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Abstract
Graph representations provide an elegant solution to capture and analyze complex
molecular mechanisms in the cell. Co-expression networks are undirected graph repre-
sentations of transcriptional co-behavior indicating (co-)regulations, functional modules
or even physical interactions between the corresponding gene products. The growing
avalanche of available RNA sequencing (RNAseq) data fuels the construction of such
networks, which are usually stored in relational databases like most other biological
data. Inferring linkage by recursive multiple-join statements, however, is computa-
tionally expensive and complex to design in relational databases. In contrast, graph
databases store and represent complex interconnected data as nodes, edges and prop-
erties, making it fast and intuitive to query and analyze relationships. While graph-based
database technologies are on their way from a fringe domain to going mainstream,
there are only a few studies reporting their application to biological data. We used the
graph databasemanagement systemNeo4j to store and analyze co-expression networks
derived from RNAseq data from The Cancer Genome Atlas. Comparing co-expression
in tumors versus healthy tissues in six cancer types revealed significant perturbation
tracing back to erroneous or rewired gene regulation. Applying centrality, community
detection and pathfinding graph algorithms uncovered the destruction or creation of
central nodes, modules and relationships in co-expression networks of tumors. Given
the speed, accuracy and straightforwardness of managing these densely connected net-
works, we conclude that graph databases are ready for entering the arena of biological
data.

Introduction

The biology of the living cell results from complex inter-
actions within a seemingly endless universe of molecular
entities (1). Network representations have been successfully

applied to understand a fraction of these cellular relation-
ships, including protein–protein interaction (2), metabolic
interplay (3), gene regulation (4) and gene co-expression
(5). In these networks, nodes represent biological entities
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such as genes or proteins, edges represent their relationships
and associated weights reflect the strengths of relationships.
Gene co-expression networks are widely studied biologi-
cal networks attributed to the plethora of available gene
expression data. Even in the pre-RNAseq era, the abun-
dance of microarray data allowed the generation of co-
expression networks in various contexts. Mutual infor-
mation and correlation coefficients (including Pearson and
Spearman correlation) are the most common co-expression
measures. Several studies have systematically compared the
two measures and came to the consensus that both mea-
sures perform well in constructing co-expression networks
on the basis of pairwise relationships (6).

The resulting biological networks have been convention-
ally stored and analyzed in traditional relational databases
such as MySQL and Oracle. Inferring relationships with
recursive multiple-join statements on tables, however, is
complex to design and computationally expensive (7). In
contrast, the concept of graph databases is to store inter-
connected data as a graph structure, so that querying and
analyzing relationships become more intuitive and efficient.
In fact, in recent years, graph database technologies have
become widely used in various industries to analyze social
interactions, purchasing behavior, flight connections and
other connected data. The biological community has not
fully embraced the advantages of graph databases yet, but
several researchers have started to adopt the technology for
integrating and analyzing biological data (8). For exam-
ple, Reactome (reactome.org) adopted the graph database
technology Neo4j (neo4j.com) to enable efficient access
to biomolecular pathway data (9). The adaption of this
technology reduced the average query time by 93%. Het-
ionet (neo4j.het.io) also adopted Neo4j to model drug
efficacy based on hundreds of treatments and connected
compounds, diseases, pathways, side effects, symptoms
and other related data (10). The EpiGeNet framework used
Neo4j to store and query conditional relationships between
genetic and epigenetic events at different stages of colorectal
oncogenesis (11). These and a few other examples sug-
gest that well-established graph databases such as Neo4j
are indeed ideal to capture and explore biological mod-
els. Notably, there are several other database technologies
besides Neo4j. For example, RDF (Resource Description
Framework) is a semantic graph database technology. It
was established as aW3C standard for data exchange in the
web representing data as a graph. Using Uniform Resource
Identifiers standards, RDF is well suited to support ontolo-
gies and compare different datasets, which is, however, not
the focus of our study.

In this study, we used RNA-seq data from The Can-
cer Genome Atlas (TCGA) to generate gene co-expression
networks in several cancer types and the corresponding

healthy tissues. We stored the resulting networks in
Neo4j graph databases and applied centrality, community
detection and pathfinding graph algorithms to detect genes,
relationships and modules significantly altered in cancer
networks. Our study confirms the advantage of using graph
database technologies for storing and analyzing complex
connected biological data.

