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Abstract: Flexible pressure sensors with high sensitivity and good linearity are in high demand to
meet the long-term and accurate detection requirements for pulse detection. In this study, we propose
a composite membrane pressure sensor using polydimethylsiloxane (PDMS) and multiwalled carbon
nanotubes (MWNTS) reinforced with isopropanol prepared by solution blending and a self-made
3D-printed mold. The device doped with isopropanol had a higher sensitivity and linearity owning
to the construction of additional conductive paths. The optimal conditions for realizing a high-
performance pressure sensor are a multiwalled carbon nanotube mass ratio of 7% and a composite
membrane thickness of 490 µm. The membrane achieves a high linear sensitivity of −57.07 kΩ·kPa−1

and a linear fitting correlation coefficient of 98.78% in the 0.13~5.2 kPa pressure range corresponding
to pulse detection. Clearly, this device has great potential for application in pulse detection.

Keywords: flexible pressure sensor; piezoresistive; PDMS; MWNTS; scanning circuit

1. Introduction

In recent years, flexible pressure sensors have rapidly established their status as the
key components for health monitoring, electronic skin, and wearable medical devices [1–8].
Pressure sensor refers to a device that can sense pressure transformation and output electri-
cal signals. It can be simply divided into piezoelectric [9–11], piezoresistive [6–8,12–15], and
capacitive [16–19]. Piezoelectric pressure sensors do not require an external power source,
but they require complex metrological analysis and cannot perform static measurements.
Capacitive pressure sensors can perform static and dynamic work, and their measure-
ment results are highly repeatable, but it needs a complicated filtering system to reduce
noise. Piezoresistive sensors do not require complex measurement analysis or complex
data acquisition systems and are not sensitive to electromagnetic noise [20]. Therefore, the
resistive pressure sensor has great advantages in health monitoring, especially the flexible
piezoresistive pressure sensor obtained by adding a conductive filler to the elastic polymer
matrix has attracted the attention of many researchers [21–25]. For example, this team used
a flexible piezoresistive smart insole prepared by filling polydimethylsiloxane (PDMS) with
multiwalled carbon nanotubes to monitor the plantar pressure of diabetic patients and
analyze patient gait [21].

Pulse detection plays an important role in the field of health detection [26]. A large
number of clinical studies have shown that pulse waves carry a lot of physiological infor-
mation about cardiovascular diseases [27,28]. Different from the electrocardiogram, the
pulse wave is caused by the arterial pressure wave, which can well-reflect the mechanical
characteristics of the blood vessel wall [28]. The pulse signal is usually collected from
the radial artery at the wrist. Traditional artificial pulse checking relies on the subjective
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experience of the doctor and cannot record the pulse wave in real time [29]. Currently,
photoplethysmography (PPG) collects cardiovascular information based on changes in the
light absorption of the blood vessel, which is the most widely used commercial technology
for pulse measurement [30,31]. Nevertheless, it is easy for the PPG to collect inaccurate
pulse signals due to the influence of ambient light variation and body movement [32].

Therefore, there has been much research using flexible pressure sensors for pulse detection.
This team proposes a wearable device based on a carbon nanotube–polydimethylsiloxane [33].
The device has a linear correlation coefficient of 0.98 in the pressure range from 0.4 kPa
to 14.0 kPa, which can be used for wrist pulse detection after preprocessing. Another
team [34] proposes a pressure sensor made of PDMS with a lotus leaf surface structure and
a graphene film. The linear sensitivity of the device is in the pressure range of 0~20 kPa and
reaches 1.2 kPa−1. According to the information [2], the pressure range of pulse detection
using the resistive pressure sensor is 0.2~3 kPa. Despite the promise of these complex
structures, there still lacks a simple and low-cost method to prepare flexible piezoresistive
pressure sensors with a high sensitivity and good linearity within the pulse detection
pressure range.

In this paper, we prepare a flexible piezoresistive pressure sensor combined with a
conductive composite membrane by doping multiwalled carbon nanotubes (MWNTS)
into PDMS reinforced with isopropanol and self-cutting copper foil, as shown in Figure 1.
The optimal conditions for preparing the pulse detection sensor are systematically ex-
plored from the organic solvent, electrode structure, filling concentration, and composite
membrane thickness. In addition, a multipoint measurement system based on a flexible
piezoresistive sensor array is proposed.
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Figure 1. Schematic illustration of pulse detection based on pulse signal sensor.

