OPEN

Efficacy and Safety of Radiofrequency Ablation Plus Stent Versus Stent-alone Treatments for Malignant Biliary Strictures A Systematic Review and Meta-analysis

Hayat Khizar, MD,*† Yufei Hu, MD,‡ Yanhua Wu, MD,‡ Kamran Ali, MD,§ Junaid Iqbal, MD,¶ Muhammad Zulqarnain, MD,* and Jianfeng Yang, PhD†||#

Background/Aims: Malignant biliary strictures (MBS) are very aggressive and cannot be diagnosed in the early stages due to their asymptomatic nature. Stenting the stricture area of the biliary tree is palliative treatment but has poor survival time. Radiofrequency ablation plus stent (RFA+S) have been recently used to improve the survival and stent patency time in patients with MBS. In this systematic review and meta-analysis, we tried to evaluate the efficacy and safety of radiofrequency ablation.

Materials and Methods: Study search up to December 2021 was performed in different medical databases such as PubMed, Web of Science, and Cochrane library, etc. We selected eligible studies reporting survival time, stent patency time, and adverse events in patients with MBS. We compare the outcomes of RFA+S and stent-alone treatment groups.

Results: A total of 15 studies (6 randomized controlled trials and 9 observational studies) with 1815 patients were included for meta-

Received for publication June 25, 2022; accepted October 22, 2022.

- From the Departments of *Gastroenterology, International Education College of Zhejiang Chinese Medical University, Hangzhou; †Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine; ‡Department of Gastroenterology, The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University; ||Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province; \$Dermatology, International Education College of Zhejiang Chinese Medical University; ||Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province; and #Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China.
- H.K.: wrote the original paper. Y.H.: edited and corrected the paper. Y.W. and M.Z.: carried out the literature search. K.A.: helped in language editing. J.I.: edited the images. J.Y.: provided article ideas and article review.
- Supported by grants from the Zhejiang Health Committee (2021ZH003), Hangzhou Science and Technology Commission (202004A14), and the Construction Fund of Medical Key Disciplines of Hangzhou (OO20190001).
- The authors declare that they have nothing to disclose.
- Address correspondence to: Jianfeng Yang, PhD, Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of medicine, #261 Huansha Road, Hangzhou 310006, Zhejiang Province, China (e-mail: yjf3303@zju.edu.cn).
- Supplemental Digital Content is available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's website, www.jcge. com.
- Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

DOI: 10.1097/MCG.00000000001810

analysis of which 701 patients were in RFA+S group and 1114 patients in the stent-alone group. Pooled mean difference of survival time was 2.88 months (95% CI: 1.78-3.97) and pooled mean difference of stent patency time was 2.11 months (95% CI: 0.91-3.30) and clinical success risk ratio was 1.05 (95% CI: 1.01–1.09). Risk ratios for adverse events are given; Bleeding 0.84 (95% CI: 0.34-2.11), abdominal pain 1.06 (95% CI: 0.79-1.40), pancreatitis 0.93 (95% CI: 0.43-2.01), cholangitis 1.07 (95% CI: 0.72-1.59), and stent dysfunction 0.87 (95% CI: 0.70-1.07).

Conclusions: Radiofrequency ablation is involved in increased survival and stent patency time for MBS patients. With the help of better techniques, adverse events can be limited.

Key Words: malignant biliary strictures, cholangiocarcinoma, bile duct obstruction, biliary strictures, RFA, stent, ERCP, RCTs, review, meta-analysis

(J Clin Gastroenterol 2023;57:335-345)

alignant biliary stricture (MBS) is a narrowing of the biliary tract caused by a blockage in the biliary tract. Cancers such as cholangiocarcinoma (CCA),¹ pancreatic adenocarcinoma, gallbladder carcinoma, hepatocellular carcinoma, and ampullary carcinoma are the most common causes of this blockage. Depending on where it arises, CCA can be divided into intrahepatic CCA and extrahepatic cholangiocarcinoma (eCCA). Because of the difficulty in diagnosing MBS and the fact that it is asymptomatic, the majority of MBS are unresectable at the time of diagnosis.² Stent placement and biliary drainage are palliative treatments for such patients to ensure continuous bile flow and prevent obstruction of the bile ducts. Endoscopic retrograde cholangiopancreatography (ERCP), percutaneous transhepatic cholangiodrainage, and endoscopic ultrasound-guided biliary drainage are the most common methods of placing metallic or plastic stents.^{3–5}

However, stenting has some disadvantages, including a short stent patency period and stent obstruction due to tumor growth within the mesh of the stent, which are both unwanted outcomes. It is possible to achieve local necrosis of tumor tissues using radiofrequency ablation (RFA), which is a technique that uses thermal energy. To treat bile obstruction, it is used before or after stent placement. Most energy is delivered through the intraductal way achieved by ERCP, percutaneous intraductal, or surgical means (this process has its limitations).⁶ Using RFA treatment has yielded impressive outcomes during the past few decades.^{7,8} RFA is a locoregional cancer treatment therapy in which thermal energy generated by high-frequency alternating electric current is used. Thermal energy causes burn injuries

J Clin Gastroenterol • Volume 57, Number 4, April 2023

www.jcge.com | 335

in the stricture area, thus leading to coagulate necrosis, protein denaturation, and cell desiccation.⁹ Habib Endo HPB (Boston Scientific; EMcision Ltd) and ELRA (Taewoong Medical) are 2 types of thin probe catheters used for RFA generation and delivery to the stricture area. Despite the fact that this treatment has been around for a long time, the introduction of advanced procedures, as well as careful monitoring, has demonstrated encouraging outcomes in terms of overall survival and stent patency in recent years. So it is necessary to perform a meta-analysis to evaluate a specific result. In this systematic review and meta-analysis, we looked at how well and safely MBS treatment worked.

MATERIALS AND METHODS

We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for reporting this systematic review and meta-analysis.¹⁰

Search Strategy

A search of the medical literature for ideas about MBS and RFA was conducted by 2 independent researchers. "Radiofrequency ablation," "stent," and "malignant biliary strictures" including (Cholangiocarcinoma, Pancreatic Neoplasms, Gallbladder Neoplasms, or Ampullary cancer) were the keywords we used in our search strategies. Searches were conducted in PubMed, Web of Science, and the Cochrane library up to and including December 2021. The results were only available in the English language and as full-text articles. All of the results were gathered, and the titles and abstracts that were eligible were approved (PRISMA, Fig. 1).

FIGURE 1. PRISMA flowchart of included studies. RCT indicates randomized controlled trial.

Study Selection Criteria

The following criteria were used to determine which studies were included and which were excluded.

Inclusion Criteria

Studies that met the following criteria were considered for inclusion in this analysis:

- (1) MBS are found in patients under studies (CCA, pancreatic carcinoma, gallbladder carcinoma, and ampullary carcinoma)
- (2) Strictures were caused by malignant biliary diseases that were unresectable at the time of the diagnosis.
- (3) The study compares the outcome of RFA to stent-alone therapy.
- (4) Only randomized controlled trials (RCTs) or observational studies (OS) about MBS.
- (5) Only human studies published in English language.

Exclusion Criteria

Studies that met the criteria listed below were considered ineligible:

- (1) Strictures result from benign diseases.
- (2) Duplicates, case studies, review articles, and letters were not included.
- (3) Studies that only have RFA or stent-alone outcomes (single-arm studies).
- (4) Studies that do not report results including survival time, stent patency time, and adverse events.
- (5) Studies that included <20 patients.
- (6) Studies that treated the patients with occluded stents or received RFA for second time.
- (7) Animal studies or published in other languages.
- (8) Studies performed in pediatric (age less than 18 y).

Data Extraction and Study Selection

Two authors made decisions regarding which studies should be excluded and which studies should be included, and they collected data from the studies that were chosen. We collected information from each study about the publishing year, country, study design, total number of patients, mean age of patients, method of treatment, number of patients who received either a stent-alone or an RFA+stent, procedure approach, type of stricture, final outcome, type of stent used, stent dysfunction, clinical success, the device used for RFA delivery, amount of energy and time, mean survival time, stent patency time, and adverse events. There were some different coefficients (reported survival time and stent patency time) that were all transformed into the same unit [from days to months dividing by 30 (days to months conversion)]. Each study was then subdivided into 2 groups: the RFA group (RFA) and the stent-alone group (S) (Tables 1, 2; summary of the studies that were included).

Outcome and Definitions

Our primary outcomes, which are derived from data extracted from the studies, are the pooled mean difference of survival time (defined as survival time of a patients after receiving the treatment during follow-up time or till death) and pooled mean difference of stent patency time (defined as the time interval between stent placement and stent occlusion or replacement of stent or death). The secondary outcome includes clinical success, stent dysfunction, and risk factors for adverse events such as bleeding, cholangitis, abdominal pain, and pancreatitis. In a subgroup analysis, RCT studies, and OS studies, RFA approaches using

