters and (ii) performing large-scale anal-
ysis of bacterial and archaeal signal transduction systems.
The requested data is returned in JSON format. A well-
documented description of MiST3 data structure together
with the detailed query examples in several popular pro-
gramming languages is given on the API page, which is ac-
cessible from https://mistdb.com.

An enormous amount of genomic information prevents
returning all the data for a given resource in a single request.
For this purpose, any MiST API endpoint that returns an
array of records is limited to 30 records per page by default.
Query parameters exemplified on the API web page can be
used to navigate to subsequent pages and adjust the number
of returned records per page.

New interface

We built a new intuitive web interface for biomedical scien-
tists to explore and analyze bacterial and archaeal genomes.

Our new search system allows searching microbial genomes
and genes just by typing their identifier without specifying
its type. Genomes can be searched by organism name, any
taxonomy level (genus, family, etc.), RefSeq accession and
version, NCBI taxonomy ID and genome assembly level.
Genes and proteins can be searched by gene product name,
genome locus tags, RefSeq identifier, or using our unique
internal stable identifier, which includes the genome Ref-
Seq ID and gene locus. Another new feature of the inter-
face is the ability to filter genomes by taxonomy and as-
sembly level using either embedded filter or selecting cor-
responding taxonomic name in the drop-down list on the
search results table. The genes/proteins search results page
contains protein domain information for each returned pro-
tein. Genomes and genes can be added to the cart and ana-
lyzed in detail and encoded protein sequences can be down-
loaded. Genomes and genes added to the cart are marked
on the search page to help keep track of the added items.

A genome detail page provides comprehensive informa-
tion about the selected genome including its Bioproject
identifier, submitter, and complete description of the sig-
nal transduction systems. The signal transduction profile of
any given genome is presented as a graph of functional do-
mains together with their counts and a table showing dis-
tribution of signal transduction proteins across OCS, TCS
and chemosensory systems. The chemosensory systems ta-
ble shows all the chemosensory pathways encoded in the
given genome. Clicking on the graph bars and on the gene
counts in the table leads to the list of corresponding signal
transduction proteins. Information about a genome anal-
ysis state is also provided. A gene/protein detail page con-
tains information about the selected gene, its encoded prod-
uct, protein domain architecture including details of pre-
dicted protein features, and a gene neighborhood graphical
representation.

We also implemented a new convenient Scope search
which is designed to search for genes and proteins inside a
given genome. When a genome name or an identifier is en-
tered in the field called ‘Scope’ on the gene/protein search
page, a list of corresponding organisms appears. Clicking
on one of them will set it as a genome to search for speci-
fied genes and proteins in. The scope can also be set on a
genome detail page.

Novel pathway-specific profile HMMs for accurate classifi-
cation of chemosensory systems

The Pfam database has a rich collection of profile HMMs
for protein domain identification (10). However, its cur-
rent HMMs do not distinguish between different classes of
chemosensory systems and associated chemoreceptors (also
known as methyl-accepting chemotaxis proteins or MCPs).
For example, a single HMM (MCPsignal, PF00015) rec-
ognizes all MCP classes and there is no specific HMM to
recognize the histidine kinase domain of CheA, the central
component of the chemosensory system. MCPs are classi-
fied in terms of the number of helical heptads that com-
prise their conserved signaling domain (11). For example,
the E. coli MCP Tsr has 36 heptads in its signaling domain
and thus belongs to the 36H class. Genomic evidence sug-
gested that MCPs of certain heptad classes interact pref-
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erentially with certain chemosensory pathway classes de-
fined based on evolutionary considerations (4). Specific pro-
file HMMs were built for nineteen classes of chemosensory
pathways (4) and twelve classes of MCPs (11); however,
they are not available in Pfam. Furthermore, a new class of
signal transduction proteins called MAC (methyl-accepting
coiled-coil proteins) was identified (4), for which no pro-
file HMM is available. We integrated profile HMMs for
different MCP classes, namely 64H, 58H, 52H, 48H, 44H,
42H, 40H, 38H, 36H, 34H, 28H and 24H, into the MiST3
database. We also integrated HMM profiles for components
specific to each chemosensory class (CheA, CheB, CheC,
CheD, CheR, CheV and CheZ) (4) and newly built pro-
files for MAC1 and MAC2 protein families. Thus, for the
first time, MiST3 offers a comprehensive set of chemosen-
sory pathway-specific HMMs. Using these new profiles in
combination with genome neighborhood analysis a com-
plete chemosensory repertoire of any bacterial and archaeal
genome can now be reconstructed.

CASE STUDY

Many bacterial species have multiple chemosensory sys-
tems that control several cellular functions (4,12,13). Pseu-
domonas aeruginosa PAO1 has 4 chemosensory pathways
encoded by 5 gene clusters and 26 MCPs (14). By search-
ing the MiST3 database, we identified a bacterial genome
that encodes the largest number of proteins comprising
chemosensory pathways: Azospirillum sp. B510 genome
(GCF 000010725.1) encodes 126 such proteins, including
88 MCPs. The key question not only in this particular case
but in cell biology in general is which receptor feeds into
which pathway. Here we show how MiST3 can be used to
assign MCPs to chemosensory pathways in a given bacterial
genome.

The MiST3 database automatically identified all compo-
nents of chemosensory pathways encoded in the Azospiril-
lum sp. B510 chromosome and plasmids and assigned them
to corresponding classes (Figure 1). In total, six chemosen-
sory pathways were detected: ACF – 2, F7-major – 1, F5
– 1, F8 – 1, and F9 – 1. ACF stands for ‘alternative cellu-
lar functions’ and F followed by a number identifies path-
ways controlling flagella (4). Similarly, all 88 MCPs were
assigned to seven heptad classes (24H – 1, 28H – 1, 34H
– 3, 36H – 1, 38H – 75, 40H – 2 and 44H – 5). Spe-
cific relationships between MCP and chemosensory path-
way classes were previously established using large-scale ge-
nomic comparisons (4,14). For example, the F7 pathway
preferentially utilizes 36H MCPs, whereas the F1 pathway
usually contains 44H class MCPs. Using these relationships
and gene neighborhood information available in MiST3 we
connected all MCPs to corresponding pathways (Figure 2
and Supplementary Table S3). Specific cellular functions
can be assigned to four of the six chemosensory pathways
(F7-major, F5, F9 and one of the ACF) based on homol-
ogous relationships with experimentally studied systems.
The F7-major pathway controls chemotaxis in many bac-
teria, including the model organism Escherichia coli (4).
The F7-major orthologous cluster in Azospirillum brasilense
(termed the Che4 cluster) contributes to chemotaxis (15),
but this function is also modulated by another chemosen-

sory pathway (termed the Che1 cluster (16)), which is or-
thologous to the F5 pathway in Azospirillum sp. B510. Or-
thologs of the ACF pathway encoded on pAB510a plasmid
control cyst formation in a closely related bacterium Rho-
dospirillum centenum (17) and flocculation in A. brasilense
(the Che3 cluster) (18). Finally, the F9 ortholog (the Che2
cluster in A. brasilense) is involved in controlling flagella
biosynthesis in R. centenum (19). Taken together, our as-
signments suggest that the vast majority of MCPs feed
into the pathway controlling chemotaxis. Satisfactorily, the
same trend was observed in another bacterium with multi-
ple chemosensory systems, P. aeruginosa PAO1 (14). While
not every MCP was assigned to a specific pathway and
some exceptions from the assigned rules are inevitable, this
case study demonstrates that MiST3 provides an excellent
framework to produce testable hypotheses on bacterial and
archaeal signal transduction, and drives future experimen-
tal studies.

AVAILABILITY

The MiST 3.0 database is freely accessible for non-
commercial use at https://mistdb.com. Users are not re-
quired to register or login to access any feature avail-
able in the database. Docker images are available at
https://hub.docker.com/u/biowonks/. GitHub repositories
locations – https://github.com/biowonks/projects, https://
github.com/ToshkaDev/mist-web-v.

IMPLEMENTATION

The efficiency of the MiST3 database is achieved by using
modern technologies on both backend and frontend. The
backend and API are implemented using Node.js (https:
//nodejs.org/en/about/) and Express.js framework (https://
expressjs.com/), the frontend was developed using Angular
(https://angular.io/). Numerous custom packages were cre-
ated and used in conjunction with the state-of-the-art ven-
dor packages to interact with the database, process the data,
and create images. PostgreSQL is used as a database sys-
tem. The Docker (https://www.docker.com/) platform was
used to provide a reproducible and consistent environment
for each component of the application. Protein domains
are identified using Pfam (10) profile HMMs running HM-
MER (20), transmembrane regions – running TM-HMM
(21), low-complexity regions – using SEG (22), coiled-coils
– using Coils (23), extracytoplasmic function sigma factors
– using group-specific profile HMMs and a classification
system (24), and signal transduction proteins – using our
internal classification procedure based on domain classifi-
cations (Supplementary Table S1) and a hierarchical rule
system (6).

CONCLUDING REMARKS

As every resource of this magnitude, MiST remains a work-
in-progress platform for exploring signal transduction path-
ways across >125 000 bacterial and archaeal genomes. Our
classification schemes deliver a scalable domain-based cate-
gorizing of signal transduction proteins and pathways. The
authors would like to state their commitment to maintain-
ing, improving, and updating this database including its
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Figure 1. Chemosensory systems table automatically generated by MiST 3.0 for the Azospirillum sp. B510 genome.

Figure 2. Reconstruction of chemosensory pathways in Azospirillum sp. B510 using the MiST 3.0 database.
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classification schemes. MiST3 is open source and we gladly
welcome contributions from the community, either as a fea-
ture request, bug report or code.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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