2. Materials and Methods
2.1. Materials

Multiwalled carbon nanotubes (MWNTS) with an outer diameter of 8~15 nm and a
length of 50 µm were purchased from Chengdu Dingsheng Times Technology Co., Ltd.,
Chengdu, China. Analytical grade solvents isopropanol alcohol (IPA) and absolute ethanol
were purchased from Chengdu Dingsheng Times Technology Co., Ltd., Chengdu, China.
Two-part liquid silicone rubber (PDMS, code Sylgard 184) was provided by Dow Corning.
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2.2. Preparation of PDMS/MWNTS Nanocomposites

We spend more energy to completely disperse MWNTS into PDMS, considering the
viscosity of PDMS. An organic solvent acts as a dispersing medium to predisperse the
MWNTS by mixing and mechanical stirring, and later is mixed into the PDMS. Figure 2
shows the main steps of preparing the PDMS/MWNTS composite. Firstly, MWNTS were
dispersed into isopropanol and mechanically stirred at 750 rpm for 5 min using a test tube
shaker (Asone, Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). The appropriate
amount of PDMS was mixed to the dispersion via ultrasonic stirring with small ultrasonic
cleaning machine (Asone, SB-120D, Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) for 30 min at 42 kHz and mechanical stirring with test tube shaker for 40 min at
1000 rpm. The weight fraction ratio of MWNTS to PDMS is found to be optimized at 7%.
Curing agent was added in the ratio 10:1 (dispersion: curing agent) and mechanically
stirred for 5 min at 900 rpm to obtain the mixed suspension.
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Figure 2. The preparation process of composite material mixed solution based on solution blending.

2.3. Fabrication of Piezoresistive Pressure Sensors

Figure 3 shows the complete process of membrane formation. The 3D mold method
and spin coating method were proposed to obtain the polymer composite membrane,
respectively. For the 3D mold method, the 3D printed mold with 12 square slots for sensors
of a side length of 13 mm and a depth of 500 µm was used to mold the sensors. The mixed
suspension was transferred into a 3D-printed mold to cure for 30 min at 85 ◦C within
a drying oven (DHG-9013A) in order to produce nanocomposite sheets (see Figure 3a).
The composite membranes were removed from the mold after the curing process was
completed. Figure 3b shows the spin coating method to obtain a thinner composite mem-
brane because of the limitation of the 3D-printed mold. Firstly, the polymer mixture was
dropped onto the glass substrate and placed in the homogenizer for different times at
1500 rpm to obtain the sensors with different thicknesses. After that, the glass substrate
was taken out from homogenizer and placed on the heating plate for 20 min at 90 ◦C.
The dimensions of the PDMS/MWNTS composite membranes prepared by both methods
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were cut to 10 × 10 mm. Finally, the prepared composite membrane was placed on a pair
of self-cutting conductive copper foils to prepare a pressure sensor.
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Figure 3. Schematic illustration of composite membrane prepared by (a) the 3D mold method and
(b) the spin coating method.

2.4. Characterization

The performance of the sensors was characterized by measuring the change of the
device resistance with using a digital multimeter (WEINSTEK GDM-9601) under the
applied compressive force. Figure 4 shows a schematic diagram of the characterization of
the composite membrane prepared in the experiment. The glass sheet placed on top of the
sensing membrane was used to acquire accurate measurement results by evenly dispersing
the external normal compressive force. Our study is to develop a piezoresistive sensor for
pulse detection, so our focus is on testing the performance of the device under low pressure.
The force applied to the sensor varied within the pressure range of 0.13~13.1 kPa by placing
different weights. In the process of applying pressure, the resistance of the device was
measured on two self-cutting conductive copper foil electrodes. The final change in the
resistance of the device was the average value of the resistance changes of the sensor within
50 s. The standard deviation of each data point is also calculated to indicate the degree of
dispersion of the resistance of the measured device. We systematically explored the optimal
conditions for the preparation of pulse detection sensor in terms of four aspects: organic
solvent, electrode structure, filling concentration, and composite membrane thickness. All
data results were measured at room temperature conditions.
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3. Results and Discussion
3.1. Sensor Design and Working Principle