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

References, Country	Design	No. Patients	Age (Mean)	RFA Device Stent Type	RFA Energy and Time	Clinical Success	OS Time [Median/Mean (95% CI)] (mo)	SPT (95% CD
Kallia at al 11 UK	09	DEA 22	68.01		10 W	NA	0.2 (7.74.10.51)	NA
Kallis et al, UK	03	Stant 16	60.97	SEMS	10 w	INA NA	5.5(7.74-10.51)	IN/A NIA
Wang at al 12 China	05	DEA 19	56.61	SENIS Habib	120 S	INA NA	5.15(4.4-5.6)	INA 5 0 (2 0 11 5)
wang et al, ²² China	05	KFA 18 Stant 19	50.0+	Habib	10 w	INA NA	0.1 (4.8-15.2)	3.8(2.8-11.3)
Un at al 13 China	рст	DEA 22	38.5+	SEMIS	90 S	INA NA	5.8 (4.2-10.5) 10 4 (8 12 7)	4.5 (2.4-8)
Hu et al, ¹⁵ China	RCI	RFA 32	/1.9+	Habib	/-10 W	NA	10.4 (8-12.7)	5./3 (4.8-6.6)
W 1 ¹⁴ Cl.	00	Stent 31	/1+	PS	60-90 s	NA	5 (3-7.1)	3.9 (2.6-5.2)
Wu et al, ¹⁴ China	OS	RFA 28	58.3+	Habib	10 w	NA	8.1 (/./-8.6)	8.03 (5.78-10.2)
		Stent 30	57.5+	SEMS	90 s	NA	6.97 (3.22-10.7)	4.50 (4.36-4.73)
Yang et al, ¹⁵ China	RCT	RFA 32	62+	Habib	7-10 W	31	13.2 (11.8-14.2)	6.8 (3.6-8.2)
		Stent 33	64+	PS	90 s	27	8.3 (7.3-9.3)	3.4 (2.4-6.5)
Bokemeyer et al, ¹⁶	OS	RFA 20	68+	Habib	NA	NA	11.4+1.9	NA
Germany		Stent 22	66+	PS/MS			7.37+0.87	NA
Kang et al, ¹⁷ Korea	RCT	RFA 24	73+	ELAR	7-10 W	21	8.3 (3.9-12.3)	4.4 (3.3-5.5)
		Stent 24	67	MS	120 s	20	6 (0.9-11.1)	3.9 (1.9-5.9)
Uyanik et al, ¹⁸ Turkey	OS	RFA 30	67.8+	Habib	10 W	NA	8.2 (2.82-13.52)	7.4 (1.5-13.36)
		Stent 32	65+	MS	120 s	NA	6.6 (2.26-10.9)	5.2 (1.05-9.48)
Yu et al, ¹⁹ China	OS	RFA 28	64.5	Habib	10 W	NA	7.2 (6.5-7.9)	6.6 (6.1-7.7)
,		Stent 42	64	MS	120 s	NA	5.6 (4.8-6.4)	4.9 (4.2-5.6)
Xia et al. ²⁰ China	OS	RFA 124	68+	Habib	10-12 W	115	9.5 (7.7-11.3)	NA
		Stent 496	67+	MS	60-120 s	440	61 (56-66)	NA
Kong et al ²¹ China	OS	RFA 150	62+	Habib	8-10 W	144	12 3 (11 6-13 4)	11 4+3 9
Rong et al, China	05	Stent 127	59+	MS	90-120 s	116	11.8(11.2-13.1)	7 3+2.6
Gao et al ²² China	RCT	RFA 87	68 5+	Habib	7-10 W	80	14 3 (11 9-16 7)	37 (28-45)
Suo et ui, Cinna	ner	Stent 87	67.9+	PS	90 s	79	9.2(7.1-11.2)	41(37-45)
Tomas et al ²³ Czech	RCT	REA 36	65+	Habib	10 W	NΔ	9.1(5.4-12.7)	52(0.7-12.8)
Tollias et al, ezeen	Rei	Stept 40	67+	MS	90 120 s	NA	9.1(5.7-12.7) 9.8(6.9.12.7)	18(0.8182)
Cou at al 24 China	05	DEA 64	60+	Habib	10 W	NA	12.2(11.1.16.5)	(0.0-10.2)
Gou et al, Clilla	03	Stant 71	62 -	MS	10 w	INA NA	13.2(11.1-10.3)	0.2(7.1-9.3)
Kang at al 25 Kara	DCT	DEA 15	02T 76 I		120 S	1N/A 15	0.3 (7.0-9.0)	4.3 (3.0-3.0)
Kang et al, Korea	KUI	KFA 15	/0+	ELKA	/ W	13	/.0 (2.30-12.70)	3.9 (3.21-8.6)
		Stent 15	/2+	MS	60-120 s	13	4.8 (0-10.76)	4.06 (3.7-4.42)

ELAR indicates ELAR RFA generator; Habib, Endo Habib RFA generator; MS, metal stent; NA, no information available; OS, observational study; OS Time, Overall survival time; PS, plastic stent; RCT, randomized controlled trial; RFA, radiofrequency ablation; SPT, stent patency time.

References. Country	RFA Delivery Route	Stricture Location (RFA+Stent)	Cholangitis	Pancreatitis	Bleeding	Stent Days	Abdominal Pain
Kallis et al ¹¹ UK	Endo	PC - 23 + 46	NA	NA	NA	9	NA
Kanis et al, OK	Little	1 C = 25 + 40	NA	NA	NA	14	NA
Wang et al. ¹² China	Percut	CCA = 9+9, $PC = 4+4$, $GC = 3+3$	3	NA	NA	3	NA
			0	NA	NA	10	NA
Hu et al, ¹³ China	Endo	CCA = 32 + 31	4	2	1	28	NA
			6	2	0	24	NA
Wu et al, ¹⁴ China	Percut	CCA = 28 + 30	0	NA	0	10	20
15			2	NA	3	19	18
Yang et al, ¹⁵ China	Endo	CCA = 32 + 33	2	0	0	NA	NA
P. 1. 16 C		~~	1	1	1	NA	NA
Bokemeyer et al, ¹⁰ Germany	Endo	CCA = 20 + 22	6	2	NA	NA	NA
TZ (117 TZ	F 1		0	0	NA	NA	NA
Kang et al, ¹⁷ Korea	Endo	CCA = 18+12, $PC = 4+10$, other = 2+2	1	0	NA	14	9
11	D	CCA 12117 DC 11112 AC 110	0	3	NA	11	14
Uyanik et al, ¹⁰ Turkey	Percut	CCA = 13+17, PC = 11+12, AC = 1+0,	2	INA NA	1	9	11
Vu at al ¹⁹ China	Dagaut	GC = 0 + 1, GIC = 3 + 1	4 NIA	INA NA	J NA	18	10
Yu et al, ²⁷ China	Percut	CCA = 11+10, PC = 9+14, GC = 0+12,	INA NA	INA NA	INA NA	23	4
Via at al ²⁰ China	Endo	AC = 1 + 1, BCC = 3 + 3	INA NA	INA NA	INA NA	33 NA	O NIA
Ala et al, Clillia	Elido	CCA = 79+230, GC = 12+70, HCC = 16+50, PC = 8+70, ICC = 7+27,	NA	INA NA	INA NA	NA	INA NA
Kong et al ²¹ China	Dercut	PC = 37+31 $CC = 11+8$ $CCA = 73$	1NA 23	NA 5	1NA 71	ΝA	NA 76
Kong et al, China	reicut	+62 ICC - 3 + 1 HCC - 6 + 7	16	2	36		70 47
		102, 100 = 5+1, 1100 = 0+7, I NM $-20+8$	10	2	50		47
Gao et al ²² China	Endo	CCA = 69 + 78 $AC = 18 + 9$	10	4	1	19	6
Sub et ui, China	Lindo	0011-03-10, 110-10-3	9	5	3	16	3
Tomas et al ²³ Czech	Percut	CCA = 22+23 PC = 5+8 GC = 2+5	NA	ŇĂ	ŇĂ	6	1
	1 ereut	other = $7+4$	NA	NA	NA	8	2
Gou et al. ²⁴ China	Endo	CCA = 36+42, $ICC = 7+8$, $GC = 7+7$.	NA	NA	NA	ŇA	ŇA
coulor al, china	Lindo	AC = 14 + 14	NA	NA	NA	NA	NA
Kang et al, ²⁵ Korea	Endo	CCA = 13 + 13, GC = 2 + 2	3	0	NA	NA	3
J · · · · , · · · ·			5	1	NA	NA	0

TABLE 2. Characteristics of Included Studies Continued

AC indicates adenocarcinoma; AC, ampullary carcinoma; CCA, cholangiocarcinoma; Endo, endoscopic retrograde cholangiopancreatography; GC, gallbladder cancer; GIC, gastrointestinal cancer; HCC, hepatocellular carcinoma; ICC, intrahepatic cholangiocarcinoma; LNM, lymph node metastasis; NA, no information available; OT, other types; PC, pancreatic adenocarcinoma; Percut, percutaneous cholangiography; S, stent.

endoscopic and percutaneous techniques, Habib RFA generator, and ELRA RFA generator were compared. In addition, the pooled mean difference in survival time only for eCCA patients was also calculated. the each outcome by funnel plots and each study effect was judged by removing each study one by one and see its effect on the final outcome.

Assessment of Risk of Bias

For risk of bias assessment, we applied the tool developed by the Cochrane Collaboration to determine the probability of bias.²⁶ For RCT studies, a rating of "low" indicated a low risk of bias, "high" signified a high risk, and "some concerns" indicated that the information available was insufficient to make a risk of bias determination.²⁷ Specifically, we evaluate studies based on the randomization method, missing outcome data, the timeliness of participant identification or recruitment, measuring the outcome, bias due to deviations from intended interventions, and choosing which outcomes to report. While for non-RCT studies we utilized tools and results and judge the studies according to the information given by each study. Most of OS were at moderate risk of bias studies (Risk of bias table, Supplementary Table, Supplemental Digital Content 1, http://links. lww.com/JCG/A935).

Publication Bias and Study Effect

For our meta-analysis, number of included studies is 15 so there was a risk of publication bias. For that we assessed

Statistical Analysis

The continuous variance method was used to calculate pooled standard mean differences. Because some studies reported median survival time, we can use median as a substitute for mean survival time, according to the Cochrane Handbook Guide for Meta-analysis.28 The pooled mean survival time and pooled mean stent patency time were calculated by using generic inverse variance method with the random-effects model. The dichotomous inverse variance method was used to calculate the risk ratios (RRs) for adverse events for categorical variables in this study.²⁹ The Cochrane I^2 statistics were used to estimate statistical heterogeneity. Low heterogeneity was represented by 25% to 49%, whereas moderate heterogeneity by 50% to 74%, and high heterogeneity was represented by values of 75% or >75%.³⁰ P value <0.05 was considered statistically significant (P < 0.05). The Review Manager software was used to conduct all of our statistical analysis (Rev Man 5.4, The Cochrane Collaboration).