Materials and methods

Generating co-expression matrices

For each sample, fragments per kilobase of transcript
per million mapped reads (FPKM) data as a measure for
gene expression were collected for the following cancer
types from TCGA (portal.gdc.cancer.gov): BRCA (Breast
Invasive Carcinoma) (112 samples) (12), KIRC (Kidney
Renal Clear Cell Carcinoma) (49 samples) (13), LUAD
(Lung Adenocarcinoma) (57 samples) (14), LUSC (Lung
Squamous Cell Carcinoma) (49 samples) (15), PRAD
(Prostate Adenocarcinoma) (52 samples) (16) and THCA
(Thyroid Cancer) (58 samples) (17). For each cancer type,
two co-expression matrices were calculated using FPKM
data: one ‘normal’ matrix based on expression in healthy
tissues and one ‘tumor’ matrix based on expression in
the corresponding tumors. We limited our analysis to
patients with available expression data for both normal
and tumor. Co-expression matrices reflecting pairwise rela-
tionships between all 19,246 human genes were generated
using the Weighted Gene Co-expression Network Analy-
sis package (18) in R (r-project.org). Spearman coefficients
were used as a measure for co-expression because of a
higher outlier resistance compared with Pearson coeffi-
cients (Supplementary Figure 1). Correlations with Spear-
man coefficients above 0.99 were discarded, as all Spear-
man coefficients in this range resulted from near-zero
expression of both genes in nearly all patients. Following
the concept of soft thresholding, coefficients were raised to
the sixth power and retained if they were above 0.25, yield-
ing a scale-free topology of the networks (Supplementary
Figure 2).

Constructing and analyzing gene co-expression
networks in Neo4j

The resulting co-expression matrices were used to cre-
ate networks for each cancer type in Neo4j Desktop
[Version 1.2.1 (1.2.1.1529)]. The Neo4j Desktop soft-
ware allows the creation of graph database instances by
uploading comma-separated value files containing nodes
and edges information. A node was created for each
gene in the dataset and labeled with its gene name,
description and the corresponding UniProt ID (uniprot.org)
(19). Edges were created between nodes to reflect
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the co-expression between the corresponding gene pair.
Associated correlation coefficients were used as weights on
these edges. Correlations from both normal and tumor data
were included, forming two subnetworks within the same
graph for each cancer type. The Cypher script used to load
the database into Neo4j can be found in a github repository
(https://github.com/clairesimpson95/cypher_coexp).

The Neo4j Algorithms package was used to apply
the Pagerank, Louvain community detection and Dijk-
stra graph algorithms in each cancer type–specific network
using the algorithms provided by Neo4j in the Cypher
language. For labeling transcription factors, epigenetic reg-
ulators and oncogenes in the networks, we used anno-
tations from Gene Ontology (geneontology.org) (20), a
curated set of epigenetic regulators (5) and genes with
hotspot mutations (21). Using all gene set collections from
the Molecular Signatures Database (MSigDB) (22), gene
set enrichment analysis was performed on communities
comprising 50 or more genes. Additional annotation of spe-
cific genes was derived from UniProt and PhosphoSitePlus
(phosphosite.org) (23). Graphs were generated in R using
the packages ggplot2 (24), ggpubr (25), reshape2 (26) and
dplyr (27).

All computations were performed locally on aMacBook
Pro running macOS Mohave (Version 10.14.6) with a 2.3
HGz Intel Core i5 processor and 8 GB of memory.

Results and discussion

Building co-expression networks in Neo4j reveals
substantial loss of gene regulation in cancer

To construct co-expression networks in healthy (normal)
and tumor tissues, we calculated the degree of co-
expression between each possible pair of genes across sam-
ples of the same tissue type (see the section “Materials and
methods”). This resulted in two 19 246 × 19 246 corre-
lation matrices (one for normal, one for tumor) for each
of the six included tissue types. To translate each matrix
into a network, a gene pair with significant co-expression
was represented as two nodes and one connecting edge.
Genes with no significant correlations were not included
in the graph or in the total number of nodes. For each
cancer type, we stored the corresponding co-expression net-
works of both healthy tissues and tumors in a Neo4j graph
database instance (Methods).