Figure 5 presents the conductive mechanism and sensing mechanism of the flexible
piezoresistive sensor. The sensor is made by assembling self-cutting conductive copper foil,
MWNTS/PDMS composite membrane, and substrate. The conductivity of the composite
material is related to the concentration of the conductive particles. The complete conductive
channels will gradually form in the composite material as the filling concentration of the
MWNTS increases, which results in a sharp increase in the conductivity of the composite
material. The specific value of the filling concentration is called the percolation threshold.
The higher the MWNTS filling concentration, the better the conductivity of the polymer
due to the formation of more conductive channels. It is very important to select a suitable
MWNTS fill concentration. At a high filler concentration, the composite membrane almost
becomes a conductor, leading to insensitivity to external pressure. At a low filler con-
centration, there are very few conductive channels in the composite membrane, resulting
in very high resistance. The number of new conductive channels is very limited under
high pressure, resulting in an insensitivity to pressure. As a dispersion media, organic
solvents can improve the pressure sensing performance of the PDMS/MWNTS composite
membrane [35].
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The resistance of the whole sensor is defined with the formula

Rs = Rc + R0 (1)

where Rc is the contact resistance of the composite material membrane and the conductive
copper foil and R0 is the resistance of the composite material membrane. The resistance
R0 of the composite membrane decreases as one or more adjacent MWNTS tunnels are
formed under the external pressure. When the compressive force is removed, the composite
membrane returns to its original state and the sensor resistance also returns to its original
value due to the high elasticity of the composite membrane. The sensitivity of sensor is
expressed with formula

S = ∆Rs/∆P (2)

where ∆Rs is the change value of the sensor resistance and ∆P is the change value of the
applied compressive force.
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3.2. The Characterization of Sensor Performance

During the characterization of the device, the impact of four different conditions
on sensor performance is systematically explored to find the optimal conditions for
preparing the pulse detection sensor. The four parameters evaluated are: (a) the
influence of organic solvent on the sensor performance; (b) the influence of electrode
structure on the sensor performance; (c) the influence of the MWNTS filler weight
on the sensor performance; (d) the influence of the composite material membrane
thickness on the sensor performance.

3.2.1. The Impact of Organic Solvent

The working principle of the device we designed is based on the resistance mecha-
nism. The resistivity of the MWNTS/PDMS composite material changes when a normal
compressive force is applied to the sensing membrane. The electrical conductivity of
the composite material is determined by the conductive paths formed by the carbon
nanotubes in the PDMS matrix. The dispersibility of MWNTS in the polymer matrix
is an important factor affecting the conductivity of composite materials. Therefore,
whether the MWNTS can be completely uniformly dispersed in the PDMS matrix is a
crucial issue. The use of organic solvents can promote the dispersion of the MWNTS
well. In this work, we conducted pressure response tests on sensors prepared with
isopropanol or ethanol absolute.

Figure 6 shows the pressure response results of the pressure sensor prepared with
different organic solvents. The error bars for each data point represent the standard
deviation of the five-times resistance of the measured device. The resistance of the
pressure sensors prepared without organic solvents is an order of magnitude higher than
that of the pressure sensors prepared with organic solvents at the same compression force
(Figure 6 inner graph), indicating that the former have much fewer conductive paths
than the latter. The number of conductive paths is determined by the MWNTS dispersion
in the PDMS matrix, so the MWNTS dispersion in the pressure sensors prepared without
the organic solvents is worse than that in the pressure sensors prepared with the organic
solvents. The dispersion of the MWNTS inside the PDMS matrix is influenced by van
der Waals forces, which cause the MWNTS to form nanotube bundles. The presence of
organic solvents weakens the above effect, which is why the pressure sensors prepared
with the organic solvents have lower resistance. In addition, the pressure response of the
pressure sensors prepared without the organic solvents is unstable, further indicating
that there is severe MWNTS agglomeration in this class of pressure sensors. The change
in the conductive path in the composite membrane when the pressure sensor under
the external load leads to a change in the pressure sensor resistance, and the poorly
dispersed MWNTS pressure sensor leads to an unstable degree of conductive paths
change, resulting in an unstable pressure response result. From Figure 6, we can see
that the pressure response curve of the pressure sensor prepared with the isopropanol
is similar to that of the pressure sensor prepared with the ethanol absolute, except that
the former has a smaller resistance than the latter at the same pressure. This indicates
that isopropanol has the greatest effect on promoting the dispersion of the MWNTS
and forms more conductive paths in the PDMS matrix. Moreover, adding isopropanol
to the device promotes a better pressure response performance in the pressure range
corresponding to pulse detection (blue area in Figure 6). Therefore, we chose isopropanol
as the dispersion medium for preparing composite membrane.
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3.2.2. The Impact of Electrode Structure