338 | www.jcge.com

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

RESULTS

Search Outcome, Characteristic, and Assessment of Studies

After removing duplicates and unrelated studies from our search, we were able to identify 121 studies. Only 34 studies were selected for the full-text evaluation. The final analysis included 15 studies, 6 of which were RCTs^{13,15,17,22,23,25} and 9 of which were prospective OS.^{11,12,14,16,18–21,24} The remaining 19 articles were eliminated because they were review articles, missing required outcome, animal studies, and single-arm studies (Fig. 2). A total of 1815 patients were included in the analysis, among whom 701 underwent RFA with a stent and 1114 underwent stent-alone therapy procedures. Fourteen studies were published as complete articles, and one study was published as an abstract. Six RCT studies were included, with 3 being multicenter RCTs, 3 being single-center RCTs, and 9 being the prospective OS. Self-expanding metal stents were used in 12 studies, whereas the other 3 studies used plastic stents. Radiofrequency ablation) generation was carried out in 2 trials using the ELRA STAR Korean device, with energy levels ranging from 7 to 10W for 60 to 120 seconds, while the other studies used the HABIB Endo HBP UK/USA device, with energy levels ranging from 7 to 10 W for 90 to 120 seconds. There were 1105 patients with CCA, 296 patients with pancreatic cancer, 151 patients with gallbladder cancer, 58 patients with ampullury carcinoma, and 205 patients with other cancers in the group. Every study, with the exception of Kallis and colleagues, Xia and colleagues, and Yu and colleagues, describes specific adverse events. Some studies distinguish between early and late adverse events, but we only consider early adverse events for the purposes of our calculations. Only 6 studies reported clinical success percentage. There were 3 studies that did not report stent patency time and 5 studies that did not provide the number of patients who had stent occlusions/dysfunction. The median duration of follow-up ranged from 3 to 31.8 months, or till the patient's death. In RCT trials, there was no evidence of a high risk of bias. They were all low, and one of them was concerned with the possibility of bias in reporting, selection, attrition, and calculation of the results of experiments. The fact that Hu and colleagues was published as an abstract reduced the amount of materials and methods details available. In contrast, the risk of bias in OS research was examined and a report was produced. The risk of bias in the results is shown in the risk of bias table (Supplementary risk of bias Tables 1, 2, Supplemental Digital Content 1, http://links.lww.com/JCG/A935).

Primary Outcomes

Pooled Mean Survival Time

The difference in mean survival time between the RFA +S and S-alone groups in 1815 patients was 2.88 months (95% CI: 1.78-3.97), $I^2 = 77\%$, P < 0.0001. Subgroup analysis shows that RCTs comparing data from 456 patients shows a pooled mean difference for mean survival time of 4.20 months (95% CI: 2.64-5.77), $I^2 = 23\%$, P < 0.0000. Only OS studies produced data from 1359 patients, with a pooled mean survival time difference of 2.44 months (95% CI: 1.16-3.71), $I^2 = 82\%$. P = 0.0002. This indicates a statistically significant increase in survival time in the RFA+S group when compared with the S-alone group (Fig. 2A).

Pooled Mean Stent Patency

The mean difference in stent patency time between the RFA and S-only groups was 2.11 months (95% CI: 0.91-3.30), $I^2 = 84\% P = 0.0005$. Whereas for subgroup analysis between RCT and OS showed the results of pooled mean difference for stent patency time of 1.04 months (95% CI: -0.22 to 2.30), $I^2 = 55\%$, P = 0.11) and 3.04 months (95% CI: 1.79-4.29), $I^2 = 75\%$, P < 0.00001, respectively (Fig. 2B). Stent patency time data shows that there is a greater difference in patency time for OS studies compared with RCT studies.

Secondary Outcomes

Only eCCA

For eCCA, we calculated the pooled mean difference in overall survival in 859 patients, which was 4.19 months (95% CI: 3.57-4.82), $I^2 = 0\%$, P < 0.00001. For RCT studies, the mean difference in survival time was 4.64 months (95% CI: 3.35-5.94), $I^2 = 0\%$, P < 0.00001, and for OS studies, it was 4.06 months (95% CI: 3.35-4.77), $I^2 = 0\%$, P < 0.00001, showing that the mean survival time difference is significantly higher for eCCA patients undergoing RFA than stenting alone. eCCA patient's shows relatively higher survival time compared with other types of strictures (Fig. 3A).

Clinical Success

The RR for clinical success was 1.05 (95% CI: 1.01-1.09), $I^2 = 0\%$, P = 0.009, indicating that stent dysfunction was almost the same for RFA+S group compared with S-alone group, whereas in subgroup analysis shows that RR for RCT studies was 1.06 (95% CI: 0.98-1.14), $I^2 = 1\%$, P = 13, and for OS studies was 1.05 (95% CI: 1.0-1.09), $I^2 = 0\%$, P = 0.03 (Supplementary Fig. 3, Supplemental Digital Content 1, http://links.lww.com/JCG/A935).

Stent Dysfunction

The RR for stent dysfunction was 0.87 (95% CI: 0.70-1.07), $I^2 = 41\%$, P = 0.33, indicating that stent obstruction/ dysfunction incidents have no significant difference for RFA +S group compared with S-alone group. Subgroup analysis between RCT and OS showed RR of 0.91 (0.75-1.11), $I^2 = 0\%$, P = 0.35 and 0.73 (95% CI: 0.48-1.09), $I^2 = 62\%$, P = 0.13, respectively (Supplementary Fig. 4, Supplemental Digital Content 1, http://links.lww.com/JCG/A935).

Adverse Events

Bleeding. The bleeding RR was 0.84 (95% CI: 0.34-2.11), $I^2 = 30\%$, P = 0.71 indicating that the number of cases of bleeding have no difference for the RFA group and the S-alone group. RCT showed RR of 0.58 (95% CI: 0.12-2.82), $I^2 = 0\%$, P = 0.50, while OS showed RR of 0.74 (95% CI: 0.17-3.22), $I^2 = 54\%$, P = 0.69 Thus subgroup also show the same results (Fig. 3B).

Abdominal Pain. The RR for abdominal pain was 1.06 (95% CI: 0.79-1.40), $l^2 = 32\%$, P = 0.71 indicating that the number of abdominal pain occurrences is the same for both groups. While in subgroup analysis RCT and OS showed RR of 1.04 (95% CI: 0.43-2.52), $l^2 = 33\%$, P = 0.93 and 1.13 (95% CI: 0.86-1.49), $l^2 = 30\%$, P = 0.36, respectively (Fig. 4). Pancreatitis. Pancreatitis RR was 0.93 (95% CI: 0.43-2.01), $l^2 = 0\%$, P = 86 that mean the incidents of pancreatitis are almost same for RFA group and S-alone group. Whereas subgroup analysis showed the data of 0.61 (95% CI: 0.25-1.52), $l^2 = 0\%$, P = 0.29 for RCT and 2.63 (95% CI: 0.63-10.94),

