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Gastrointestinal (GI) cancers, especially gastric cancer and colorectal cancer (CRC),

represent a major global health burden. A large population of microorganisms residing

in the GI tract regulate physiological processes, such as the immune response,

metabolic balance, and homeostasis. Accumulating evidence has revealed the alteration

of microbial communities in GI tumorigenesis. Experimental studies in cell lines and

animal models showed the functional roles andmolecular mechanisms of several bacteria

in GI cancers, including Helicobacter pylori in gastric cancer as well as Fusobacterium

nucleatum, Escherichia coli, Peptostreptococcus anaerobius, and Bacteroides fragilis

in CRC. The transcriptional factor NF-κB plays a crucial role in the host response

to microbial infection through orchestrating innate and adaptive immune functions.

Moreover, NF-κB activity is linked to GI cancer initiation and development through its

induction of chronic inflammation, cellular transformation and proliferation. Here, we

provide an overview and discussion of modulation of the NF-κB signaling pathway by

microbiota, especially infectious bacteria, in GI tumorigenesis, with a major focus on

gastric cancer and CRC.
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INTRODUCTION

Cancer is the second leading cause of death globally behind cardiovascular disease, according
to statistical data from the World Health Organization (1). Gastrointestinal carcinoma remains
the main cause of cancer-related morbidity and mortality worldwide, particularly in East Asian
countries (2). The roles of genetic risk factors in cancer development have been well-studied.
Germline mutation in CDH1 (E-cadherin) is widely detected in gastric cancer (3). The genetic
mutation of adenomatous polyposis coli (APC) is associated with a higher risk of familial
adenomatous polyposis and colorectal cancer (4). In addition, abundant and diverse microbes
reside in the human body. These microorganisms include bacteria, fungi, archaea, and viruses.
Approximately 100 trillion of microorganisms exist in the human gastrointestinal tract (5, 6). The
activities of complex microbial communities orchestrate many aspects of human health, such as
immune responses, metabolic balance, and homeostasis. Recently, accumulating evidence suggests
that disruption of the microbiota is involved in diverse human diseases, including gastrointestinal
disorders, obesity, inflammatory bowel disease (IBD), and depression (7, 8). Data at different levels
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from animal models and cell lines indicate that microbial
pathogens exert oncogenic properties during gastrointestinal
tumorigenesis (9, 10). It has been well-established that infection
with the gram-negative bacterium Helicobacter pylori (H. pylori)
significantly increases the risk of gastric cancer. The presence
of Fusobacterium nucleatum (F. nucleatum), a gram-negative
obligate anaerobic bacterium, can contribute to intestinal
tumorigenesis (11). The NF-κB signaling pathway can be
activated to modulate host cellular events after exposure to
different microbial pathogens or microbial products, such as
lipopolysaccharide (LPS) and pathogen-associated molecular
patterns (PAMPs) (12). Cytoplasmic NF-κB is transferred to the
nucleus, where it induces antimicrobial inflammatory cytokine
expression, which functions as a rapid defense mechanism
against microbes, including infectious bacteria. However,
prolonged chronic inflammation due to the activation of NF-κB
proteins may result in tissue damage, further contributing to
tumorigenesis by changing the genetic and epigenetic states
of damaged tissues and the host microenvironment (13).
In this review, we provide an update on recent advances in
our understanding of the modulation of the NF-κB signaling
pathway by microbes, particularly infectious bacteria in
gastrointestinal tumorigenesis, with a major focus on stomach
and intestinal cancers.

SIGNAL TRANSDUCTION OF THE NF-κB
PATHWAY

Activation of NF-κB Signaling
The NF-κB family of transcriptional factors regulates a large
number of genes involved in different cellular processes, such
as cell proliferation, differentiation, genome stability, and the
innate immune and adaptive immune responses (14). The NF-κB
family consists of five members that interact with each other
to homodimerize or heterodimerize: NF-κB1 (also named p50),
NF-κB1 (also named p52), RelA (also named p65), RelB, and
c-Rel (15). Activation of the NF-κB signaling pathway can occur
through canonical and non-canonical (or alternative) pathways
(16). The IKK kinase complex, including the catalytic subunits
IKKα, IKKβ, and a regulatory subunit NF-κB essential modulator
(NEMO), is the core component of the NF-κB signaling cascade
(17). Under normal physiological conditions, NF-κB dimers
in an inactive form are sequestered to the cytoplasm through
their interaction with IKB-inhibitory proteins (IκBα, IκBβ, and
IκBε). Upon stimulation with diverse bacteria, various immune
receptors, such as Toll-like receptors (TLRs) and TNF receptors
(TNFRs), can be activated to mediate the NF-κB signaling
pathway. The primary mechanism of canonical NF-κB activation
is the degradation of IκBα. In this process, IKK phosphorylates
IκBα and leads to its ubiquitination through the SCFβTrCP

ligase-dependent proteasome degradationmachinery. As a result,
NF-κB is released and translocated from the cytoplasm to the
nucleus, where it binds DNA and regulates downstream gene
transcription (18–20). The alternative NF-κB signaling is mainly
dependent on the activation of NF-κB2 (p100)/ RelB complex,
which specifically responds to a subset of receptors, including