Overall, tumor co-expression networks were signifi-
cantly smaller than their normal counterpart co-expression
networks (Figure 1). They contained 1.1-fold (THCA)
to 4.2-fold (BRCA) fewer nodes and 2.2-fold (THCA)
to 50.0-fold (BRCA) fewer edges. For example, the
co-expression network of healthy lung tissues comprised
9257 nodes and 354 434 edges, while the network of
the corresponding lung adenocarcinomas contained 3643

nodes and 31 019 edges. Overall, we identified 5676 co-
expression relationships between transcription factors and
oncogenes [defined by the presence of hotspot mutations
(21)] lost in lung tumors. For example, we detected the
co-expression between KRAS and ZNF800 (encoding zinc
finger protein 800) in the lung normal network but not
in the lung adenocarcinoma network (Figure 2). Concor-
dantly, 1271 edges between epigenetic regulators and onco-
genes were lost in tumor networks, such as co-expression
between BRAF and PRDM2 (Supplementary Figure 3).
Lost co-expression traced back to increased or decreased
gene expression changes in either the epigenetic regulator
or the oncogene.

The significant loss of nodes and edges in the tumor
networks compared with their normal counterparts, which
was also observed in a previous gene expression study (28),
suggests massively perturbed coordination of gene expres-
sion in tumors. Moreover, tumor heterogeneity might fur-
ther magnify the observed decrease in co-expression, and
future single-cell experiments would be useful in under-
standing how strongly tumor heterogeneity might affect the
results observed here.

Applying centrality algorithms uncovers
tumor-specific gene expression programs

For determining the most central nodes in each network
potentially reflecting master regulators (such as epigenetic
regulators or transcription factors) of the expression of
many genes, we applied Google’s ‘Pagerank score’ algo-
rithm and calculated the degree of each node (29). Both
scoring algorithms take the number of edges of each node
into account. The Pagerank score also includes the edges’
weights and the scores of neighboring nodes in its calcu-
lations. In each network, nodes were labeled with their
Pagerank scores and degrees in healthy tissues and tumors.
Calculating all scores within one Neo4j graph database
instance for a given network took an average of 261 mil-
liseconds. These scores can be found in Supplementary
Tables 1–6. Pagerank score and degree were significantly
correlated in all networks (Figure 3).

In the normal lung co-expression network, seven of
the 10 nodes with the highest Pagerank scores were
zinc finger transcription factors (Table 1). The other
three genes encode trinucleotide repeat-containing gene
6A protein (TNRC6A), transmembrane protein-encoding
gene KIAA1109 and nuclear mitotic apparatus protein 1
(NuMA-1). In fact, TNRC6A showed the highest Pager-
ank score in the normal lung network. The RNA levels
of 653 genes correlated with the expression of TNRC6A
in lung. The centrality of TNRC6A is consistent with its
function as central organizer for RNA-mediated control

https://github.com/clairesimpson95/cypher_coexp
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Figure 1. Size of co-expression networks. The bar charts show the total number of (A) nodes and (B) edges in the normal (red) and tumor (blue)
co-expression graphs.

of transcription (30). The second highest scoring gene
was transmembrane protein-encoding gene KIAA1109.
According to UniProt, the corresponding protein has been

associated with endosomal trafficking and recycling, regu-
lation of phagocytosis, regulation of cell growth and other
biological processes. A direct link to master regulation of
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Figure 2. Lost co-expression in tumors. The dot plots illustrate the expression (measured as FPKM) of KRAS and ZNF800 in (A) healthy lungs and
(B) lung adenocarcinoma. Each dot reflects the expression of the two genes in one sample.

gene expression, however, has not been described to the
best of our knowledge. Finally, NUMA1, playing a signif-
icant role in the formation and maintenance of the spindle
poles and chromosome alignment and segregation during
mitotic division (31), was the third non-zinc finger gene in
the top 10 of the central nodes.

Collectively, nodes tended to have higher Pagerank
scores and degrees in the normal networks compared with
tumor networks (Supplementary Figures 4 and 5). The
Pagerank scores of 78% of all nodes including the 10

top scoring nodes were lower in the lung adenocarcinoma
network compared with the healthy lung network. Six per-
cent of all nodes showed higher Pagerank scores but lower
degrees in the tumor network, indicating a relative but
not absolute increase in centrality. Table 2 lists the top 10
nodes with respect to PageRank scores falling into this cate-
gory. The associated proteins of these 10 nodes are involved
in a variety of fundamental cellular processes including
response to DNA damage (RIF1, RNF169), epigenetic reg-
ulation (BPTF, KMT2A), splicing (SCAF11) or cell death
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Figure 3. Comparison of measures of centrality in the LUAD tumor network. In the normal lung co-expression network, seven of the 10 nodes with
the highest Pagerank scores were zinc finger transcription factors (Table 1). The other three genes encode trinucleotide repeat-containing gene 6A
protein (TNRC6A), transmembrane protein-encoding gene KIAA1109 and nuclear mitotic apparatus protein 1 (NuMA-1).