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

www.jcge.com | 339

A	R	FA group		;	S group			Mean Difference		Mean Di	ifference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Rando	om, 95% Cl	
1.1.1 RCT studies												
Gao et al.	14.3	11.2608	87	9.2	9.8532	87	5.8%	5.10 [1.96, 8.24]				
Hu et al.	10.4	6.6567	32	5	5.4525	31	6.1%	5.40 [2.40, 8.40]				
Kang2 et al.	7.6	9.1011	15	4.8	8.6677	15	2.3%	2.80 [-3.56, 9.16]				
Kang et al.	8.3	10.42	24	6	12.0778	24	2.3%	2.30 [-4.08, 8.68]				
Tomas et al.	9.1	10.9354	36	9.8	9.0677	40	3.8%	-0.70 [-5.24, 3.84]				
Yang et al.	13.2	3.8831	32	8.3	2.8202	33	8.9%	4.90 [3.25, 6.55]				
Subtotal (95% CI)			226			230	29.3%	4.20 [2.64, 5.77]			-	
Heterogeneity: Tau ² = Test for overall effect:	: 0.87; Cr Z = 5.27	ni² = 6.46, (P < 0.00	df = 5 (001)	P = 0.26	5); I ² = 239	6						
1.1.2 OS studies												
Bokemeyer	11.4	1.9	20	7.37	0.87	22	10.4%	4.03 [3.12, 4.94]			-	
Gou et al.	13.2	11.2093	64	8.5	3.8023	71	6.3%	4.70 [1.81, 7.59]			— -	
Kallis et al.	9.3	3.2	23	5.15	2.3	46	9.3%	4.15 [2.68, 5.62]			-	
Kong et al.	12.3	4.3386	150	11.8	3.4168	127	10.4%	0.50 [-0.41, 1.41]			-	
Uyanik et al.	8.2	11.4954	20	6.6	12.0376	32	2.2%	1.60 [-4.94, 8.14]				
Wang et al.	6.1	2.6142	18	5.8	3.2174	18	8.3%	0.30 [-1.62, 2.22]		-	h	
Wu et al.	8.1	1.0316	28	6.97	10.0427	30	5.0%	1.13 [-2.48, 4.74]				
Xia et al.	9.5	10.1261	124	6.1	5.6676	496	8.5%	3.40 [1.55, 5.25]				
Yu et al.	7.2	1.8052	28	5.6	2.5672	42	10.2%	1.60 [0.58, 2.62]			-	
Subtotal (95% CI)			475			884	70.7%	2.44 [1.16, 3.71]			-	
Heterogeneity: Tau ² = Test for overall effect:	2.63; Ch Z = 3.75	ni² = 45.38 (P = 0.00	, df = 8 02)	(P < 0.0	00001); I²	= 82%						
Total (95% CI)			701			1114	100.0%	2.88 [1.78, 3.97]			•	
Heterogeneity: Tau ² =	2.80; Cł	ni² = 62.00	, df = 1	4 (P < 0	.00001); I	² = 77%	b				l I	
Test for overall effect:	Z = 5.14	(P < 0.00	001)		,.				-20	-10	0 10	20
Test for subgroup diffe	erences:	Chi ² = 2.9	5, df =	1 (P = 0	.09), I² = 6	6.1%				Favours [S]	Favours [RF	-A]
Р												
Б	R	FA aroup		5	S aroup			Mean Difference		Mean Di	itterence	
D Study or Subgroup	R Mean	FA group SD	Total	Mean	S group SD	Total	Weight	Mean Difference IV, Random, 95% CI		Mean Di IV, Rando	om, 95% Cl	
D Study or Subgroup 1.2.1 RCT studies	R Mean	FA group SD	Total	Mean	S group SD	Total	Weight	Mean Difference IV, Random, 95% CI		Mean Di IV, Rando	om, 95% Cl	
D Study or Subgroup 1.2.1 RCT studies Gao et al.	R Mean 3.7	FA group SD 3.7536	Total 87	Mean 4.1	S group SD 1.8768	Total	Weight	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48]		Mean Di IV, Rando	om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al.	R Mean 3.7 5.73	FA group SD 3.7536 2.5795	Total 87 32	Mean 4.1 3.9	S group SD 1.8768 3.5441	Total 87 31	Weight 11.6% 10.3%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36]		Mean Di IV, Rando	om, 95% Cl	
D Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al.	R Mean 3.7 5.73 5.9	FA group SD 3.7536 2.5795 4.8575	Total 87 32 15	Mean 4.1 3.9 4.06	S group SD 1.8768 3.5441 0.6501	Total 87 31 15	Weight 11.6% 10.3% 8.1%	Mean Difference IV, Random, 95% Cl -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32]		Mean Di IV, Rando -∎ -	ifference om, 95% Cl	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Kang et al.	R Mean 3.7 5.73 5.9 4.4	FA group SD 3.7536 2.5795 4.8575 2.605	Total 87 32 15 24	Mean 4.1 3.9 4.06 3.9	S group SD 1.8768 3.5441 0.6501 4.7364	Total 87 31 15 24	Weight 11.6% 10.3% 8.1% 8.8%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66]		Mean Di IV, Rando 	Ifference om, 95% Cl 	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Kang et al. Tomas et al.	R Mean 3.7 5.73 5.9 4.4 5.2	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998	Total 87 32 15 24 36	Mean 4.1 3.9 4.06 3.9 4.8	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072	Total 87 31 15 24 40	Weight 11.6% 10.3% 8.1% 8.8% 3.1%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22]		Mean Di IV, Rando 	merence m, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756	Total 87 32 15 24 36 32	Mean 4.1 3.9 4.06 3.9 4.8 3.4	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202	Total 87 31 15 24 40 33	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62]		Mean Di IV, Rando 	Ifterence om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% CI)	R Mean 3.7 5.73 5.9 4.4 5.2 6.8	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756	Total 87 32 15 24 36 32 226	Mean 4.1 3.9 4.06 3.9 4.8 3.4	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202	Total 87 31 15 24 40 33 230	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30]		Mean Di IV, Rando 	tifference om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; CP Z = 1.62	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ni ² = 11.10 (P = 0.11	Total 87 32 15 24 36 32 226 , df = 5	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55	Total 87 31 15 24 40 33 230 5%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30]		Mean Di IV, Rando -	om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; Ch Z = 1.62	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 hi ² = 11.10 (P = 0.11	Total 87 32 15 24 36 32 226 , df = 5	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55	Total 87 31 15 24 40 33 230 5%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30]		Mean Di IV, Rando 	om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; Cł Z = 1.62	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 bi ² = 11.10 (P = 0.11	Total 87 32 15 24 36 32 226 , df = 5	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); I ² = 58	Total 87 31 15 24 40 33 230 5%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable		Mean Di IV, Rando 	om, 95% Cl	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; CF Z = 1.62 0 8.2	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 a ¹² = 11.10 (P = 0.11 0 4.4037	Total 87 32 15 24 36 32 226 , df = 5) 0 64	Mean 4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); I ² = 55 0 2.9574	Total 87 31 15 24 40 33 230 5%	Weight 11.6% 10.3% 8.8% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18]		Mean Di IV, Rando	om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; Ch Z = 1.62 0 8.2 0	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ni ² = 11.10 (P = 0.11 0 4.4037 0	Total 87 32 15 24 36 32 226 , df = 5) 0 64 0	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3 0	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0	Total 87 31 15 24 40 33 230 5%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable		Mean Di IV, Rando 	om, 95% Cl	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al.	R Mean 3.7 5.73 5.73 4.4 5.2 6.8 1.18; Ch Z = 1.62 0 8.2 0 11.4	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ni ² = 11.10 (P = 0.11 0 4.4037 0 3.9	Total 87 32 15 24 36 32 226 , df = 5) 0 64 0 150	Mean 4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3 0 7.3	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.9574	Total 87 31 15 24 40 33 230 5% 0 71 0 71 0 127	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 11.8%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87]		Mean Di IV, Rando 	tiference om, 95% CI	
Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; Ch Z = 1.62 0 8.2 0 11.4 7.4	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ni ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005	Total 87 32 15 24 36 32 226 , df = 5) 0 64 0 150 30	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3 0 7.3 5.2	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.6574 0 2.6574 0 2.15106	Total 87 31 15 24 40 33 230 5% 0 71 0 127 32	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 10.8% 11.8% 2.4%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12]		Mean Di IV, Rando 	tiference om, 95% CI	
D Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wang et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; Cr Z = 1.62 0 8.2 0 11.4 7.4 5.8	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 nj ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005 6.0327	Total 87 32 15 24 32 226 , df = 5) 0 64 0 150 30 18	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 4.3 0 7.3 5.2 4.5	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); I ² = 55 0 2.9574 0 2.6 11.5106 4.2229	Total 87 31 15 24 40 33 230 5% 0 71 0 127 32 18	Weight 11.6% 10.3% 8.8% 3.1% 6.5% 48.4% 10.8% 11.8% 2.4% 6.2%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70]		Mean Di IV, Rando 	tterence om, 95% CI	
D Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wang et al. Wu et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 : 1.18; CH Z = 1.62 0 8.2 0 11.4 7.4 5.8 8.03	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 13298 8.8756 13298 0 4.4037 0 3.9 15.8005 6.0327 5.8026	Total 87 32 15 24 36 32 226 0 0 64 0 150 0 0 150 0 0 8 8 28	4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3 0 7.3 5.2 4.5 4.56	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); I ² = 55 0 2.9574 0 2.9574 0 2.6 11.5106 4.2229 0.5356	Total 87 31 15 24 40 33 230 5% 0 71 0 127 32 218 30	Weight 11.6% 10.3% 8.1% 6.5% 48.4% 10.8% 11.8% 2.4% 6.2% 8.8%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63]		Mean Di IV, Rando 	tterence om, 95% CI	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wu et al. Xia et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 4.4 5.2 6.8 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 $ni^2 = 11.10$ (P = 0.11) (P = 0.11) 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0	Total 87 32 15 24 36 32 226 0 6 4 0 150 300 188 28 0 0	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.56 \\ 0 \\ 0 \end{array}$	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); I ² = 55 0 2.9574 0 2.9574 0 2.65 11.5106 4.2229 0.5356 0	Total 87 31 15 24 40 33 230 71 0 127 32 18 30 0 0 0 0 0 0 0 0 0 0 0 0 0	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 11.8% 2.4% 6.2% 8.8%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable		Mean Di IV, Rando 	ifference om, 95% Cl	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Kang et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wang et al. Wu et al. Yia et al. Yu et al.	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 1.18; Ch Z = 1.62 0 8.2 0 11.4 7.4 5.8 8.03 0 6.6	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ai ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895	Total 87 32 15 24 36 32 226 0 6 4 0 150 300 18 28 0 28 0 28 0 28 0 24 0 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.5 \\ 4.5 \\ 0 \\ 4.9 \end{array}$	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.9574 0 2.9574 0 2.9574 0 2.95756 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 2.9577 0 0 2.9577 0 0 0 2.9577 0 0 0 2.9577 0 0 0 0 2.9576 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Total 87 31 15 24 40 33 230 3% 0 0 71 0 127 32 18 30 0 42	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53]		Mean Di IV, Rando 	ifference om, 95% CI	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Warg et al. Wu et al. Xia et al. Yu et al. Subtotal (95% CI)	$\begin{array}{c} \textbf{R} \\ \textbf{Mean} \\ \hline 3.7 \\ 5.73 \\ 5.9 \\ 4.4 \\ 5.2 \\ 6.8 \\ 1.18; Ch \\ Z = 1.62 \\ 0 \\ 8.2 \\ 0 \\ 11.4 \\ 7.4 \\ 5.8 \\ 8.03 \\ 0 \\ 6.6 \\ \end{array}$	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ai ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895	Total 877 322 15 24 36 32 226 0 0 64 0 150 300 18 28 0 0 28 318	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.56 \\ 0 \\ 4.9 \end{array}$	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.65 11.5106 4.2229 0.5356 0 2.2463	Total 87 31 15 24 40 33 230 5% 0 71 0 127 32 18 30 0 42 320 320	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7% 51.6%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53] 3.04 [1.79, 4.29]		Mean Di IV, Rando 	therence om, 95% CI	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wu et al. Xia et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	$\begin{array}{c} \textbf{R} \\ \textbf{Mean} \\ \hline 3.7 \\ 5.73 \\ 5.9 \\ 4.4 \\ 5.2 \\ 6.8 \\ 1.18; Ch \\ Z = 1.62 \\ \hline 0 \\ 8.2 \\ 0 \\ 11.4 \\ 7.4 \\ 5.8 \\ 8.03 \\ 0 \\ 6.6 \\ 1.43; Ch \\ Z = 4.78 \\ \end{array}$	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ai ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895 bi ² = 20.14 (P < 0.00	Total 87 32 215 24 36 32 226 0 64 4 0 0 150 30 18 28 0 0 28 318 318 318 319 30 30 30 32 32 32 32 32 32 32 32 32 32	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.56 \\ 0 \\ 4.9 \\ (P = 0.0 \\ 0 \\ (P = 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.65 11.5106 4.2229 0.5356 0 2.2463 001); l ² = 7	Total 87 31 15 24 40 33 230 5% 0 0 127 32 18 30 0 42 320 5%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7% 51.6%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53] 3.04 [1.79, 4.29]		Mean Di IV, Rando 	therence om, 95% CI	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Warg et al. Yu et al. Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	$\begin{array}{c} \textbf{R} \\ \textbf{Mean} \\ \hline 3.7 \\ 5.73 \\ 5.9 \\ 4.4 \\ 5.2 \\ 6.8 \\ 1.18; Ch \\ Z = 1.62 \\ 0 \\ 8.2 \\ 0 \\ 11.4 \\ 7.4 \\ 5.8 \\ 8.03 \\ 0 \\ 6.6 \\ 1.43; Ch \\ Z = 4.78 \\ \end{array}$	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 ai ² = 11.10 (P = 0.11 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895 ai ² = 20.14 (P < 0.00	Total 877 322 15 24 36 322 226 0 64 0 150 300 18 28 0 28 318 0 45 50 15 50 15 15 15 15 15 15 15 15 15 15	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.56 \\ 0 \\ 4.9 \\ (P = 0.0 \\ 0 \\ (P = 0.0 \\ 0 \\ 0 \\ 0 \\ 1.3 \\ 0 \\ 0 \\ 1.3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1.3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.65 11.5106 4.2229 0.5356 0 2.2463 001); l ² = 7	Total 87 31 15 24 40 33 230 5% 0 127 32 18 30 0 42 320 55%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7% 51.6%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53] 3.04 [1.79, 4.29]		Mean Di IV, Rando 	ifference om, 95% CI	
D Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang2 et al. Tomas et al. Yang et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Wu et al. Xia et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	R Mean 3.7 5.73 5.9 4.4 5.2 6.8 1.18; Ch $Z = 1.6208.2011.47.45.88.0306.61.143; ChZ = 4.783.00; Ch$	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 13.2998 8.8756 13.2998 0 4.4037 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895 $hi^2 = 20.14$ (P < 0.00 $hi^2 = 70.08$	Total 877 322 24 36 32 226 0 0 64 4 0 0 150 300 18 28 0 0 28 318 318 315 544 4 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} \text{Mean} \\ 4.1 \\ 3.9 \\ 4.06 \\ 3.9 \\ 4.8 \\ 3.4 \\ (P = 0.0 \\ 0 \\ 4.3 \\ 0 \\ 7.3 \\ 5.2 \\ 4.5 \\ 4.56 \\ 0 \\ 4.9 \\ (P = 0.0 \\ 1 (P < 0 \\ 1 (P < 0 \\ 0 \\ 1 (P < 0 \\ 0 \\ 1 (P < 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.9574 0 2.66 11.5106 4.2229 0.5356 0 2.2463 001); l ² = 7	Total 87 31 15 24 40 33 230 3% 0 127 32 18 300 0 42 320 55% 550 2 = 84%	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7% 51.6%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53] 3.04 [1.79, 4.29]	+	Mean Di IV, Rando 	<pre>interence com, 95% Cl </pre>	
B Study or Subgroup 1.2.1 RCT studies Gao et al. Hu et al. Kang 2 et al. Tomas et al. Tomas et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: 1.2.2 OS studies Bokemeyer Gou et al. Kallis et al. Kong et al. Uyanik et al. Warg et al. Wu et al. Subtotal (95% Cl) Heterogeneity: Tau ² = Test for overall effect: Total (95% Cl) Heterogeneity: Tau ² = Test for overall effect:	$\begin{array}{c} \textbf{R} \\ \textbf{Mean} \\ \hline 3.7 \\ 5.73 \\ 5.9 \\ 4.4 \\ 5.2 \\ 6.8 \\ 1.18; Ch \\ Z = 1.62 \\ \hline 0 \\ 8.2 \\ 0 \\ 11.4 \\ 7.4 \\ 5.8 \\ 8.03 \\ 0 \\ 6.6 \\ 1.43; Ch \\ Z = 4.78 \\ \hline 3.00; Ch \\ Z = 3.46 \\ \hline \end{array}$	FA group SD 3.7536 2.5795 4.8575 2.605 13.2998 8.8756 13.2998 8.8756 13.2998 0 4.4037 0 4.4037 0 3.9 15.8005 6.0327 5.8026 0 1.2895 12.995 12.995	Total 877 322 24 36 32 226 , df = 5) 0 0 64 4 0 150 300 18 28 0 0 28 318 , df = 5 001) 544 4, df = 5 001 55 55 56 56 56 56 56 56 56 56	Mean 4.1 3.9 4.06 3.9 4.8 3.4 (P = 0.0 0 4.3 0 4.3 0 4.5 4.56 0 4.9 (P = 0.0 1 (P < 0	S group SD 1.8768 3.5441 0.6501 4.7364 12.5072 2.8202 05); l ² = 55 0 2.9574 0 2.65 11.5106 4.2229 0.5356 0 2.2463 001); l ² = 7	Total 87 31 15 24 40 33 230 3% 0 71 0 127 32 300 42 320 75% 550	Weight 11.6% 10.3% 8.1% 8.8% 3.1% 6.5% 48.4% 10.8% 11.8% 2.4% 6.2% 8.8% 11.7% 51.6%	Mean Difference IV, Random, 95% CI -0.40 [-1.28, 0.48] 1.83 [0.30, 3.36] 1.84 [-0.64, 4.32] 0.50 [-1.66, 2.66] 0.40 [-5.42, 6.22] 3.40 [0.18, 6.62] 1.04 [-0.22, 2.30] Not estimable 3.90 [2.62, 5.18] Not estimable 4.10 [3.33, 4.87] 2.20 [-4.72, 9.12] 1.30 [-2.10, 4.70] 3.47 [1.31, 5.63] Not estimable 1.70 [0.87, 2.53] 3.04 [1.79, 4.29]	+	Mean Di IV, Rando	therence pm, 95% CI 	+