BAFF (B-cell activating factor belonging to TNF family) receptor
(BAFFR), CD40, and receptor activator for NF-κB (RANK)
(21). NF-κB-inducing kinase (NIK) is a core component of
the non-canonical pathway. Ikkα is activated by NIK and then
phosphorylates p100 (22). Then, p100 is processed to its active
form, p52, which forms a heterodimer with RelB that translates
to the nucleus (21, 23–25). Both the canonical and non-canonical
pathways can be mediated to orchestrate host inflammation in
response to microbial pathogen infection (Figure 1).

NF-κB Activation, Inflammation and Cancer
Activation of the NF-κB cascade is a central regulator of host
responses to microbial infection. The innate immune response,
a first line of host defense against different microorganisms,
is modulated by the NF-κB signaling pathway, which in
turn promotes the expression of target genes (12, 26). Most
importantly, NF-κB acts as a central regulator of the immune
response and inflammation by upregulating many chemokines
(CXCL1, CXCL2, CXCL3, etc.) and cytokines (TNFα, IL-1β, IL-6,
IL-8, etc.) (27). Activated NF-κB also affects cellular proliferation
and apoptosis by targeting Bcl2, IAPs, and cyclins. In addition,
NF-κB is essential for the induction of antimicrobial effectors
that can effectively eliminate pathogenic microbes, such as
antimicrobial peptides (AMPs) (28).

NF-κB, a critical regulator, has been linked to inflammation
and cancer at multiple levels (13, 29). On the one hand,
inflammation is a host-protective response to microbial
pathogens or tissue damage. Upon stimulation by diverse
bacterial species (H. pylori, F. nucleatum, etc.), NF-κB is highly
activated at the site of infection for its antimicrobial activity
and maintenance of tissue homeostasis (30). On the other
hand, the strong involvement of the NF-κB pathway in the
adaptive immune response, through either B or T cells, increases
the severity and extent of inflammation (31). Constitutive
chronic inflammation may lead to damaged tissues, autoimmune
diseases and cancer initiation by increased cellular stresses and
the accumulation of DNA damage. The alteration of genetic
stability and epigenetic states at the site of damaged tissues
contributes to generating a pro-tumorigenic microenvironment
(32). Elevated NF-κB activity and the increased expression of
proinflammatory cytokines have been documented in various
tumorous tissues (33, 34). Constitutive activation of NF-κB turns
on the transcription of genes that promote cell proliferation,
cell survival, and genomic instability and thereby contributes to
oncogenic mutations. There is strong evidence that the inducible
activation of the NF-κB cascade promotes cell proliferation
by targeting cyclin D1 expression and inhibits cell apoptosis
by targeting BCl2 expression (35, 36). NF-κB can be activated
following DNA damage. The activation of NF-κB triggers acute
and chronic inflammation, which in turn is linked to decreased
genomic stability and genetic mutations in cancer initiation
and progression (37). As a result, the NF-κB signaling pathway
is believed to play an important role in the pathogenesis and
carcinogenesis of microbial infection. Here, we focus on the
bacteria that can cause gastrointestinal cancer by modulating the
NF-κB signaling pathway.
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FIGURE 1 | The canonical and non-canonical NF-κB signaling pathway. The canonical pathway is induced by TLRs, TNFRs, and IL-1R. Activation of this cascade

leads to the phosphorylation and degradation of inhibitory protein IκB. NF-κB is activated by release from the IκB-containing complex, then translocating into nucleus.

The non-canonical pathway is dependent on the activation of NF-κB2 (p100)/ RelB complex by BAFFR, CD40, and RANK. This cascade induces phosphorylation of

NIK, which subsequently phosphorylates IKKα. Then p52-RelB heterodimer is activated and translocate to the nucleus. The activation of NF-κB signaling regulates

various cellular processes through targeting the expression of cytokines, chemokines and other genes.

BACTERIAL PATHOGENS LINKED TO
GASTROINTESTINAL TUMORIGENESIS

The Gastric Microbiota and Gastric Cancer
No bacterium was known to specialize in colonization of the

human stomach, with its unique acid environment, until the

discovery of the gram-negative bacterium H. pylori, which was

first reported in the stomachs of patients with peptic ulcers in
1982 (38). To survive in acidic conditions, H. pylori produces
a large amount of the enzyme urease, which catalyzes the

hydrolysis of urea to ammonia, thereby neutralizing gastric acid
(39). Approximately half of the world’s population is infected

with H. pylori, mainly in developing countries (40). H. pylori
infection has been extensively studied and found to be associated
with an increased risk of gastric adenocarcinoma. Long-term
infection with H. pylori is an inducible factor leading to gastric
atrophic gastritis, intestinal metaplasia, dysplasia, and ultimately
gastric cancer, a sequence also called the Correa cascade of
multistep gastric carcinogenesis (41). Accumulating data from
clinical follow-up studies suggest that eradication of H. pylori
significantly reduces the risk of gastric cancer (42, 43). This is
illustrated by the finding that patients have a lower incidence
of metachronous gastric cancer following treatment to eradicate
H. pylori (44). Additionally, in patients with H. pylori infection
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who had a family history of gastric carcinoma in their first-degree
relatives, H. pylori eradication significantly decreased gastric
cancer risk (45).