Table 1. The 10 genes with the highest Pagerank scores in the LUAD normal subnetwork

Name Uniprot
Pagerank
(normal)

Pagerank
(tumor)

Degree
(normal)

Degree
(tumor) Pathway

TNRC6A Q8NDV7 4.426214 0.652741 653 4 Wnt signaling pathway
KIAA1109 Q2LD37 4.195813 0.718378 578 4
ZNF397 Q8NF99 4.097128 0.9667225 602 1
ZBTB37 Q5TC79 4.084897 0.596352 608 3
ZNF662 Q6ZS27 4.066562 0.15 601 0 Generic transcription pathway
ZNF326 Q5BKZ1 4.060034 0.15 627 0
NUMA1 Q14980 4.059286 0.15 276 0 Recruitment of NuMA to mitotic

centrosomes, mitotic prophase
ZSCAN30 Q86W11 4.043646 0.15 599 0
ZNF638 Q14966 4.041623 2.423036 615 22 Transcriptional regulation of white

adipocyte differentiation
ZNF621 Q6ZSS3 4.036684 0.15 628 0 Generic transcription pathway

(BIRC6). At least four proteins are directly involved in pro-
tein ubiquitination including USP34, BIRC6, UBXN7 and
RNF169.

Overall, 36 genes showed an increase in degree from
normal to tumor networks in at least five of the six can-
cer types (Supplementary Table 7). Gene set enrichment
analysis revealed that these 36 genes are most significantly
enriched for genes involved in epithelial mesenchymal tran-
sition (including THY1, MMP2, VCAN, COMP, PRRX1
and COL12A1) and the immune system (including GRAP2,
SAA1, GBP1, CIITA, CD80, KIF23, IRF8, TAP1 and
GBP4) (Supplementary Table 8).

When comparing centrality between co-expression net-
works, we found that Pagerank scores showed higher Pear-
son correlations between tumor networks than between
normal networks. The average Pearson correlation for
PageRank scores between two tumor networks was 0.30,
whereas the average correlation between two normal net-
works was 0.21 (P=0.003 using t-test excluding the com-
parison between the two normal lung networks) (Figure 4).
This suggests that gene expression programs are rela-
tively similar across different cancer types. In comparison,
expression programs are quite distinct between healthy
tissue types.
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Table 2. The 10 genes with the highest Pagerank scores in the lung adenocarcinoma network

Name Uniprot
Pagerank
(normal)

Pagerank
(tumor)

Degree
(normal)

Degree
(tumor) Pathway

RIF1 Q5UIP0 2.503803 7.365182 325 80 Nonhomologous end-joining (NHEJ)
USP34 Q70CQ2 2.5970565 7.021621 328 78 TCF dependent signaling in response

to WNT, Ub-specific processing
proteases

BPTF Q12830 3.906405 6.351855 563 70
BIRC6 Q9NR09 2.158023 5.483818 281 62
KMT2A Q03164 3.977516 4.639488 535 50 RUNX1 regulates transcription of

genes involved in differentiation of
HSCs

UBXN7 O94888 3.775539 4.600906 514 44 Neddylation
ASXL2 Q76L83 2.398658 4.571309 305 53 UCH proteinases
RNF169 Q8NCN4 0.8521765 3.992094 79 44 Ubl conjugation pathway
ALMS1 Q8TCU4 1.4537725 3.903609 147 41 AURKA activation by TPX2,

recruitment of mitotic centrosome
proteins and complexes

SCAF11 Q99590 3.153033 3.899333 431 42

Figure 4. Correlation of Pagerank scores between tumor networks (red) and normal networks (blue). On average, the correlation between Pagerank
scores in tumor networks was higher than the correlation between Pagerank scores in normal networks (excluding the two normal lung tissue
networks). Higher PageRank scores indicate higher centrality in the network.

Community detection in Neo4j reveals
involvement of central tumor subnetworks
involved in immune system and replication

To identify highly connected subnetworks (communities)
within each network, we applied the Louvain algorithm
(32) in Neo4j. The algorithm finished in under a second

for all graphs with less than 5000 nodes. It took three sec-
onds for the largest network, the normal breast network,
containing 11 884 nodes.