FIGURE 2. A, Forest plot of pooled mean difference of overall survival. B, Forest plot of pooled mean difference of stent patency. OS indicates observational study; RCT, randomized controlled trial; RFA, radiofrequency ablation; S, stent-alone.

 $I^2 = 0\%$, P = 0.18 for OS. This mean pancreatitis is higher in OS studies compared with RCT studies but this difference is not significantly statistical (Supplementary Fig. 1, Supplemental Digital Content 1, http://links.lww.com/JCG/ A935).

Cholangitis. RR for cholangitis was 1.07 (95% CI: 0.72-1.59), $l^2 = 2\%$, P = 0.75, that mean the number of cases of

cholangitis for S-alone also same with the RFA+S group. Subgroups of RCT and OS studies showed data of 0.92 (95% CI: 0.52-1.62), $I^2 = 0\%$, P = 0.76 and 1.33 (95% CI: 0.72-1.59), $I^2 = 40\%$, P = 0.59, respectively. Statistically, there is no difference of RR between the groups (Supplementary Fig. 2, Supplemental Digital Content 1, http://links.lww.com/JCG/A935).

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

Α	R	FA grou	р		S group			Mean Difference		Mean	Difference	
Study or Subgroup	Mean	SD	Total	Mean	SE) Total	Weight	IV, Random, 95% C	1	IV, Rar	idom, 95% Cl	
1.3.1 RCT studies												
Gao et al.	13.3	12.9045	69	9.2	8.8706	5 78	3.0%	4.10 [0.47, 7.73]				
Hu et al.	10.4	6.6567	32	5	5.4525	5 31	4.3%	5.40 [2.40, 8.40]				
Kang2 et al.	7.6	8.3403	13	4.8	7.9432	2 13	1.0%	2.80 [-3.46, 9.06]		-		
Tomas et al.	12.3	14.8858	22	12.3	9.0188	3 23	0.7%	0.00 [-7.23, 7.23]				
Yang et al. Subtotal (95% CI)	13.2	3.8831	32 168	8.3	2.8202	2 33 178	14.2% 23.2%	4.90 [3.25, 6.55] 4.64 [3.35, 5.94]			•	
Heterogeneity: Tau ² = Test for overall effect:	0.00; Cł Z = 7.04	ni² = 2.34 l (P < 0.00	, df = 4 0001)	(P = 0.6	7); l ² = 09	%						
1.3.2 OS studies												
Bokemeyer	11.4	1.9	20	7.37	0.87	22	47.1%	4.03 [3.12, 4.94]			=	
Gou et al.	12.11	5.3495	36	7.6	5.1344	42	7.1%	4.51 [2.17, 6.85]				
Wu et al.	8.1	1.0316	28	6.97	10.0427	30	3.0%	1.13 [-2.48, 4.74]			<u> </u>	
Xia et al.	11.3	4.911	79	6.9	7.3122	2 256	19.7%	4.40 [2.99, 5.81]				
Subtotal (95% CI)			163	(D 0 4	1) 12 00	350	76.8%	4.06 [3.35, 4.77]			•	
Heterogeneity: 1 au ² = Test for overall effect:	0.00; Cr Z = 11.1	וו² = 2.90 8 (P < 0.1)	, df = 3 00001)	(P = 0.4	1); I ² = 09	%						
Total (95% CI)			331			528	100.0%	4.19 [3.57, 4.82]			•	
Heterogeneity: Tau ² =	0.00; Cł	ni² = 5.85	df = 8	(P = 0.6	6); I ² = 0	%			+		+ +	+
Test for overall effect: Test for subgroup diffe	Z = 13.1 erences:	9 (P < 0.) Chi ² = 0.0	00001) 61, df =	1 (P = 0).44), l² =	0%			-20	-10 Favours [S]	0 10 Favours [F	20 RFA]
B		RFA		s			1	Risk Ratio		Risk	Ratio	
Study or Subgrou	p Ev	vents T	otal E	Events	Total	Weight	t IV, R	andom, 95% Cl		IV, Rando	om, 95% Cl	
3.4.1 RCT studies												
Gao et al.		1	87	3	87	12.8%	6 0	.33 [0.04, 3.14]				
Hu et al.		1	32	0	31	7.3%	2.9	1 [0.12, 68.81]			•	
Kang2 et al.		0	0	0	0			Not estimable				
Kang et al.		0	0	0	0			Not estimable				
Tomas et al.		0	0	0	0			Not estimable				
Yang et al		Ő	32	1	33	7 3%	5 0	34 [0 01 8 13]				
Subtotal (95% CI)		Ū,	151	•	151	27.4%	δ. 0.	58 [0.12, 2.82]				
Total events		2		4				··· · ···· ·				
Heterogeneity: Tau Test for overall effe	² = 0.00 ct: Z = (–); Chi² = 0.68 (P =	1.34, c = 0.50)	if = 2 (F	P = 0.51)); l² = 0º	%					
3.4.2 OS studies												
Bokemeyer		0	0	0	0			Not estimable				
Gou et al.		0	0	0	0			Not estimable				
Kallis et al.		0	0	0	0			Not estimable				
Kong et al.		71	150	36	127	51.1%	5 1	.67 [1.21, 2.31]			-∰-	
Uyanik et al.		1	30	3	32	13.1%	5 0	.36 [0.04, 3.23]	_		<u> </u>	
Wang et al.		0	0	0	0			Not estimable				
Wu et al.		0	28	3	30	8.4%	5 0	.15 [0.01, 2.83] 🗕 🕂			<u> </u>	
Xia et al.		0	0	0	0			Not estimable				
Yu et al.		0	0	0	0			Not estimable				
Subtotal (95% CI)			208	2	189	72.6%	60.	74 [0.17, 3.22]				
Total events		72		42								
Heterogeneity: Tau	² = 0.96	; Chi² =	4.32. c	lf = 2 (F	$P = 0.12^{\circ}$): ² = 54	4%					
Test for overall effe	ct: Z = (0.40 (P =	= 0.69)	- (•	5 E ,	,,						
Total (95% CI)		;	359		340	100.0%	6 0.	84 [0.34, 2.11]				
Total events		74		46								
Heterogeneity: Tau	² = 0.40	; Chi² =	7.13, c	lf = 5 (F	P = 0.21); I ² = 30	0%	⊢			l	
Test for overall effe	ct: Z = (0.37 (P =	= 0.71)	- (•		, ,	-	0.01		0.1	1 10	100
Test for subgroup d	lifferenc	ces: Chi²	= 0.05	5, df = 1	(P = 0.8	32), I² =	0%		Favo	ours [RFA]	Favours	[S]