Some heterogeneity exists between different H. pylori strains.
High prevalence of H. pylori infection, but low prevalence of GC
incidence, was found in many African countries (46). Multiple
mechanisms are involved in the interaction between the host
and pathogenic H. pylori. Both bacterial and host genetic factors
contribute to H. pylori infection-induced chronic inflammation,
metaplasia and gastric tumorigenesis (47). From the perspective
of bacteria, the virulence factors of H. pylori have been
demonstrated to influence this microorganism’s pathogenicity.
Cytotoxin-associated gene A (CagA) and vacuolating cytotoxin
A (VacA), themost intensively investigated virulence factors, play
significant roles in gastric adenocarcinoma induced by H. pylori
infection. The bacterium utilizes a type IV secretion system
(T4SS) to inject CagA into host gastric epithelial cells. As a result,
CagA is responsible for the dysregulation of cellular proliferation
and apoptosis through disturbing the PI3K/AKT, MEK/ERK,
and Wnt/β-catenin signaling pathways (48). Additionally, it has
been indicated that CagA induces an inflammatory response via
activation of the NF-κB pathway (49). In addition, the VacA toxin
ofH. pylori can rapidly cause vacuolation in gastric epithelial cells
(50). From the perspective of host genetics, gene polymorphisms
can increase the risk of gastric cancer in patients with H. pylori
infection. Polymorphisms in the IL-1β gene increase the risk of
gastric carcinogenesis in H. pylori-positive populations (51).

With the development of sequencing platforms and
bioinformatics tools, 16S rRNA gene sequencing based on
hypervariable regions was performed to study the profile of the
human microbiome, including mainly the microbiotas of the
stomach and intestine (52). As a result, many gastric bacteria
species other than H. pylori have been identified. The stomachs
of H. pylori-positive and H. pylori-negative individuals exhibit
significantly different bacterial communities. Among H. pylori-
positive patients,H. pylori is the most dominant bacterium in the
stomach. In contrast, the gastric microbiota of H. pylori-negative
individuals is more diverse and consists mainly of Firmicutes,
Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria
(53). Recently, gastric bacterial communities were shown to
be associated with gastric malignancies. Ferreira et al. showed
that Firmicutes and Actinobacteria are over-represented in
the gastric carcinoma microbiota compared with the chronic
gastritis microbiota. Furthermore, gastric cancer samples exhibit
a significant reduction in the abundance of H. pylori (54). Coker
et al. identified differences in mucosal bacterial interactions
across stages of gastric carcinogenesis, from superficial gastritis
to atrophic gastritis, intestinal metaplasia, and GC. The
significant enrichment and central network locations of five
microbes (Peptostreptococcus stomatis, Streptococcus anginosus,
Parvimonas micra, Slackia exigua, and Dialister pneumosintes)
suggest their important role in GC progression (55).

The effect of non-H. pylori bacteria on gastric pathology
is further supported by animal model systems. In transgenic
INS-GAS mice with high circulating gastrin levels, colonization
of H. pylori led to a significant increase in Firmicutes and
reduction in Bacteroidetes (41). Other Helicobacter species, such

as Helicobacter felis (H. felis), commonly colonize animals.
Mongolian gerbils infected with H. felis developed premalignant
gastric lesions (56). Moreover, germ-free transgenic INS-GAS
mice supplemented with normal intestinal flora (IF) or 3 species
of commensal bacteria (rASF; ASF356 Clostridium species,
ASF361 Lactobacillus murinus, and ASF519 Bacteroides species)
developed more severe gastric lesions and elevated levels of
proinflammatory genes than H. pylori-monocolonized INS-GAS
mice (57). These findings suggest that microbial diversity
contributes to gastric cancer risk. Long-term H. pylori infection
causes gastric atrophy, which leads to achlorhydria and decreased
acid secretion. Notably, H. pylori infection and alteration of the
acidity of the gastric environment may result in alterations in
the gastric microbiota (58). However, due to the difficulty in
bacterial isolation and culture, the functional role and pathogenic
mechanisms of microbial communities in gastric neoplasia
remain unclear.