Normal networks had fewer communities but more
members in each community compared with tumor net-
works. The average number of genes per community in
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normal networks ranged from 46.41 (THCA) to 119.09
(BRCA) and from 8.16 (LUSC) to 34.54 (THCA) in the
tumor networks (Figure 5). The number of communities
ranged from 91 (BRCA) to 193 (LUSC) in normal networks
and from 214 (THCA) to 481 (LUSC) in tumor networks.
For instance, in LUAD, there were 173 communities in the
normal network and 367 communities in the tumor net-
work. While 91% and 94% communities contained less
than 10 nodes in the normal and in the tumor network,
respectively, the range in community size was greatest in
the normal network. In the LUAD graph, the largest normal
community contained 2135 nodes, while the largest tumor
community contained 600 nodes (Figure 6).

We also found that communities had significantly dif-
ferent distributions of degree change in the tumor net-
work compared with the normal network (Figure 7). This
implies that different communities and associated biolog-
ical processes are affected to varying degrees by the tran-
sition to cancer status. Overall, 76% (84/110) of the
nodes with an increase in degree of greater than 100
were in the tumor subnetwork’s community 4. Gene set
enrichment analysis revealed that this community was
enriched for genes involved in several cell cycle processes
(Supplementary Table 9). Similarly, 124 of 129 genes in
community 5 showed increased degrees, and a signifi-
cant proportion of these genes are involved in the immune

system. The tumor subnetwork’s community 15, whose
nodes also had on average a higher degree in the tumor
than in the normal subnetworks, was also enriched for
immune response genes. Consistent with LUAD, commu-
nities of other tumor networks, which showed increased
degrees, were also functionally enriched for immune system
processes or DNA replication.

Overall, the application of community detection in
Neo4j revealed several commonalities between communi-
ties of different cancer types with respect to changes of
degree, size distributions and functional associations, con-
firming a common tumor-specific reprogramming of the
transcriptional system.

Shortest path algorithm uncovers interrupted
connections between oncogenes and epigenetic
regulators

To calculate the shortest paths between nodes, we
applied Neo4j’s implementation of Dijkstra’s algorithm.
We focused on shortest paths between all pairs of onco-
genes and epigenetic regulators found in the graphs to
elucidate potential differences in regulation of oncogene
expression by epigenetic programs. A shorter path between
two genes might indicate that they are more tightly co-
regulated and intermediate controls are lost. In contrast,
a longer path in tumor tissue might indicate that direct

Figure 5. Community sizes across cancer and tissue types. Number of genes per community resulting from applying the Louvain algorithm on each
graph in Neo4j (blue: normal, red: matched tumor).
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Figure 6. Community sizes in LUAD networks. Density plots of community size in LUAD (A) tumor and (B) normal graphs.

regulation of gene expression is lost and additional controls
are involved. Consistent with the lower number of nodes
and loss of centrality in tumor graphs compared to nor-
mal graphs, the average length of a shortest path between
the proteins in these groups increased from 3.88 in the
normal graph to 4.76 in the tumor graph in the LUAD
graph. Furthermore, the number of shortest paths of infi-
nite length increased from 1320 in the normal set to 61
995 in the tumor set, indicating that no path between these

pairs was possible. In other words, the link between the
expression of oncogene and potentially connected epige-
netic regulators were broken in the LUAD tumor network.
The same trend was observed in the other cancer types.
The most frequent change in path length (where both paths
have finite length) was from two in the normal graph to
four in the tumor graph (Figure 8). These results further
indicate a systemic loss of gene expression coordination in
tumor cells.
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Figure 7. Change in degree across large communities in LUAD. Difference of degree between tumor and normal samples for each tumor community
larger than 50 genes.

Figure 8. Change in path length between LUAD normal and tumor networks. On average, the path length between an epigenetic regulator and an
oncogene increased from the normal graph to the tumor graph, with the most common change in path length from two to four genes.

Conclusion

In our study, the graph database management systemNeo4j
has proven to be an efficient solution to study co-expression

networks in healthy tissues and in tumors. Associated
tools allowed for quick creation, maintenance and anal-
ysis of the connected data. We found that the majority
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of gene co-expressions are lost in cancer. However, com-
pared to healthy tissues, tumor co-expression networks are
relatively similar to each other, pointing to tumor-specific
expression programs. We also uncovered several tumor-
specific master nodes, communities and paths. Overall,
our study demonstrates the power of graph databases to
understand complex biological networks, and we believe
that this technology is ready to become mainstream for
bioinformatics.
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