FIGURE 3. A, Forest plot of pooled mean difference of survival time for cholangiocarcinoma. B, Forest plot of risk ratio for bleeding. OS indicates observational study; RCT, randomized controlled trial; RFA, radiofrequency ablation; S, stent-alone.

Endoscopic Versus Percutaneous Approach

The subgroup analysis between endoscopic and percutaneous approaches for RFA delivery reveals that the endoscopic approach has a pooled mean difference of survival time of 4.18 months (95% CI: 3.55-4.80), $I^2 = 0\%$, P < 0.00001. Whereas the percutaneous RFA approach has a mean difference survival time of 1.37 months (95% CI: 0.22-2.53), $I^2 = 56\%$, P = 0.02. This mean endoscopic approach has a longer mean survival duration than the percutaneous technique (Fig. 5A). Patients who received RFA through the Habib device had a survival difference of 4.21 months (95% CI: 3.58-4.83), $I^2 = 0\%$, P < 0.00001,

Copyright \bigcirc 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

www.jcge.com | 341

	RFA	۸.	S			Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	IV, Random, 95% Cl		IV, Random, 95% CI	
3.3.1 RCT studies									
Gao et al.	6	87	3	87	4.0%	2.00 [0.52, 7.74]			
Hu et al.	0	0	0	0		Not estimable			
Kang2 et al.	3	15	0	15	1.0%	7.00 [0.39, 124.83]			
Kang et al.	9	24	14	24	14.5%	0.64 [0.35, 1.19]			
Tomas et al.	1	36	2	40	1.4%	0.56 [0.05, 5.87]			
Yang et al.	0	0	0	0		Not estimable			
Subtotal (95% CI)		162		166	21.0%	1.04 [0.43, 2.52]		\bullet	
Total events	19		19						
Heterogeneity: Tau ² = 0	0.28; Chi ²	= 4.50	, df = 3 (F	P = 0.21	l); l² = 33%				
Test for overall effect: 2	Z = 0.09 (P = 0.9	3)						
3.3.2 OS studies									
Bokemever	0	0	0	0		Not estimable			
Gou et al.	0	0	0	0		Not estimable			
Kallis et al.	0	0	0	0		Not estimable			
Kong et al.	76	150	47	127	32.0%	1.37 [1.04, 1.81]			
Uvanik et al.	11	30	16	32	15.7%	0.73 [0.41, 1.32]			
Wang et al.	0	0	0	0		Not estimable			
Wu et al.	20	28	18	30	25.6%	1.19 [0.82, 1.73]			
Xia et al.	0	0	0	0		Not estimable			
Yu et al.	4	28	8	42	5.9%	0.75 [0.25, 2.26]			
Subtotal (95% CI)		236		231	79.0%	1.13 [0.86, 1.49]		•	
Total events	111		89						
Heterogeneity: Tau ² = 0	0.02; Chi ²	= 4.30	, df = 3 (F	P = 0.23	3); l ² = 30%				
Test for overall effect: 2	Z = 0.91 (P = 0.3	6)						
Total (95% CI)		398		397	100.0%	1.06 [0.79, 1.40]			
Total events	130		108					ſ	
Heterogeneity: $Tau^2 = 1$	0.05 [.] Chi ²	: = 10 3	4 df = 7 i	(P = 0.1)	$ 7\rangle \cdot ^2 = 32^{\circ}$	6	⊢−−−+		└─── ┤
Test for overall effect: 2	7 = 0 37 (P = 0.7	1, <u>3</u> , <i>- 7</i> , 1)	. 0.1	,, . = 02 /	C	.01 0.	1 1 1	0 100
Test for subgroup diffe	rences: C	hi ² = 0.	03. df = 1	(P = 0	.86). l ² = 0%	6	Favours [exp	perimental] Favours	[control]

FIGURE 4. Forest plot of risk ratio of abdominal pain. OS indicates observational study; RCT, randomized controlled trial; RFA, radiofrequency ablation; S, stent-alone.

whereas patients who received RFA through the ELAR RFA device had a survival difference of 2.55 months (95% CI: -1.95 to 7.06), $I^2 = 0\%$, P = 0.27 according to the comparison of the Habib RFA device and the ELRA RFA device. That mean the patients using Habib RFA device has a significantly longer mean survival time than the ELRA device (Fig. 5).

Plastic Stent Versus Metal Stent

Plastic stents was used in 3 studies showed pooled mean stent patency time of 1.24 months (95% CI: -0.87 to 3.36), $I^2 = 80\%$, P = 0.25 that is statistically insignificant. While metal stent used in 9 studies showed stent patency of 2.54 months (95% CI: 1.44-3.65), $I^2 = 70\%$, P < 0.00001. This means metal stents shows more stent patency time compared with plastic stent (Supplementary Fig. 5, Supplemental Digital Content 1, http://links.lww.com/JCG/A935).

Survival Rate

The 9-month survival rate for the RFA group was 87.5%, compared with 24.2% for the S-alone group, according to Yang and colleagues, while Thomas and colleagues have reported survival rates of 52.5% and 57.5%, and Gou and colleagues, have reported survival rates of 81.3% and 47.9% for the RFA and S-only groups, respectively. Other studies did not report the survival rate.

Publication Bias and Study Effect

Publication bias for our meta-analysis was performed by funnel plot and data Egger test. Funnel plot distribution shows that there was no risk of publication bias as all funnel plots were symmetrical. We judged every study's effect on final outcome by removing each study one by one but the final outcome was almost similar. Thus we concluded that no study has special effect on the final outcome that may lead to publication bias (Supplementary funnel plots 1–11, Supplemental Digital Content 1, http://links.lww.com/JCG/ A935).

DISCUSSION

MBS are rare diseases that show poor clinical outcomes and a high mortality rate. This is due to the fact that the diagnosis is made at an advanced stage. Because of the asymptomatic character of the disease, we are unable to diagnose it at an early stage. Surgical resection of the stricture area is the most effective curative therapy available for this condition. However, the majority of MBS patients are unable to undergo surgical resection because they are either unresectable or have poor health conditions (elderly patients cannot be operated on). Stents of various types, compositions, designs, and sizes have been developed, but stenting does not appear to improve survival time; however, stenting may result in slightly longer stent patency, particularly for large-diameter stents.³¹ Researchers have developed new treatment options for advanced MBS, including