The performance of the sensor is determined by the effective conductive path
connected to the test circuit in the composite membrane, which is affected by the
position and area of the electrode. In this section, the influence of the electrode position
on the performance of the sensor is discussed. Figure 7 shows the schematic diagrams
of the sensor composed of a different electrode structure on the unilateral, opposite,
and four-terminal. Figure 7a shows the unilateral electrode model, where a self-cutting
copper foil electrode with 500 µm is placed on one side of sensing layer. The opposite
electrode model means that there are electrodes on both sides of sensing layer, and
the electrode spacing is the thickness of the sensing layer as shown in Figure 7b.
The four-terminal electrode method has four electrodes in total, which are placed
on one side of sensing layer, as shown in Figure 7c. The two outermost electrodes
form a power supply loop to provide current through the sensing layer. The inner
two electrodes form a measurement loop to measure the voltage, and finally obtain
the resistance of the composite membrane. Theoretically, this method can reduce the
influence of the contact resistance of the composite membrane to obtain a more accurate
composite membrane resistance.
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Figure 8 shows the pressure response results of sensors with the MWNTS filler con-
centration of 7% and a membrane thickness of 500 µm at different electrode positions.
The error bars for each data point represent the standard deviation of the five-times
resistance of the measured device. Under the same pressure, the resistance measured
by the unilateral electrode model is 200~300 kΩ higher than the resistance obtained
by the other two methods. The pressure response curves of the opposite electrode
method and the four-terminal electrode method are similar. The opposite electrode
model has more conductive paths connected into the test circuit than the unilateral
electrode model, and the conductive circuit is changed more obviously under the ap-
plied normal pressure, resulting in greater sensitivity and lower resistance under low
pressure. Compared with the unilateral electrode method, the four-terminal electrode
method has a much lower resistance, which shows that it can reduce the influence
of the contact resistance. In the four-terminal electrode method, in the high-pressure
range, the change of the conductive path in the composite membrane reaches the limit
and the pressure response becomes a smooth straight line. The resistance change of
the single-side electrode model and the opposite electrode model is larger than that of
the four-terminal electrode method. As the pressure increases, the contact resistance
will still slowly decrease, and the resistance of the composite membrane will change
to the limit. We choose the opposite electrode model as the electrode position of the
sensor for pulse detection, considering the sensitivity and simplicity of the device and
reducing the influence of contact resistance. The device has a very high sensitivity in
the pressure range of pulse detection, as shown in the purple area in the figure.
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3.2.3. The Impact of MWNTS Filler Concentration