There are some genetic, environmental, dietary, and lifestyle
factors that influence microbiome system. Genetic mutation such
as CDH1 and TP53, lifestyles including smoking, low fruits and
vegetables consumption, high salts, nitrates, and pickled foods
intake and overweight are also found to be associated with
increased GC risk (59, 60). He et al. reported that 12 week
high-fat diet lead to the dysbiosis of gastrointestinal microbiota
in C57BL/6 mice, what’s more, the alterations of microbiota
in stomach was earlier than that in gut and the dysbiosis
of gastrointestinal microbiota may related with the metabolic
disorders of mice (61). Arita et al. showed that high-fat diet
leads to severe dysbiosis of gastric microbiota and increased
gastric leptin, which lead to the development of gastric intestinal
metaplasia in C57 mice (62). A recent large scale blinded
randomized placebo controlled trial in China showed that both
H. pylori treatment and vitamin supplementation lead to a
significant reduced incidence of GC, and H. pylori treatment,
vitamin or garlic supplementation lead to a significant reduction
of GC mortality (42).

Imbalance Between Gut Microbiota and
Intestinal Cancer
Changes in the gut microbiota, referred to as dysbiosis, are
involved in the development of multiple diseases, including
cancer, metabolic diseases, cardiovascular diseases and
depression (63, 64). Colorectal cancer (CRC) is the third
most common cancer worldwide (2, 65). Effects of the fecal
microbiota transplant of human fecal samples to germ-free
mice suggested the effect of gut microbiota on colorectal
carcinogenesis. Germ-free mice gavaged with stool from
patients with CRC showed increased levels of proinflammatory
genes, including the chemokines CXCR1 and CXRC2 as
well as the cytokines IL-17A, IL-22, and IL-23A (66).
Sequencing studies have revealed discrepancies in the gut
microbiomes of patients with colorectal cancer and healthy
individuals. 16S rRNA sequencing data from stool samples
from CRC patients suggested that several genera, including
Fusobacterium, Porphyromonas, Enterococcus, Escherichia,
Klebsiella, Streptococcus, and Parvimonas, are linked to CRC
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(67–69). Hibberd et al. analyzed the intestinal microbiota from
tumor tissues and the normal mucosa. Several taxa, including
Fusobacterium, Selenomonas and Peptostreptococcus, were
selectively enriched in patients with colon cancer compared
to control individuals. Probiotic intervention significantly
altered the microbial composition (70). Furthermore, significant
differences in microbial communities were observed across the
stages of colorectal carcinogenesis. Nakatsu et al. compared
the mucosal microbiotas of normal tissues, adenomatous
polyps and carcinomas. Fusobacterium, Parvimonas, Gemella,
and Leptotrichia were significantly increased in patients with
adenoma, which is an early-stage CRC, whereas the abundance
of bacterial communities, including Bacteroides, Blautia, and F.
prausnitzii, was decreased. In late-stage CRC, neither of these
changes was significant. Furthermore, Peptostreptococcus and
Parvimonas showed a strongly positive relationship in colonic
carcinoma and carcinoma-adjacent mucosa (71). In addition,
Warren et al. compared the CRC tissues and matched normal
control tissues. Co-occurrence network analysis was performed
to identify microbe-microbe and host-microbe associations
specific to tumors. The authors confirmed tumor over-
representation of Fusobacterium species and observed significant
co-occurrence within individual tumors of Fusobacterium,
Leptotrichia, and Campylobacter species (72). As a corollary,
these studies may identify novel CRC-associated microbial
markers, such as Fusobacterium, Peptostreptococcus, Leptotrichia,
and Parvimonas.

Recently, an increasing number of studies have elucidated
the functional roles and molecular mechanisms of several
specific bacterial species in CRC carcinogenesis, including
Fusobacterium nucleatum (F. nucleatum), Escherichia coli
(E. coli), Peptostreptococcus anaerobius (P. anaerobius), and
Bacteroides fragilis (B. fragilis) (Figure 3). F. nucleatum is highly
increased in CRC patients compared to healthy individuals, and
its abundance is closely related to a worse survival rate (73, 74).
Biological informatic, functional and mechanistic studies in
human samples, cell lines and animal models have revealed
the potential role of F. nucleatum in CRC chemotherapy.
Specifically, these bacteria could promote CRC resistance to
chemotherapy through the activation of autophagy mediated
by TLR4/MYD88 and miRNAs (75). These studies suggest
that F. nucleatum serves as a candidate prognostic biomarker
in CRC. Although E. coli is a commensal bacterium that
colonizes the human GI tract, several studies indicate a link
between some pathogenic E. coli strains and CRC risk. E. coli
are divided into 4 phylotypes, among which specific E. coli
strains from each phylotype have been associated with IBD,
which is a known risk factor for CRC (76, 77). Infection with
pathogenic E. coli in multiple intestinal neoplasia (Min) mice
significantly increased colonic polys compared with those
in control groups (78). Pathogenic E. coli produces various
virulence factors. Colibactin, a hybrid polyketide-peptide
encoded by the pks genomic island, has been shown to induce
DNA double-strand breaks and genomic instability in human
cells (79), contributing to mutational signatures in CRC (80).
In addition, the anaerobic bacterium P. anaerobius, which is
enriched in the fecal and mucosal samples of CRC patients, was

recently demonstrated to promote CRC carcinogenesis through
in vitro and in vivo studies (81). The gram-negative bacterium
B. fragilis is a normal commensal bacterial species that colonizes
the colon. A subset of B. fragilis termed enterotoxigenic B. fragilis
produces the B. fragilis toxin (BFT) and has been found to play
an important role in CRC tumorigenesis and development.
Sears et al. revealed the increased abundance of the BFT gene
in mucosal biopsies from patients with CRC compared to
normal individuals. Furthermore, increased bft positivity was
found in early to progressive CRC patients (82). This research
team then investigated the role of the gut microbiota in the
development of familial adenomatous polyposis (FAP), which
is an autosomal dominant disease caused by the APC gene in
which many colorectal adenomas can develop (83). The genes
colibactin from E. coli and bft from B. fragilis are more highly
expressed in patients with FAP compared to healthy individuals.
Mechanistically, the co-colonization of E. coli and B. fragilis in
the colon promotes the expression of inflammatory cytokines
and accelerates DNA damage (84). As a result, modulation of the
gut microbiota may be an effective strategy for the prevention or
treatment of CRC.

Some genetic, diet, lifestyle and other environmental factor
have been shown to modulate gut microbiota, further affect
host metabolism, immune response and promote colorectal
carcinogenesis. Liang et al. reported that APC mutation was
closely related to the alteration of gut microbiota that plays
an important role in the development of CRC from intestinal
adenomatous polyps (85). The increasing incidence of CRC in
western countries is partly attributed to the increasing adoption
of western lifestyles and overweight. High fat diet is a well-
known factor to influence the gut microbiota and promote CRC
development in animal model (86). Interestingly, it has been
demonstrated that Mediterranean Diet (MD) could counteract
CRC that caused by high-fat diet by modulate apoptosis and gut
microbiota in mice (87).

MODULATION OF THE NF-κB SIGNALING
PATHWAY IN RESPONSE TO BACTERIAL
INFECTION IN GASTRIC TUMORIGENESIS

Commensal microbes in the GI tract are essential for the
maintenance of GI functions, including development, immune
responses and homeostasis. It is becoming increasingly clear
that disruption of the microbiota contributes to gastric and
intestinal tumorigenesis. In particular, upon infection with
intestinal bacteria, host cells rapidly employ the intracellular
NF-κB signaling pathway to activate antibacterial immunity and
maintain intestinal barrier integrity (30). A number of studies
have reported that during bacterial infection, the NF-κB pathway
controls multiple cellular processes, including inflammation,
proliferation and apoptosis, by regulating the expression of a
network of downstream effectors. As a result, the NF-κB signaling
pathway is strongly involved in microbiota-associated gastric
(Figure 2) and colorectal tumorigenesis (Figure 3). Here, we
focus on the bacteria that modulate the NF-κB pathway in
gastrointestinal tumorigenesis.
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FIGURE 2 | A depiction of the modulation of NF-κB signaling pathway by gastric microbiota, especially H. pylori. Gastric epithelial cells PRRS (NOD1, TLRs)

specifically recognize the virulence factors such as CagA and peptidoglycan that are delivered by the H. pylori cag pathogenicity island. Then the NF-κB pathway is

activated through IKK-mediated phosphorylation of IκB. Active NF-κB translocate to nucleus and induce downstream genes expression. NF-κB activation promotes

acute, chronic inflammation and immune response via induction of cytokines and chemokines. The accumulation of DNA damage is associated with activation of the

NF-κB signaling pathway. Several miRNAs and other genes can be activated. As a result, H. pylori infection induces gastric carcinogenesis via regulation of cell

proliferation and survival. Other microorganisms including L. casei and H. felis link the NF-κB pathway to gastric inflammation and tumorigenesis.

H. pylori Infection, the NF-κB Signaling
Pathway, and Gastric Carcinogenesis
H. pylori-infected individuals develop acute or chronic gastritis,
and in a subset of subjects, gastritis may progress to peptic
ulcer disease, in particular, intestinal metaplasia and gastric
carcinomas (88). There is very compelling evidence for the
involvement of the NF-κB pathway in H. pylori-associated
gastric tumorigenesis. The activity of NF-κB was shown to
be markedly increased in the lamina propria and epithelium
of the antral mucosa of H. pylori-infected adults compared

to those of uninfected controls, suggesting that neutrophil

infiltration in the gastric mucosa of H. pylori-infected gastritis

patients is attributed to activation of the NF-κB pathway (89).

Twenty years ago, it was discovered that H. pylori infection

increased NF-κB activity and the nuclear translocation of NF-
κB p50/p65 heterodimers and p50 homodimers in transformed
gastric epithelial AGS cells. Furthermore, activation of the
NF-κB pathway by H. pylori infection could lead to the
induction of proinflammatory cytokines such as IL-8 and IL-
17 (90, 91). Consistently, the importance of NF-κB in H. pylori
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FIGURE 3 | A depiction of the modulation of NF-κB signaling pathway by gut microbiota in colorectal tumorigenesis. In response to intestinal bacterial pathogens

including F. nucleatum, P. anaerobius, E. coli, B. fragilis, intestinal epithelial cells employ several receptors such as TLRs and integrins to recognize distinct microbial

components. The NF-κB signaling pathway is subsequently activated to induce the expression of pro-inflammatory cytokines, chemokines, adhesion molecules and

other genes, which ultimately lead to the cellular processes changes and contribute to colorectal carcinogenesis.

infection-induced gastric neoplasia was confirmed in animal
models (92).

Upon sensing pathogenic H. pylori, cellular pattern
recognition receptors (PRRs) induce intracellular signaling
pathways in the innate immune response. TLRs and NOD1 are
common PRRs involved in activation of the NF-κB signaling
pathway (93). It was reported that infection with H. pylori
strain 26695 increased NF-κB activity and chemokine gene

expression in HEK293 and gastric epithelial MKN45 cells
transfected with TLR2 and TLR5 but not TLR4 (94). NOD1
specifically recognizes peptidoglycan (PGN) delivered by the
H. pylori cag pathogenicity island. Experimental studies, both
in vivo and in vitro, have indicated that NOD1 induces NF-κB
activity in response to pathogenic H. pylori, which is implicated
in gastric inflammation and malignant lesions (95, 96). The
virulence factor CagA has been identified to be responsible
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for the NF-κB-induced response subsequent to NOD1
activation (97).

Gastric chronic inflammation caused by the NF-κB pathway
in response to H. pylori infection finally contributes to gastric
carcinogenesis through accumulatedDNAdamage and abnormal
cell polarity and proliferation. H. pylori infection induces DNA
damage to exert genotoxic effects (98). Hartung et al. reported
that the induction of DNA double-strand breaks (DSBs) is
associated with activation of the NF-κB signaling pathway. DSBs
were greatly reduced in AGS cells treated with p65/RelA RNAi
or an NF-κB inhibitor. Similarly, the loss of β1 integrin resulted
in decreased DSBs and inhibited IL-8 secretion after infection
with H. pylori. Intriguingly, H. pylori-induced DNA damage
can promote NF-κB target gene transactivation and host cell
survival (99).

Moreover, NF-κB drives cell proliferation, which promotes
metaplastic hyperplasia and neoplasia in the stomach. H. pylori
infection has been shown to induce the activity of NF-κB and
AP-1, which in turn promotes the expression of oncogenes
(β-catenin, c-myc) and mediates the hyperproliferation
of gastric cells (100). DARPP-32 has been identified as
a transcriptional target gene of the NF-κB pathway that
is significantly upregulated following H. pylori infection.
Consequently, induction of DARPP-32 counteracted H. pylori-
induced cell death and promoted gastric cell survival through
the activation of AKT (101). Small RNAs such as miRNA-223-3p
have been documented to link NF-κB, cellular proliferation
and gastric carcinogenesis (102). As a result, H. pylori infection
rapidly leads to activation of the NF-κB pathway, which
triggers various molecular mechanisms to affect gastric
neoplastic lesions.

In addition to H. pylori, several other microorganisms exhibit
distinct functions in the GI tract. Many probiotics have been
shown to inhibit the development of gastric diseases. Hwang
et al. reported that Lactobacillus casei (L. casei) extract suppressed
the NF-κB pathway by decreasing the expression of NF-κB p65
and IκB, which in turn induced apoptosis and inhibited the
growth of gastric cancer cells (103). Infection with the non-pylori
Helicobacter species H. felis links the IKKβ/NF-κB pathway to
gastric inflammation and tumorigenesis. Shibata et al. generated
mice in which IKKβwas conditionally deleted in gastric epithelial
cells and myeloid cells to determine the role of IKKβ/NF-κB
signaling in H. felis infection-associated gastric neoplasia. They
found that deletion of IKKβ in gastric epithelial cells resulted
in increased apoptosis, the accumulation of ROS and DNA
damage, severe inflammation and more rapid progression to
gastric preneoplasia (104).

MODULATION OF THE NF-κB SIGNALING
PATHWAY BY THE INTESTINAL
MICROBIOTA IN CRC

F. nucleatum and the NF-κB Signaling
Pathway
Multiple studies over the past few years have definitively
addressed the carcinogenic properties of F. nucleatum in the

initiation and development of CRC. It has become clear that
F. nucleatum infection modulates the NF-κB signaling pathway,
targeting downstream genes that regulate various cellular
processes, such as the inflammatory response, cell proliferation,
and cell migration, and finally affecting tumorigenesis (105–107).
In the APCMin/+ mouse model, F. nucleatum treatment
accelerated small intestinal and colonic tumorigenesis. Increased
nuclear translocation of the p65 NF-κB subunit was observed
in tumors (106). F. nucleatum infection can rapidly induce
the host innate immune response, which activates the NF-κB
signaling pathway. Several studies have shown that the common
TLR4/MYD88 innate immune signaling pathway is activated
following F. nucleatum infection in CRC cells (75). Yang et al.
found that infection with F. nucleatum significantly activated the
TLR4/MyD88 pathway to upregulate the activity of NF-κB p65
and p50 inHCT116 CRC cells. Then,miR-21, an oncogenic target
miRNA in cancer, was found to be increased by F. nucleatum
through binding to NF-κB, which thereby promoted cell survival
and invasion. Inhibition of NF-κB impaired F. nucleatum-
induced CRC cell proliferation and cell invasion. Hyperactivation
of NF-κB was found in CRC tissues with high amounts of
F. nucleatum (107). NLRX1 is a member of the NLR family
that plays an important role in host innate immunity. NLRX1
was shown to negatively modulate inflammatory cytokine IL-
8 expression via the transcriptional factor NF-κB in response
to F. nucleatum infection (108). Additionally, induction of NF-
κB by F. nucleatum infection facilitated ROS generation and
production of the proinflammatory cytokines TNF-α and IL-
1β (109).

Ulcerative colitis (UC) is a major type of IBD and a
known risk factor for CRC (108). F. nucleatum was more
highly enriched in human UC tissues than in normal tissues.
Mechanistically, experimental studies from cells and animal
models have shown that F. nucleatum infection activates the
canonical NF-κB pathway through increasing phosphorylation
levels of the NF-κB subunits p65 and IκB-α. The intestinal
epithelial barrier marker ZO-1, a downstream target gene
of the NF-κB pathway, was significantly decreased following
F. nucleatum infection. Furthermore, pretreatment with human
anti-IL-17F antibody attenuated F. nucleatum-induced NF-
κB activity and intestinal inflammation, which suggests that
F. nucleatum activates the NF-κB pathway via IL-17F (110).
In addition, F. nucleatum was found to be more abundant in
the patients with Crohn’s diseases, which is another common
type of IBD. F. nucleatum infection could promote intestinal
mucosal barrier destruction during the development of Crohn’s
diseases (111). F. nucleatum is a heterogeneous species with five
proposed subspecies (ssp.), i.e., ssp. animalis, ssp. fusiforme, ssp.
nucleatum, ssp. polymorphum, and ssp. vincentii, which show the
pathogenic differences. Among the five subspecies, ssp. fusiforme
and ssp. vincentii aremore frequently associated with health while
ssp. nucleatum associated with diseases (112, 113). Adherence
and invasion are essential mechanisms for antimicrobial host
defense mechanism and induction of inflammatory response.
The invasiveness of F. nucleatum varies widely among different
strains, and has been shown as directly related to IBD disease
status (114).
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E. coli and the NF-κB Signaling Pathway
E. coli is one of the most common bacterial species that colonizes
the human GI tract. Numerous studies have identified E. coli as
a risk factor for the development of Crohn’s disease, ulcerative
colitis, and CRC. Enteropathogenic and enterohemorrhagic E.
coli use a type III secretion system (T3SS) to transport dozens
of effector proteins into host cells; these effector proteins
in turn manipulate the host inflammatory response through
activation of the NF-κB pathway (115). This bacterial pathogen
has developed various mechanisms to regulate the activation
of NF-κB. Pallett et al. found that the highly conserved non-
LEE (locus of enterocyte effacement)-encoded effector (NleF) is
responsible for nuclear translocation of the NF-κB p65 subunit
and IL-8 production (116). Sahu et al. reported that non-
pathogenic E. coli has emerged as a tumor promoter that
enhances oncogenicity through enrichment of the cancer stem
cell population. Mechanistically, internalization of E. coli leads
to the activation of NF-κB through increased phosphorylation
of the NF-κB subunit RelA/p65 and IKKα, inactivation of
IκBα, and induction of the Wnt/β-catenin pathway through
the upregulation of β-catenin and its downstream genes. Then,
NF-κB and Wnt/β-catenin synergistically promote tumorigenic
stemness traits (117). In addition, high NF-κB expression has
been demonstrated in E. coli-associated IBD patients. E. coli
strains isolated from IBD patients were found to induce the NF-
κB and TNF-α promoters in HT-29 human colonic cells (118).
Karrasch et al. determined the role of the TLR/NF-κB signaling
pathway in bacteria-induced colitis using animal models—IL-10-
deficient mice and NF-κB knock-in mice. As a result, coinfection
with the commensal bacterial strain Enterococcus faecalis led
to experimental colitis through activation of the TLR/NF-κB
signaling pathway (119). Taken together, these results show that
some E. coli strains, in which the NF-κB pathway induces chronic
inflammation, play a crucial role in colorectal carcinogenesis.