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

A	RFA		S				Mean Difference	Mean Difference					
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Random, 95% Cl			
2.2.1 Habib RFA gen	erator												
Gou et al.	13.2	8.407	64	8.5	3.8023	71	14.5%	4.70 [2.46, 6.94]			-		
Kong et al.	12.3	4.3386	150	11.8	3.4168	127	26.8%	0.50 [-0.41, 1.41]			•		
Tomas et al.	9.1	10.9354	36	9.8	9.0677	40	5.4%	-0.70 [-5.24, 3.84]		_	-	_	
Uyanik et al.	8.2	14.4079	30	6.6	12.0376	32	2.8%	1.60 [-5.03, 8.23]		_	-		
Wang et al.	6.1	2.6142	18	5.8	3.2174	18	17.1%	0.30 [-1.62, 2.22]			-		
Wu et al.	8.1	1.0316	28	6.97	10.0427	30	7.7%	1.13 [-2.48, 4.74]					
Yu et al.	7.2	1.8052	28	5.6	2.5672	42	25.7%	1.60 [0.58, 2.62]			-		
Subtotal (95% CI)			354			360	100.0%	1.37 [0.22, 2.53]			•		
Heterogeneity: Tau ² =	1.07; Cł	ni² = 13.73	, df = 6	6 (P = 0.0	03); l² = 56	5%							
Test for overall effect:	Z = 2.34	(P = 0.02)										
Total (95% CI)			354			360	100.0%	1.37 [0.22, 2.53]			•		
Heterogeneity: Tau ² =	1.07; Cl	ni² = 13.73	, df = 6	(P = 0.0	03); l² = 56	5%			+		-		-+-
Test for overall effect:	Z = 2.34	(P = 0.02)		,.				-20	-10	0	10	20
Test for subgroup diffe	erences:	Not applic	able							Favours [S]		Favours [RFA]	
D													
В		RFA			S			Mean Difference		Mear	n Differ	rence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Ra	ndom,	95% CI	
2.1.1 Habib RFA gen	erator												
Bokemeyer	11.4	1.9	20	7.37	0.87	22	46.7%	4.03 [3.12, 4.94]					
Gao et al.	14.3	11.2608	87	9.2	9.8532	87	3.9%	5.10 [1.96, 8.24]			-		
Hu et al.	10.4	6.6567	32	5	5.4525	31	4.3%	5.40 [2.40, 8.40]			-		
Kallis et al.	9.3	3.2	23	5.15	2.3	46	17.9%	4.15 [2.68, 5.62]			-		
Xia et al.	9.5	10.1261	124	6.1	5.6676	496	11.3%	3.40 [1.55, 5.25]				-	
Yang et al.	13.2	3.8831	32	8.3	2.8202	33	14.1%	4.90 [3.25, 6.55]					
Subtotal (95% CI)			318			715	98.1%	4.21 [3.58, 4.83]				•	
Heterogeneity: Tau ² =	0.00; Cł	ni² = 2.47,	df = 5 ((P = 0.78	8); I² = 0%								
Test for overall effect:	Z = 13.1	6 (P < 0.0	0001)										
2.1.2 ELAR RFA gen	erator												
Kang2 et al.	7.6	9.1011	15	4.8	8.6677	15	1.0%	2.80 [-3.56, 9.16]					
Kang et al.	8.3	10.42	24	6	12.0778	24	0.9%	2.30 [-4.08, 8.68]		-	-		
Subtotal (95% CI)			39			39	1.9%	2.55 [-1.95, 7.06]					
Heterogeneity: Tau ² =	0.00; Cl	ni² = 0.01,	df = 1 ((P = 0.9)	1); I² = 0%								
Test for overall effect:	Z = 1.11	(P = 0.27)										
Total (95% CI)			357			754	100.0%	4.18 [3.55, 4.80]				•	
Heterogeneity: Tau ² =	0.00: CI	$1i^2 = 2.99$	df = 7 ((P = 0.8)	9): l² = 0%						_		—
Test for overall effect:	Z = 13.1	8 (P < 0.0	0001		-,,. 570				-20	-10	0	10	20
Test for subgroup diffe	erences	$Chi^2 = 0.5$	1 df =	1(P = 0)	48) l ² = ()%				Favours [S]		Favours [RFA]	

FIGURE 5. Forest plot of pooled mean difference of overall survival for endoscopic approach (A) and percutaneous approach (B). RFA indicates radiofrequency ablation; S, stent-alone.

photodynamic therapy and RFA, to provide palliative care. But efficacy and safety of RFA for MBS is not clear yet.

Through this meta-analysis and systematic review, we attempted to investigate the clinical results of RFA therapy and compare them to those of stenting alone. The findings are encouraging, pooled mean difference survival time significantly is longer in the RFA group when compared with the S-alone group in the study. In addition, the RFA+S group had a longer stent patency time. The survival benefits of the RFA treatment group can be demonstrated by its ability to relieve biliary obstruction and prevent recurrent cholangitis, the 2 leading causes of mortality. Interestingly, the stent patency duration in Gao and colleagues was longer in the S-alone group than in the RFA+S group, while the overall survival time in the RFA+S group was longer than in the S-alone group. In contrast, other studies reported comparatively longer mean survival time and stent patency time for the RFA+S group than the S-alone group. Thomas and colleagues reported no significant difference in mean survival and stent patency time. Yang and colleagues, Gou and colleagues, and Kong and colleagues reported a stent patency time difference of > 3.4 months, comparatively much higher than other studies. In the same way in OS,

Kong and colleagues, Gou and colleagues, and Wu and colleagues reported comparatively higher mean difference in stent patency time that have significantly contributed to final outcome.

In other meta-analyses, the outcome of RFA+S treatment for MBS patients is compared with that of S-alone treatment. According to the findings of a meta-analysis published by Zheng et al,³² RFA is both safe and effective for the treatment of malignant biliary obstruction (MBO). However, there were significant concerns regarding the reliability of the included study. Another meta-analysis, conducted by Sofi et al,³³ evaluated the results of 9 different studies and found that RFA is associated with increased survival as well as stent patency time. Mohan et al³⁴ revealed the findings of a network analysis that included 55 studies on photodynamic therapy, RFA, and S-alone for the treatment of MBS. The results suggest that RFA combined with a stent is preferable to a stent alone. Another metaanalysis by Cha et al,³⁵ which consisted of 8 studies and included 420 patients, demonstrated that RFA therapy is involved in the advantages to survival, but it showed no influence on the stent patency time. It is possible that this is because some of the studies that were included in the

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

meta-analysis did not describe the patency time for RFA. A recent meta-analysis that included 19 studies (3 RCT and 16 OS) suggests that RFA is associated with the improved survival and stent patency time of patients with MBO.³⁶ Another meta-analysis conducted by de Jong et al.³⁷ which included 9 articles and included a total of 511 patients with unresectable perihilar CCA, found that RFA treatment showed promising outcomes to improve patients' survival times. In their study, Song et al.³⁸ showed the results of a Bayesian network meta-analysis of 33 trials with a total of 2974 patients. The results showed that RFA combined biliary stent is an effective and safe local palliative therapy for patients with unresectable MBO.

A large number of additional prospective and retrospective trials have also demonstrated the advantages of RFA therapy for stent patency. According to Sharaiha and colleagues,^{39,40} the RFA+S group had a longer overall survival time and a longer stent patency duration than the S-only group, based on their reported data of 64 patients. In another study, Cui et al⁴¹ found that while survival time was nearly the same between the RFA+S and S-only groups, stent patency time was considerably longer in the RFA+S group.

There were 1105 patients with CCA (extrahepatic distal/ hiliar CCA) who participated in this study. According to our subgroup analysis, the survival time for eCCA is much longer than the survival time for other kinds of carcinomas. As a result, it is possible that this is the most important factor influencing total survival time in the studies we assessed. On the list, there were 296 with pancreatic cancer, 151 with gallbladder cancer, 58 patients with ampullary carcinoma, and 205 with various malignancies combined. These people, who had various forms of cancer, may have had an impact on the results of their respective research. Stent patency time was not considerably higher in these trials since patients were returned for stent replacement after a defined time interval of \sim 3 to 6 months. So, from all the data, we can conclude that RFA had a significant impact on improving survival time and enhancing stent patency time. Different studies for other types of tumors treated by the RFA therapy process also supported this theory. Hansler et al⁴² described the method by which the RFA group's survival time was prolonged. A significant increase in the tumor-specific catalytic activity of CD8 (+) T cells was seen after treatment with RFA, suggesting that RFA may have a role in antitumor effects, since CD8 (+) T cells are engaged in the cytotoxicity of malignant cells in the condition of hepatocellular carcinoma. den Brok et al43 reported that the generation of antitumor immunity during in situ tumor elimination results in the activation of the immunity antigen.³ Gao and colleagues a maximum median depth of 4 mm in the bile duct has been shown to be useful in decreasing tumor volume, resulting in the proliferation of malignant cells being delayed. Immune suppression is reduced by the modulation of the circulatory system, immune cells, and cytokines, which may result in enhanced patient survival.

For the adverse events of the procedures, there were no perioperative severe or postoperative adverse events in any of the enrolled studies except Kang and colleagues reported a case of cholangitis related to septic shock resulting in death, and Gao and colleagues reported a case of liver abscess. Cholangitis, pancreatitis, cholecystitis, hemorrhage, and abdominal pain are some of the other mild to moderate side effects that might occur. Gao and colleagues found that 7 of 9 instances of cholecystitis in their study were in individuals with hilar CCA. All of these adverse occurrences were addressed in a timely and effective manner. In their study, Tal et al⁴⁴ found that 2 people died as a result of hemobilia. It recommended the use of self-expanding metal stents rather than plastic stents following the delivery of RFA. Our analysis, on the other hand, did not uncover any instances of hemobilia.

To overcome and reduce the severity of these adverse events, excellent specialist skills are necessary. According to Yang and colleagues, rectal indomethacin (100 mg) was administered before ERCP to avoid pancreatitis, and antibiotics such as quinolones or cephalosporins were administered to all patients 1 hour before RFA to prevent bacterial infection. To avoid post-ERCP pancreatitis, Gao and colleagues applied a prophylactic pancreatic duct stent to block the pancreatic duct. There have been several studies that have demonstrated the significant impact of RFA therapy for CCA. Our study has certain limitations, such as the fact that only 15 articles were included in our systematic review and meta-analysis. Only 6 RCTs involving a total of 456 patients were reported. These investigations were carried out with a high level of proficiency. With the exception of Thomas and colleagues, Wang and colleagues, and Kong and colleagues, all investigations revealed that RFA had nearly the same impact. According to stent types, Yang and colleagues, Gao and colleagues, and Hu and colleagues used PS, but other investigations used MS; it is possible that this had an impact on the final conclusion. With the exception of Bokemeyer and colleagues, Kallis and colleagues, and Xia and colleagues, who did not provide stent patency time, all research reported pooled survival and stent patency time.

CONCLUSIONS

All of the data we evaluated from 6 RCTs and 9 prospective studies demonstrated that RFA results in a marked improvement in both survival and stent patency. When combined with sound expertise, this has the potential to produce even greater outcomes.