The MWNTS/PDMS composite material exhibits resistance behavior, which is ex-
pressed as the resistance change of the composite material under the action of mechanical
stimulation. The composite material conducts electricity because the MWNTS forms con-
ductive paths in the PDMS matrix. Consequently, the composite material with a higher
MWNTS filling concentration has an increased probability of forming conductive paths
in the matrix, resulting in a higher conductivity and a lower resistance. The performance
of the sensor was characterized by measuring the resistance of the devices with different
filling concentrations of the MWNTS. Figure 9 shows the changes in the resistance of the
devices consisting of 6, 8, and 10 wt% of the MWNTS under external pressure. The error
bars for each data point represent the standard deviation of the five-times resistance of
the measured device. The resistance of the sensor with 8% mass ratio of the MWNTS is
smaller than that of the sensor with the 6% mass ratio of the MWNTS at the same external
pressure, further indicating that higher filler concentrations form more conductive paths
in the PDMS/MWNTS composite membrane. The resistance of the sensor with a 10%
mass ratio of the MWNTS is essentially equal to zero, indicating that the PDMS/MWNTS
composite membrane has become a conductor without pressure-sensitive properties at
this filling concentration. The resistance changes of the device consisting of 6 wt% and
8 wt% of the MWNTS composite is more obvious than in the 10 wt%. The high mass
ratio of carbon nanotubes forms a very large number of conductive paths in the device.
The change of the conductive path is not obvious compared to the initial conductive path
under compressive force. Therefore, its resistance change is much smaller than that of a
device with a lower MWNTS concentration. In addition, the devices consisting of 6 wt%
and 8 wt% MWNTS composite materials have very high sensitivity in the pressure range
from 0.13 kPa to 3 kPa (green area in figure), and the sensitivity is very small in the
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high-pressure range. The devices prepared with a lower concentration of the MWNTS
are beneficial to obtain a better stretchability. The devices consisting of 8 wt% MWNTS
had better linearity in the low-pressure range than in the 6 wt%. Therefore, we chose
the middle 7 wt% MWNTS mass ratio between 6 wt% and 8 wt% as the pressure sensor
filler concentration for pulse detection.
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3.2.4. The Impact of Composite Membrane Thickness

Figure 10 shows the resistance changes of the sensors composed of the composite mem-
brane with different thicknesses characterized under the same test conditions. The error
bars for each data point represent the standard deviation of the five-times resistance of the
measured device. The resistance of the device is small compared to a device with a larger
composite membrane thickness because the smaller thickness of the composite membrane
means the higher the probability of forming an effective conductive path between the
electrodes. The resistance of the pressure sensors with three thicknesses changes rapidly in
the pressure range of 0.13~6.6 kPa, and the resistance change is small in the range greater
than 6.6 kPa. The smaller the thickness of the composite membrane, the higher the sensitiv-
ity in the low-pressure zone in the device (yellow area in Figure 10). When the external
pressure is applied, the conductive paths of the device with a smaller thickness change more
obviously, resulting in more resistance changes in the sensor. After the pressure is greater
than a specific value, the degree of change of the conductive paths in the PDMS/MWNTS
composite membrane tends to limit, leading to an insignificant change in the resistance
with increasing pressure. We know that the resistance of the thinner membrane stabilizes
earlier as the increase of external pressure from the picture because it is earlier to reach
the limit of the conductive path change due to the smaller membrane thickness. As the
500 µm thick membrane has a more stable resistance variation in the pressure region of the
pulse detection at the adjacent pressure test points, we chose a device with a composite
membrane thickness of 500 µm for pulse detection.
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3.2.5. Quantitative Analysis for Optimal Conditions

Finally, we prepared and quantitatively analyzed the optimized flexible pressure sen-
sor. Figure 11a shows the real prototype of the PDMS/MWNTS composite membrane we
prepared by solution blending. Figure 11b,c show the thickness and length measurements
of the composite membrane, where the thickness of the optimized PDMS/MWNTS com-
posite membrane is 0.49 mm and the side length is 10 mm. Figure 11d presents the pressure
response curve of the optimized flexible pressure sensor from 0.13 kPa to 5.2 kPa. We show
the standard deviation of each data point in Figure 11d, but this only characterizes the
dispersion of the five resistance measurements at the same pressure and cannot be used to
evaluate the dispersion of the resistance measurements at different pressures. We normalize
the resistance measurements of the optimal device and use the coefficient of variation (CV)
to characterize the dispersion of the resistance measurements of the optimal device at
different pressures. The coefficient of variation is a dimensionless quantity defined as the
standard deviation divided by the mean. From Figure 11d, it is known that the maximum
coefficient of variation of the optimal device is 9.4% when the pressure is 2.6 kPa, and the
coefficient of variation is less than this value for the rest of the pressures, further indicating
that it is reasonable to use the average value instead of the resistance of the device at
different pressures. The resistance value of our prepared composite membranes is 404.6 kΩ
at 0.13 kPa, and the volume resistivity of the PDMS/MWNTS composite membrane is
8.3 × 104 Ω·m. In addition, we perform sensitivity calculations and linear fitting for the
optimized sensor. Using the least square method to achieve the linear fitting of the curve,
the calculated linear sensitivity is −57.07 kΩ·kPa−1 and the linear correlation coefficient is
98.78% at 0.13 kPa~5.2 kPa. It can be drawn from the figure that our equipment with the
isopropanol has a high sensitivity and a high linearity in the pressure range corresponding
to the pulse detection.
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Figure 11. The optimal device in our work: (a) the real prototype of PDMS/MWNTS composite
membrane; (b) the thickness measurement of the composite membrane; (c) the length measurement
of the composite membrane; (d) the pressure response curve of the optimized flexible pressure
sensor, where the dashed line is the linear fitting result, and the bar chart represents the coefficient of
variation (CV) of the resistance measurement results at different pressures.

3.3. The Prospect of Array Resistance Scanning Processing Circuit

The flexible resistive pressure sensor array composed of the PDMS substrate, the array
electrode, and the composite membrane will be prepared later, as shown in Figure 12. On
the top side, each column of the circular interdigital electrodes is connected. Each electrode
unit is designed with a circular interdigital structure. The through hole was inserted
into the right side of each electrode to connect with the reverse electrode. The composite
material membrane is placed on top of the upper electrode. On the reverse side, each row
of electrodes is connected.

Figure 13 shows the working principle of the scanning processing circuit for the
resistive sensor matrix. The crosstalk effect is the biggest influencing factor in the array
resistance measurement [36–38]. For example, we want to measure the resistance R33
on path A (green line) in the figure, but the crosstalk path B (dark blue line) is also
connected to the measurement circuit, which affects the measurement of R33. The zero-point
compensation scanning processing circuit is built using the on–off of the switch and the
virtual short of the amplifier to avoid the influence of the crosstalk path. Turning on the
switches in the third row and the third column and turning off the switches in other rows
and columns sets the voltage on the other rows and columns to zero when measuring
R33. By using the amplifier, not only can the nonmeasurement column voltage be zeroed,
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but also the signal can also be amplified. Multipoint measurement can be achieved by
microcontroller control switches. When an external load is applied to the resistive pressure
sensor array, the microcontroller controls the switch on and off for each row and column,
the resistance values at each location on the sensor array are read out, and then calculates
the value and location of the load.
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Figure 13. The schematic diagram of 5 × 5 resistance matrix scanning processing circuit. The blue
rectangle and orange rectangle indicate five columns and five rows, respectively. A resistor exists
between each row and column, and R33 indicates the resistance between the third row and the
third column. Letters A and B indicate the two conductive paths for measuring the resistance
of R33, respectively.
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4. Conclusions

In summary, we developed a low-cost resistive pressure sensor reinforced with iso-
propanol with high sensitivity and linearity in the pulse detection range based on a
simple architecture. The device consists of self-cutting conductive copper foil and an
MWNTS/PDMS composite material with isopropanol prepared by solution blending and a
self-made 3D-printed mold as the top conductive composite material. Isopropanol could
well-promote the dispersion of the carbon nanotubes in the composite membrane to obtain
a flexible pressure sensor with a high performance and a good linearity. We studied the
influence of the electrode structure, the MWNTS filling concentration, and the composite
membrane thickness on the sensing performance of the device. Experimental data show
that the flexible pressure sensor with isopropanol prepared under the optimal conditions
has a very high sensitivity and linearity in the pulse detection range, indicating its tremen-
dous potential applications in pulse detection. The optimized flexible resistive pressure
sensor showed a high linear sensitivity of −57.07 kΩ·kPa−1 and a high linear correlation
coefficient of 98.78% at 0.13~5.2 kPa. These parameters can be further optimized to achieve
higher sensitive devices. We believe that the sensors we report are very promising for pulse
detection. Therefore, these sensors will be expanded into a matrix to achieve multipoint
measurement and combined with artificial intelligence to achieve pulse signal analysis and
processing in the future. By optimizing and integrating these sensors, they can be widely
used in wearable devices, electronic skins, and medical prostheses.
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