P. anaerobius and the NF-κB Signaling
Pathway
P. anaerobius is a gram-positive anaerobic bacterium that was
recently identified to be especially enriched in the stool samples
of CRC patients. Jun Yu et al. from the Chinese University
of Hong Kong recently undertook research to determine
the role of P. anaerobius and its molecular mechanism in
colorectal carcinogenesis. P. anaerobius was found to induce
the production of intracellular ROS through its interaction with
TLR2 and TLR4. As a result, total cholesterol synthesis and
the proliferation of intestinal epithelial cells were significantly
enhanced (81). Similar to other bacteria, P. anaerobius adheres
to the intestinal mucosa and encodes a virulence factor to
induce the host immune response. Putative cell wall binding
repeat 2 (PCWBR2), a P. anaerobius surface protein, interacts
with the corresponding cell surface receptor integrin α2/β1.
Subsequently, experimental data from CRC cells and APCMin/+

mice indicated that P. anaerobius challenge activated the
PI3K/AKT and NF-κB signaling pathways via phosphorylation
of the AKT and p65 NF-κB subunits. As a result, P. anaerobius
modulates the tumor immune microenvironment, including the

expansion of myeloid-derived suppressor cells, tumor-associated
macrophages and granulocytic tumor-associated neutrophils.
Cell proliferation and the proinflammatory response were
significantly increased by P. anaerobius infection, further
accelerating colorectal tumorigenesis (120).

Enterotoxigenic B. fragilis and the NF-κB
Signaling Pathway
Enterotoxigenic B. fragilis, but not non-toxigenic B. fragilis, is
associated with the development of intestinal diseases, such as
human inflammatory diarrhea and colorectal carcinogenesis.
Enterotoxigenic B. fragilis targets intestinal epithelial cells
by producing BFT. As a result, cells develop molecular
mechanisms to activate the NF-κB signaling pathway. To
explore the role of BFT in enterotoxigenic B. fragilis-triggered
tumorigenesis. Chung et al. constructed ApcMin mice colonized
with an enterotoxigenic B. fragilis strain possessing an in-frame
chromosomal deletion of bft gene. The results showed that
B. fragilis stimulated intracellular IL-17 secretion to activate
the NF-κB pathway, which in turn induced the expression
of chemokines (CXCL1, CXCL2, and CXCL5) that collectively
contributed to colonic carcinogenesis (121, 122). The cytokine
IL-8, a key downstream target gene of NF-κB, was also
significantly increased in intestinal epithelial cells treated with
active enterotoxigenic B. fragilis (123). The β-catenin and GSK3β
cellular signaling pathways are involved in NF-κB activity and IL-
8 expression in B. fragilis-infected cells (124). Host tissues recruit
inflammatory cells to induce sustained inflammation through
activation of the NF-κB signaling pathway in pathological
processes and increase the risk of CRC through aberrant
regulation of other cellular processes, such as cell proliferation
and angiogenesis.

CONCLUDING REMARKS

The gastrointestinal microbiota plays an important role in
maintaining host physiological processes. Aberration of the
microbiota might ultimately result in various diseases such as
metabolic, cardiovascular, immune, mental, and gastrointestinal
diseases or even cancer. The causal relationship between
gastrointestinal cancer and the microbiota has been gradually
validated. Indeed, multiple studies suggest that utilizing the
microbiota, especially specific bacteria, may provide novel
microbial biomarkers for prevention, diagnosis and treatment.
Currently, some clinical trials based on these microbes (e.g.,
F. nucleatum)are ongoing. Moreover, the activated NF-κB
signaling pathway is considered an important line of defense
against microbial pathogens. Abnormal and sustained activation
of NF-κB signaling contributes to malignant transformation
from inflammation to cancer. Therefore, selectively targeting
molecules of the NF-κB signaling pathway to block the
association between pathogens and NF-κB shows therapeutic
potential and benefit in cancer treatment. For example, specific
NF-κB inhibitors targeting the IKK complex have shown
promise as anticancer therapeutics (12). However, beyond the
involvement of NF-κB, the relationship between the microbiota
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and gastrointestinal carcinogenesis is very complex. Moving
forward, there is a need to explore and more deeply understand
the underlying mechanisms that link the microbiota and
host response.

In addition, molecular pathological epidemiology (MPE) that
investigate the interactive effect of some specific molecular
features and environmental factors on disease prognosis and
clinical outcome has been widely applied to cancer research (125,
126). The host genetic, diet, lifestyle and other environmental
factors, which have been closely linked with gut microbiota,
are critical for the prevention of gastrointestinal cancer.
Modifications of the western lifestyles such as high fat diet
that resulting in overweight or obesity could substantially
reduce the CRC incidence (127). Eating less salted or pickled
foods is considered to be important for prevention of GC
(128). This promising direction may help to gain new insights

into the pathogenic process, prevention and treatment of
gastrointestinal cancer.
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