REFERENCES

- McCarty TR, Rustagi T. New indications for endoscopic radiofrequency ablation. *Clin Gastroenterol Hepatol.* 2018;16: 1007–1017.
- Dorrell R, Pawa S, Pawa R. Endoscopic management of malignant biliary stricture. *Diagnostics*. 2020;10:390.
- Zhang SJ, Hu P, Wang N, et al. Thermal ablation versus repeated hepatic resection for recurrent intrahepatic cholangiocarcinoma. *Ann Surg Oncol.* 2013;20:3596–3602.
- Rustagi T, Jamidar PA. Intraductal radiofrequency ablation for management of malignant biliary obstruction. *Dig Dis Sci.* 2014;59:2635–2641.
- Mensah ET, Martin J, Topazian M. Radiofrequency ablation for biliary malignancies. *Curr Opin Gastroenterol*. 2016;32: 238–243.
- Mizandari M, Pai M, Xi F, et al. Percutaneous intraductal radiofrequency ablation is a safe treatment for malignant biliary obstruction: feasibility and early results. *Cardiovasc Intervent Radiol.* 2013;36:814–819.
- Buerlein RCD, Wang AY. Endoscopic retrograde cholangiopancreatography-guided ablation for cholangiocarcinoma. *Gastrointest Endosc Clin N Am.* 2019;29:351–367.
- Laquière A, Boustière C, Leblanc S, et al. Safety and feasibility of endoscopic biliary radiofrequency ablation treatment of extrahepatic cholangiocarcinoma. *Surg Endosc.* 2016;30: 1242–1248.
- Goldberg SN, Gazelle GS. Radiofrequency tissue ablation: physical principles and techniques for increasing coagulation necrosis. *Hepatogastroenterology*. 2001;48:359–367.

344 | www.jcge.com

Copyright \bigcirc 2022 The Author(s). Published by Wolters Kluwer Health, Inc.

- 10. Page MJ, et alMcKenzie JE, Bossuyt PM. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *BMJ*. 2021;372:n71.
- Kallis Y, Phillips N, Steel A, et al. Analysis of endoscopic radiofrequency ablation of biliary malignant strictures in pancreatic cancer suggests potential survival benefit. *Dig Dis Sci.* 2015;60:3449–3455.
- Wang Y, Cui W, Fan W, et al. Percutaneous intraductal radiofrequency ablation in the management of unresectable Bismuth types III and IV hilar cholangiocarcinoma. *Oncotarget*. 2016;7:53911–53920.
- Hu B, Gao D-J, Zhang X, et al. 121 endobiliary radiofrequency ablation improve overall survival of cholangiocarcinoma: a multi-center randomized control study. *Gastrointest Endosc*. 2016;83(suppl):AB126.
- 14. Wu TT, Li WM, Li HC, et al. Percutaneous intraductal radiofrequency ablation for extrahepatic distal cholangiocarcinoma: a method for prolonging stent patency and achieving better functional status and quality of life. *Cardiovasc Intervent Radiol.* 2017;40:260–269.
- Yang J, Wang J, Zhou H, et al. Efficacy and safety of endoscopic radiofrequency ablation for unresectable extrahepatic cholangiocarcinoma: a randomized trial. *Endoscopy*. 2018;50:751–760.
- Bokemeyer A, Matern P, Bettenworth D, et al. Endoscopic radiofrequency ablation prolongs survival of patients with unresectable hilar cholangiocellular carcinoma—a case-control study. Sci Rep. 2019;9:13685.
- Kang H, Chung MJ, Cho IR, et al. Efficacy and safety of endobiliary radiofrequency ablation by using a novel temperature-controlled catheter (ELRA) for malignant biliary stricture: a preliminary report of single-center phase II comparative trial. *Surg Endosc.* 2021;35:63–73.
- Uyanik SA, Öğüşlü U, Yılmaz B, et al. Percutaneous intraductal microwave ablation of malignant biliary strictures: initial experience. *AJR Am J Roentgenol.* 2020;215:753–759.
- Yu T, Zhang W, Li C, et al. Percutaneous intraductal radiofrequency ablation combined with biliary stent placement for treatment of malignant biliary obstruction. *Abdom Radiol* (NY). 2020;45:3690–3697.
- Xia M-X, Wang SP, Yuan JG, et al. Effect of endoscopic radiofrequency ablation on the survival of patients with inoperable malignant biliary strictures: a large cohort study. J Hepatobiliary Pancreat Sci. 2022;29:693–702.
- Kong Y-L, Zhang HY, Liu CL, et al. Improving biliary stent patency for malignant obstructive jaundice using endobiliary radiofrequency ablation: experience in 150 patients. *Surg Endosc.* 2022;36:1789–1798.
- Gao DJ, Yang JF, Ma SR, et al. Endoscopic radiofrequency ablation plus plastic stent placement versus stent placement alone for unresectable extrahepatic biliary cancer: a multicenter randomized controlled trial. *Gastrointest Endosc*. 2021;94:91–100.e2.
- Tomas A, Rohan T, Panek J, et al. The combination of endoluminal radiofrequency ablation and metal stent implantation for the treatment of malignant biliary stenosis— Randomized study. *Eur J Radiol.* 2021;142:109830.
- 24. Gou Q, Wu L, Cui W, et al. Stent placement combined with intraluminal radiofrequency ablation and hepatic arterial infusion chemotherapy for advanced biliary tract cancers with biliary obstruction: a multicentre, retrospective, controlled study. *Eur Radiol.* 2021;31:5851–5862.
- 25. Kang H, Han SY, Cho JH, et al. Efficacy and safety of temperature-controlled intraductal radiofrequency ablation in advanced malignant hilar biliary obstruction: a pilot multicenter randomized comparative trial. J Hepatobiliary Pancreat Sci. 2022;29:469–478.
- Minozzi S, Dwan K, Borrelli F, et al. Reliability of the revised Cochrane risk-of-bias tool for randomised trials (RoB2) improved with the use of implementation instruction. *J Clin Epidemiol.* 2022;141:99–105.

- Lee LL. Application of the Risk of Bias 2 Tool. Hu Li Za Zhi. 2021;68:85–91.
- Cumpston M, Li T, Page MJ, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions. *Cochrane Database Syst Rev.* 2019;10:Ed000142.
- Tierney JF, Stewart LA, Ghersi D, et al. Practical methods for incorporating summary time-to-event data into meta-analysis. *Trials.* 2007;8:16.
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med.* 2002;21:1539–1558.
- Loew BJ, Howell DA, Sanders MK, et al. Comparative performance of uncoated, self-expanding metal biliary stents of different designs in 2 diameters: final results of an international multicenter, randomized, controlled trial. *Gastrointest Endosc.* 2009;70:445–453.
- 32. Zheng X, Bo ZY, Wan W, et al. Endoscopic radiofrequency ablation may be preferable in the management of malignant biliary obstruction: a systematic review and meta-analysis. *J Dig Dis.* 2016;17:716–724.
- 33. Sofi AA, Khan MA, Das A, et al. Radiofrequency ablation combined with biliary stent placement versus stent placement alone for malignant biliary strictures: a systematic review and meta-analysis. *Gastrointest Endosc.* 2018;87:944. e1–951.e1.
- Mohan BP, Chandan S, Khan SR, et al. Photodynamic therapy (PDT), radiofrequency ablation (RFA) with biliary stents in palliative treatment of unresectable extrahepatic cholangiocarcinoma: a systematic review and meta-analysis. *J Clin Gastroenterol.* 2022;56:e153–e160.
- Cha BH, Jang MJ, Lee SH. Survival benefit of intraductal radiofrequency ablation for malignant biliary obstruction: a systematic review with meta-analysis. *Clin Endosc.* 2021;54: 100–106.
- 36. Song S, Jin H, Cheng Q, et al. Local palliative therapies for unresectable malignant biliary obstruction: radiofrequency ablation combined with stent or biliary stent alone? An updated metaanalysis of nineteen trials. *Surg Endosc.* 2022;36:5559–5570.
- 37. de Jong DM, Fritzsche JA, Audhoe AS, et al. Comparison of intraductal RFA plus stent versus stent-only treatment for unresectable perihilar cholangiocarcinoma a systematic review and meta-analysis. *Cancers.* 2022;14:2079.
- Song S, Gong S, Lei T, et al. Comparative efficacy and safety of local palliative therapeutics for unresectable malignant biliary obstruction: a Bayesian network meta-analysis. *Expert Rev Gastroenterol Hepatol.* 2022;16:555–567.
- 39. Sharaiha RZ, Natov N, Glockenberg KS, et al. Comparison of metal stenting with radiofrequency ablation versus stenting alone for treating malignant biliary strictures: is there an added benefit? *Dig Dis Sci.* 2014;59:3099–3102.
- Sharaiha RZ, Sethi A, Weaver KR, et al. Impact of radiofrequency ablation on malignant biliary strictures: results of a Collaborative Registry. *Dig Dis Sci.* 2015;60:2164–2169.
- Cui W, Fan W, Lu M, et al. The safety and efficacy of percutaneous intraductal radiofrequency ablation in unresectable malignant biliary obstruction: a single-institution experience. *BMC Cancer.* 2017;17:288.
- 42. Hansler J, Wissniowski TT, Schuppan D, et al. Activation and dramatically increased cytolytic activity of tumor specific T lymphocytes after radio-frequency ablation in patients with hepatocellular carcinoma and colorectal liver metastases. *World* J Gastroenterol. 2006;12:3716–3721.
- 43. den Brok MH, Sutmuller RP, van der Voort R, et al. In situ tumor ablation creates an antigen source for the generation of antitumor immunity. *Cancer Res.* 2004;64:4024–4029.
- 44. Tal AO, Vermehren J, Friedrich-Rust M, et al. Intraductal endoscopic radiofrequency ablation for the treatment of hilar non-resectable malignant bile duct obstruction. *World J Gastrointest Endosc*. 2014;6:13–19.

Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc.