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Abstract

A cell permeable cyclometalated iridium(III) complex has been developed as a phosphorescent probe for cell imaging. The
iridium(III) solvato complex [Ir(phq)2(H2O]2)] preferentially stains the cytoplasm of both live and dead cells with a bright
luminescence.
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Introduction

Luminescence imaging of biological specimens using non-

invasive probes is a basic technique in life and biomedical sciences

for studying the morphologic characteristics of tissue at high

resolution [1–5]. Since the cell is the primary structural and

functional unit of all known living organisms, the morphological

aberration of certain cell types can lead to various diseases such as

sickle cell anemia [6,7]. Consequently, a great deal of attention has

been invested into the development of luminescent probes for live

cell imaging in recent years. Currently, organic dyes constitute the

majority of the most commonly-used fluorescent probes [8].

However, organic dyes can be subject to various drawbacks,

including small Stokes shift values and short luminescence lifetimes

[9–11]. In this context, luminescent transition metal complexes

have arisen as viable alternatives to organic fluorophores for

sensing and imaging applications due to the following advantages:

[12–36] (i) tunable excitation and emission maxima over the

visible region without the need for lengthy synthetic protocols; (ii)

tunable emission energies by modification of the ancillary ligands;

(iii) large Stokes shift for facile separation of excitation and

emission wavelengths and elimination of self-quenching; (iv)

relatively long phosphorescence lifetimes that can mitigate a

short-lived autofluorescence background through the use of time-

resolved spectroscopy which offers high selectivity; and (v) good

solubility in aqueous solution (containing ,0.01% organic

solvent).

In eukaryotes, the cytoplasm is an aqueous fluid that primarily

consists of a transparent substance termed hyaloplasm or cytosol.

Numerous life processes take place within the cytoplasm, including

protein synthesis, metabolic reactions, and cellular signaling.

However, only a few phosphorescent metal complexes have been

developed for cytoplasmic staining. For example, Coogan and co-

workers have reported a series of Re(I) complexes of type fac-

[Re(bisim)L(CO)3]+ containing highly lipophilic esters of 3-

hydroxymethylpyridine as luminescence agents that selectively

distribute in membranes and membrane structures within the

cytoplasm of living cells [35]. Barton and co-workers investigated a

series of phosphorescent ruthenium(II) complexes with different

ancillary ligands that selectively stain the cytoplasm [37]. The

groups of Li and Lo have developed a series of cationic iridium(III)

complexes as phosphorescent probes for luminescence staining of

the cytoplasm of living cells [29,38–40].

Iridium(III) complexes with d6 electronic structures often

possess excellent photophysical properties such as tunable excita-

tion and emission wavelengths (from blue to red), high luminescent

quantum yields, and relatively long phosphorescence lifetimes

[41,42]. Iridium complexes have received considerable attention

in inorganic photochemistry [43–48], phosphorescent materials

for optoelectronics [49–60], chemosensors [61–66], biolabel-

ing[67–69], live cell imaging [29,70–72], and in vivo tumor

imaging [73]. As part of our continuous efforts, the cyclometalated

iridium(III) solvato complex [Ir(ppy)2(solv)2]+ has been utilized as a

selective luminescent switch-on probe for histidine/histidine-rich

proteins and a dye for protein staining in sodium dodecyl sulfate

polyacrylamide gels [74]. Subsequently, Li and co-workers

reported iridium(III) solvato complex [Ir(ppy)2(DMSO)2]+ as a

luminescence agent for imaging live cell nuclei [75]. Thus, we

were interested to investigate the effect of varying the extent of

conjugation of the C‘N co-ligand on the photophysical properties

of this type of complex. We herein report the application of

iridium(III) solvato complex [Ir(phq)2(solv)2]+ (1) for the detection
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Figure 1. Chemical structures of iridium(III) solvato complexes 1–3 bearing different C‘N ligands.
doi:10.1371/journal.pone.0055751.g001

Figure 2. Luminescence photographs (upper panel) of (left) [Ir(phq)2(H2O)2)]OTf (1), (middle) [Ir(ppy)2(H2O)2]OTf (3), and (right)
[Ir(bzq)2(H2O)2]OTf (2) at 1 mM concentration in DMSO solution under UV-transillumination. Emission spectra (lower panel) of complex
1 (50 mM) in 20 mM Tris buffer (pH 7.4) and DMSO.
doi:10.1371/journal.pone.0055751.g002

Cell Imaging

PLOS ONE | www.plosone.org 2 February 2013 | Volume 8 | Issue 2 | e55751



of histidine/histidine-rich proteins and for luminescence imaging

in cells. We demonstrate that the complex is successfully taken up

by both living and dead cells and can function as a selective

luminescent probe for cytoplasmic staining.

The luminescence response of complex 1 to various natural

amino acids was investigated (Figure 3). Complex 1 is non-emissive

in aqueous buffered solution in the absence of analyte. In the

presence of histidine, complex 1 exhibits an intense phosphores-

cence emission at lmax = 598 nm. No significant change in the

emission of the complex 1 was observed upon the addition of other

natural amino acids (Figure 3). This result indicates that complex 1

displays a high degree of selectivity for histidine over other amino

acids. Furthermore, the emission maxima of 1 falls on the

boundary of the near-infrared (NIR) ‘‘optical window’’ (600–

900 nm), which is a region where the absorbance of photons by

biological tissues decreases to a minimum [66]. This suggests that

complex 1 may be potentially developed for in vivo imaging

applications. By comparison, the previously reported iridium(III)

complex [Ir(ppy)2(solv)2]+ (3) utilized for cellular staining emits

green phosphorescence at a shorter wavelength of 505 nm in the

presence of histidine, which is outside the optical window [74,75].

We next studied the luminescence response of complex 1 with

bovine serum albumin (BSA) and calf-thymus DNA (ct DNA).

Complex 1 displayed an intense luminescence upon interaction

with the histidine-rich BSA, but was only weakly emissive in the

presence of ct DNA (Figure 4). Furthermore, the change in

luminescence intensity of complex 1 upon the addition of various

amounts (12.52100 mM) of histidine or BSA was investigated. The

results showed that BSA or histidine were able to induce significant

luminescence enhancements in complex 1 (Figure 5). In combi-

nation with previously published reports [74,76], we propose that

the labile solvato co-ligands of complex 1 are displaced by the

imidazole N-donor moieties of histidine residues via coordinative

bond formation. This shelters the metal center within the

hydrophobic environment of the protein, reducing solvent-

mediated non-radiative decay of the excited state and thereby

enhancing the phosphorescence of complex 1.

Figure 3. Emission spectra of complex 1 (50 mM) in 20 mM Tris
buffer (pH 7.4) with various natural amino acids (200 mM).
Group 1: L-alanine, L-arginine, L-asparagine, L-glutamine, L-threonine;
Group 2: L-glycine, L-isoleucine, L-lysine, L-phenylalanine, L-proline, L-
serine; Group 3: L-tryptophan, L-tyrosine, L-valine, L-glutamic acid, L-
cysteine, L-methionine.
doi:10.1371/journal.pone.0055751.g003

Figure 4. Photograph image of complex 1 (50 mM) in absence (left) or presence of BSA (50 mM, middle) or ct DNA (50 mM, right)
under UV-transillumination.
doi:10.1371/journal.pone.0055751.g004
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Results and Discussion

The cyclometalated iridium(III) solvent complexes 1–3 (Figure 1)

were synthesized according to previously reported methods (see

Materials and Methods). To examine the effect of varying the

extent of the conjugation of the C‘N co-ligand on the emissive

color of the complexes, we first obtained luminescence photo-

graphs of the complexes in dimethyl sulfoxide (DMSO) (Figure 2A).

Interestingly, complex 1 emits an intense orange luminescence in

DMSO under UV-transillumination and was thus considered as a

promising candidate for further cell imaging studies. On the other

hand, luminescence of 1 was significantly suppressed in Tris buffer

(Figure 2B). We rationalize that the reduced luminescence

intensity of 1 in aqueous solution is due to non-radiative decay

of the excited state of complex 1 by complex-solvent interactions.

Presumably, this effect is less pronounced in DMSO, leading to a

higher luminescence signal.

Figure 5. Luminescence intensity changes of complex 1 (50 mM)
in 20 mM Tris buffer (pH 7.4) with various amounts of BSA or
histidine (0, 12.5, 25, 50 and 100 mM).
doi:10.1371/journal.pone.0055751.g005

Figure 6. Brightfield images of live HeLa cells (top left). Luminescence images of cells stained with complex 1 (10 mM) in DMSO/PBS (pH 7.4,
1:99 v/v) for 10 min at 37uC (top right) and then with Hoechst 33258 for a further 20 min (bottom left). Overlay of images in (b) and (c) (bottom right).
doi:10.1371/journal.pone.0055751.g006
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We also investigated the application of iridium(III) complex 1

for staining fixed cells. HeLa cells fixed with 4% paraformalde-

hyde exhibited strong intracellular luminescence in the cytoplasm

upon incubation with complex 1 (Figure 8b). Similar to the results

with live cells, only weak luminescence was observed in the nucleus

of the fixed cells (Figure 8c,d). These results suggest that complex 1

is an effective luminescent cytoplasmic stain for both living and

dead cells.

The practical application of complex 1 as a luminescent probe

in living cells was investigated using confocal laser scanning

microscopy (Figure 6). HeLa cells showed negligible background

fluorescence. After incubation with 10 mM of 1 in DMSO/PBS

(pH 7.4, 1:99, v/v) for 10 min at 37uC, an intense intracellular

luminescence was observed particularly in the cytoplasm of the

cells, suggesting that the iridium(III) complex is cytoplasmic

permeable. No cell death was observed under the staining and

imaging conditions used (Figure 7). Overlay images revealed that

Figure 7. Cytotoxicity of complex 1 (concentration of
1 = 10 mM; incubation time = 10 min).
doi:10.1371/journal.pone.0055751.g007

Figure 8. Brightfield images of fixed HeLa cells (top left). Luminescence images of cells stained with complex 1 (10 mM) in DMSO/PBS (pH 7.4,
1:99 v/v) for 10 min at 37uC (top right) and then with Hoechst 33258 for a further 20 min (bottom left). Overlay of images in (b) and (c) (bottom right).
doi:10.1371/journal.pone.0055751.g008
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the luminescence pattern of complex 1 differed considerably from

that of DNA-binding dye Hoechst 33258 (Figure 6d). Further-

more, a large signal ratio was observed between the nuclei and

cytoplasm, indicating that complex 1 prefers to stain the

cytoplasmic regions of the cells. We presume that the observed

luminescence enhancement of complex 1 is due to its interactions

with histidine or histidine-rich proteins in the cellular cytoplasm.

These results indicate that complex 1 acts as a luminescent

imaging agent for live cells without requiring prior membrane

permeabilization.

Conclusions
In conclusion, we have presented the cytoplasmic permeable

iridium(III) complex 1 as a phosphorescent dye for live and fixed

cell imaging. Complex 1 shows a bright phosphorescence in living

cells, and effectively enters and stains the cytoplasm. Given that

the emission properties of metal complexes can be fine-tuned

through modifications of auxiliary ligands, we envision that further

improvements can be achieved in the application of luminescent

iridium(III) complexes as cellular imaging probes.

Materials and Methods

Materials
Iridium chloride hydrate (IrCl3.xH2O) was purchased from

Precious Metals Online. DMSO, L-alanine, L-arginine, L-

asparagine, L-glutamine, L-glycine, L-isoleucine, L-lysine, L-

phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan,

L-tyrosine, L-valine, L-glutamic acid, L-cysteine, L-methionine, L-

histidine, bovine serum albumin, and calf thymus DNA were

obtained from Sigma (St. Louis, MO). Hoechst 33258 and cell

culture reagents were purchased from Invitrogen (Carlsbad, CA).

Synthesis of [Ir(C^N)2(H2O)2]OTf (1–3, where
OTf = trifluoromethanesulfonate)

The following complexes were prepared using literature

methods: [Ir2(ppy)4Cl2] [77], [Ir2(bzq)4Cl2] [77], [Ir2(phq)4Cl2]

[78], [Ir(ppy)2(H2O)2]OTf [79], [Ir(phq)2(H2O)2]OTf [76], and

[Ir(bzq)2(H2O)2]OTf [76].

Emission Measurement
A stock solution of the complex [Ir(phq)2(H2O)2)]OTf was

diluted (50 mM, final concentration) into Tris buffer (20 mM,

pH 7.4) with the corresponding concentrations of histidine

(200 mM), groups of other amino acids (200 mM), ct DNA

(50 mM) or BSA (50 mM). The emission spectra were recorded

in the 555–730 nm range, after equilibration at 25uC for 5 min.

Excitation wavelength = 365 nm.

Cell Culture
HeLa cells were maintained in minimum essential medium

(MEM) supplemented with fetal bovine serum (10%), penicillin

(100 U mL21), streptomycin (100 mg mL21) at 37uC under a

humidified atmosphere with 5% CO2.

Luminescence Imaging
For colocalization imaging of living cells. The cells were washed

with PBS, then incubated with 10 mM of iridium complex in

DMSO/PBS (pH 7.4, 1:99, v/v) for 10 min at 37uC, and then

further incubated with Hoechst 33258 for another 20 min before

imaging.

For colocalization imaging of fixed cells. The cells were

detached from the culture and were fixed with 4% paraformal-

dehyde at room temperature for 20 min. After washing with PBS,

the fixed cells were incubated with 10 mM of iridium complex in

DMSO/PBS (pH 7.4, 1:99, v/v) for 10 min at 37uC, and then

further stained with Hoechst 33258 for another 20 min. After

washing with PBS, the coverslips were separated from the

chamber, and the cells were mounted with 10% glycerol and

sealed with nail varnish on a glass substrate.
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