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Introduction. The acute kidney injury (AKI) is characterized by a sudden glomerular filtration reduction. Renal or intrinsic
causes of AKI include nephrotoxicity induced by exogenous agents like cisplatin, which causes oxidative stress altering the
biochemical process and leading to apoptosis. Therefore, this research is aimed at analyzing the embryonic stem cells (ESC)
nephroprotective effect in AKI induced by cisplatin, employing genetic, phenotypic, and microspectroscopic techniques.
Methods. Thirty mice were randomly divided into three groups (n = 10): the healthy, isotonic salt solution (ISS), and
mouse embryonic stem cells (mESC) groups. The ISS and mESC groups were subjected to AKI using cisplatin; 24 h
post-AKI received an intraperitoneal injection of ISS or 1 × 106 mESC, respectively. At days 4 and 8 post-AKI, five mice
of each group were sacrificed to analyze the histopathological, genetic (PDK4 and HO-1), protein (p53), and vibrational
microspectroscopic changes. Results. Histopathologically, interstitial nephritis and acute tubular necrosis were observed;
however, the mESC group showed a more preserved microarchitecture with high cellularity. Additionally, the PDK4 and HO-1
gene expression only increased in the ISS group on day 4 post-AKI. Likewise, p53 was more immunoexpressed at day 8
post-AKI in the ISS group. About biomolecular analysis by microspectroscopy, bands associated with lipids, proteins, and
nucleic acids were evidenced. Besides, ratios related to membrane function (protein/lipid), unsaturated lipid content
(olefinic/total lipid, olefinic/total CH2, and CH2/CH3), and lipid peroxidation demonstrated oxidative stress induction and lipid
peroxidation increase mainly in the ISS group. Finally, the principal component analysis discriminated against each group;
nonetheless, some data of the healthy and mESC groups at day 8 were correlated. Conclusions. The mESC implant diminishes
cisplatin nephrotoxicity, once the protective effect in the reduction of lipid peroxidation was demonstrated, reflecting a
functional and histological restoration.

1. Introduction

The acute kidney injury (AKI) is characterized by a sudden
glomerular filtration reduction, provoking the kidney inabil-
ity to excrete wastes, such as nitrogen products, losing the
homeostasis of fluids and electrolytes. Renal or intrinsic
causes of AKI include nephrotoxicity induced by exogenous

agents like cisplatin, which causes oxidative stress, being the
primary site of injury the proximal tubules of the renal
parenchyma. The nephrotoxic AKI alters the biochemical
process and leads to apoptosis, culminating in acute tubular
necrosis (ATN), characterized morphologically by tubular
epithelial cell destruction and clinically by the loss of renal
function [1].
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Currently, the therapies for AKI involve the use of
continuous renal replacement techniques indicated for fluid
management, correction of electrolyte and pH problems,
and treatments for clinical alterations secondary to uremia
[2], but unfortunately, these therapies do not resolve the
progressive decrease of renal function.

Although these techniques represent the primary treat-
ment against kidney injury (KI), they are associated with high
morbidity and mortality. For this reason, it is necessary to
explore new alternative therapies for nephropathic patients,
seeking a definitive treatment for KI, which might increase
tissue regeneration and renal function [3].

Conceptually, the regenerative medicine is a branch of
the medicine associated with therapies that regenerate,
repair, or replace tissues or the function of an organ by
stimulating and inducing its self-regeneration. Schematically,
this discipline includes two therapeutic strategies: one based
on tissue engineering and the other focused on the use of
living cells or cellular therapies. About cell therapies, grafts
or implants of mature cells, progenitor cells, or stem cells
(SC) are used in this branch [4].

Embryonic stem cells (ESC) have a high capability for
self-renewal and pluripotency, which allow them to give rise
more SC and differentiate into the three germ lines and their
different cell lineages [5]. These cells are mainly obtained
from the internal cell mass of the embryo in the blastocyst
stage and are characterized by their ability to retain their
proliferative properties in an undifferentiated state for an
extended period of in vitro culture and also by their differen-
tiation into diverse types of specialized cells [6], such as pan-
creatic [7, 8], cardiac [9], nervous [10], and renal cells [5, 11].
In this sense, new therapeutic options for kidney regeneration
are widely studied and tested in animal models of KI [12–16].

The cis-diaminodichloroplatinum (II) or cisplatin (CDDP)
is an antineoplastic drug used in the treatment of many
cancers in solid organs [17]. Clinical studies have shown
that approximately one-third of patients who use this
antineoplastic suffer kidney damage, showing an increase
in blood urea nitrogen and creatinine, as well as electrolyte
imbalance [18].

One of the cellular targets of the CDDP is the nuclear
DNA, and this genetic material interaction is the reason of
its complex nephrotoxicity mechanisms, involving multiple
molecules and signaling pathways such as an imbalance in
the prooxidant/antioxidant mechanism promoting oxidati-
ve/nitrosative stress, triggering cytotoxicity. Among the
molecules of interest, p53 is considered an essential mediator
of cell death induced by the CDDP. In this regard, several
studies have demonstrated that the CDDP-induced nephro-
toxicity increases the expression of p53 in proximal tubules,
highlighting that the expression of this proapoptotic protein
is correlated with the progression of KI [19–21].

Another mechanism that contributes to the nephrotoxi-
city caused by CDDP is the inhibition of the synthesis of
mitochondrial energy compounds. Fatty acids are the pri-
mary source of energy of the proximal tubules, which are
the primary target of injury and progression of kidney disease
caused by CDDP [22]. About this, PDK4 (pyruvate dehydro-
genase kinase) gene induces the inhibition of PDC (pyruvate

dehydrogenase complex) by phosphorylating its catalytic
subunits E1. The PDC catalyzes the conversion of pyruvate
to acetyl-CoA, which results in the oxidation of carbohy-
drates and regulates the entry of these into the tricarboxylic
acid cycle [23, 24]. It is important to mention that PDK4 is
related with the metabolic dysregulation observed in multiple
illnesses such as diabetes type 2 [25, 26], hyperthyroidism
[27], cardiomyopathy [28], and KI [22, 29].

On the other hand, CDDP can induce the generation of
various reactive oxygen species (ROS) by inactivating the
cellular antioxidant system, disrupting the mitochondrial
respiratory chain, or interacting with the microsomal cyto-
chrome P450, and it is known that the kidney is especially
vulnerable to free radicals, because it is one of the main sites
for carrying out oxidative processes. Recently, it has been
shown that in high states of oxidative stress, there is an
overexpression of the enzyme heme oxygenase-1 (HO-1) in
renal tubular cells as a protective response to a diverse range
of toxic factors [30, 31].

About HO-1 gene expression, many authors have
reported that HO-1 gene expression induction may serve
as an immediate nephroprotective response during CDDP
treatment. As aforementioned, oxidative pathways partici-
pate in CDDP nephrotoxicity, and the inhibition of HO-1
increases the ROS levels; contrary, HO-1 induction protects
significantly against CDDP cytotoxicity. In this sense, defi-
ciency or inhibition worsens renal structure and function,
and the overexpression of this gene has been associated with
nephroprotection. For instance, nephroprotection by global
HO-1 induction using chemical inducers and transgenic mice
that overexpress HO-1 has been demonstrated in ischemia-
reperfusion injury, nephrotoxin-induced kidney injury, acute
glomerulonephritis, obstructive nephropathy, and rhabdo-
myolysis [32, 33].

Considering those mentioned above, therapeutic strate-
gies for KI are needed; in previous works, we have demon-
strated the mouse ESC (mESC) differentiation capability
[5, 8], as well as their beneficial effects when they are
implanted in different animal models [34, 35]. Nevertheless,
the spectral analysis by Fourier-transform infrared micro-
spectroscopy (FTIRM) after the implantation of mESC in a
murine model of AKI and its correlation with the genetic
expression have not been studied to show the nephroprotec-
tive effect in the lipid peroxidation. Therefore, this research is
aimed at analyzing the mESC nephroprotective effect in
AKI induced by CDDP, employing genetic, phenotypic,
and spectroscopic techniques.

2. Materials and Methods

2.1. Animal and Study Groups. This experimental work
followed the guidelines of the Norma Oficial Mexicana
Guide for the use and care of laboratory animals (NOM-
062-ZOO-1999) and the disposal of biological residues
(NOM-087-ECOL-1995). The animals were males, NIH
strain of 2 months old. They were kept in metabolic cages
(Allentown Inc.; EcoFlo Rack) in humidity (50-60%) and
constant temperature conditions (21 ± 1°C) with a 12h light/
dark cycle and had free access to food and water at all times.
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Thirty adult mice were randomly divided into three
groups (n = 10): the healthy group, isotonic salt solution
(ISS) as the control group, and mESC as the experimental
group. The healthy group was employed to obtain the normal
values of the genetic and protein expression, as well as the
spectra of healthy kidney tissue; this group was not manipu-
lated at all. The ISS and mESC groups were subjected to AKI
and subsequently received an intraperitoneal (i.p.) injection
according to the group that they belonged at 24h post-AKI.
The control group received an i.p. injection of 500μl of ISS,
whereas the experimental group received an i.p. implant of
1 × 106 mESC resuspended in 500μl of ISS. At days 4 and 8
post-AKI, five mice of each group were sacrificed. One
kidney of each animal was designated for the obtention of
histological sections for histopathological analysis, p53
immunodetection, and FTIRM, and another kidney was used
for RNA extraction for the genetic analysis. Renal function
was checked prior assays through creatinine serum levels.

2.2. Acute Kidney Injury Induction. All members of the
control and experimental groups were subjected to AKI
employing 18mg/kg of CDDP (Sigma-Aldrich; P3494),
which was administered by an i.p. injection. Serum creatinine
was analyzed 48 h prior AKI to prove the health state of all
members of the ISS and mESC groups. In the same way,
the KI state was checked at days 4 and 8 post-AKI.

2.3. Embryonic Stem Cell Culture. Mouse ESC (ATCC;
SCRC-1011) were seeded at a density of 50,000 cells/cm2 on
a mouse embryonic fibroblast monolayer, employing mESC
basal medium (ATCC; SCRR-2010) supplemented with 15%
fetal bovine serum, 0.1mM 2-mercaptoethanol (Invitrogen;
21985023), and 1,000U/ml mouse leukemia inhibitory factor
(Chemicon; ESG1107). The cells were incubated at 37°C in a
humidified 5% CO2 and 95% air incubator. When cultured
cells reached 70% confluency, mESC were characterized
morphologically and phenotypically by optic microscopy
and immunofluorescence technique, as previously reported
[5, 8, 35], to confirm the pluripotency state of the cells. After
that, doses of 1 × 106 mESC were obtained and resuspended
in 500μl of ISS.

2.4. Histopathological Analysis. The histopathological analy-
sis was developed at days 4 and 8 post-AKI, sacrificing five
mice of each group in each day. As aforementioned, one
kidney of each animal was used for this purpose, including
the immunocytochemistry and microspectroscopy analysis.
For the histopathological and immunocytochemistry anal-
ysis, the kidneys were embedded in Tissue-Tek (Sakura;
4583) and frozen; subsequently, three kidney tissue cryosec-
tions of 4μm were obtained from each kidney using a

freezing microtome (Ecoshel; ECO-1900). After that, tissue
cryosections were fixed in 4% paraformaldehyde for 30
minutes at room temperature and rinsed with phosphate-
buffered solution (PBS). Afterward, hematoxylin & eosin
staining was performed according to the standard methods.
Stained sections were analyzed using a light microscope
(Nikon; Eclipse Ti-U) and the software Image-Pro Premier
9.1 (Media Cybernetics).

2.5. RT-qPCR Assays. Similar to the histopathological analy-
sis, the genetic examination was developed at days 4 and 8
post-AKI, considering the remaining kidney for this study.
Towards this end, total RNA of kidneys mice was isolated
using TRIzol reagent (Invitrogen; 15596-018) following the
manufacturer’s instructions (Invitrogen; 15596-018); after
that, cDNA synthesis was performed using the first-strand
cDNA synthesis kit (Invitrogen; 12328-040). RT-qPCR was
conducted by using the ABI PRISM 7000 Sequence Detection
System (Applied Biosystems, USA). At each cycle, accumula-
tion of PCR products was detected by monitoring the
increase in fluorescence of the reporter SYBR Green PCR
Master Mix (Applied Biosystems; 4309155). Straight away
after the amplification, dissociation curves were run and
analyzed to ensure the specificity of the PCR product. The
relative expression levels were calculated using the CT
method, which uses the arithmetic formula 2−ΔΔCT. Relative
RNA levels of all tested genes were normalized to the β-actin
housekeeping gene and were expressed as means ± standard
deviation (SD). Primers were designed using the Primer
BLAST Software (Table 1).

2.6. Immunofluorescence Staining. For the immunodetection
of p53, the tissue sections were fixed in 4% paraformaldehyde
(Sigma; P6148) for 30 minutes, and then the samples were
rinsed with PBS twice. Subsequently, fixed tissues were
permeabilized with 0.1% Triton X-100 (Sigma; X-100) in
PBS at room temperature for 5 minutes, and after that,
samples were rinsed with PBS and incubated with blocking
protein (Dako; X0909) for 20 minutes to inhibit nonspecific
staining. Immunocytochemistry staining was done using
mouse primary antibody anti-p53 (1 : 200, Santa Cruz Bio-
technology; Pab1801:sc-98); anti-p53 was incubated for 60
minutes at room temperature. Subsequently, samples were
washed with PBS twice, and the conjugated secondary
antibody Alexa Fluor 647 goat anti-mouse (1 : 200, Abcam;
ab150115) was incubated for 45 minutes in darkness. Finally,
the samples were washed with PBS and coverslipped with
10% glycerol. Microscopic observations were performed
in fluorescence microscopy (Nikon; Eclipse Ti-U). Three
sections of each kidney were analyzed.

Table 1: Nucleotide sequences of primer pairs used for real-time qPCR.

Gene Forward 5′-3′ Reverse 5′-3′
PDK4 GAGCTGTTCTCCCGCTACAG CGGTCAGGCAGGATGTCAAT

HO-1 CAGAAGAGGCTAAGACCGCC TCTGACGAAGTGACGCCATC

β-Actin AGAGGGAAATCGTGCGTGAC AACCGCTCGTTGCCAATAGT
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2.7. Fourier-Transform Infrared Microspectroscopy Analysis.
To develop the biomolecular analysis trough vibrational
spectroscopy, three tissue sections of each kidney were
analyzed by FTIRM using an FTIR microscope (Jasco;
IRT-5200) coupled to an FTIR spectrometer (Jasco; 6600),
measuring glomeruli and the tubular system from the cortex
and medulla in triplicate. For which purpose, cryosections of
5μm were obtained and mounted on a gold-coated micro-
scope slide with a gold layer thickness of 100nm (Aldrich;
643246-5EA). After that, employing a Cassegrain objective
of 16x, kidney tissue was focused and dried at room temper-
ature for about 15 minutes to remove excess water, measur-
ing the spectra until the absorption bands related to water
were undetectable. Each spectrum was collected in the
mid-infrared range (4000-400 cm-1) at a spectral resolution
of 4 cm-1 with 120 scans.

2.8. Spectral Analysis. Spectral analysis was performed in the
C-H stretching (3025-2800 cm-1) and on the fingerprint
(1800-800 cm-1) regions using a Jasco Spectra Manager
software. FTIR absorbance spectra were normalized using a
standard normal variate (SNV) normalization employing
the Unscrambler X software (version 10.3, Camo). All the
spectra of each analyzed microstructure (glomeruli and
tubular system of the cortex and medulla) were averaged
according to the group that they belonged. Then, the second
derivative was calculated employing the Savitzky-Golay algo-
rithm with fifteen point windows and the second polynomial
order using the Unscrambler X. Thereafter, the second deriv-
ative spectra were analyzed in terms of deconvoluted absorp-
tion bands to determine the individual vibrational modes
that contribute to the FTIR signal by using a best-fit peak
fitting routine of Origin software (version 6.0, OriginLab
Corporation), based on the Levenberg-Marquardt nonlinear
least-squares method, obtaining the Lorentzian curves
whose intensities were used to calculate the ratios corre-
sponding to protein/lipid, olefinic/total lipid, olefinic/total
CH2, CH2/CH3, and lipid peroxidation described in Table 2.
Each spectral peak was manually selected to define the
starting condition for the best-fit procedure. Finally, the
Unscrambler X was used to perform the principal compo-
nent analysis (PCA) in the lipid spectral region.

2.9. Statistical Analysis. All data were performed in triplicate,
and all experiments were repeated at least three times. Serum
creatinine concentrations, gene expression data, the protein
fluorescence intensity, and area ratios were presented as
mean ± SD. These data were analyzed using one-way analysis
of variance (ANOVA), followed by Tukey’s test to determine
any significant differences. p values of less than 0.05 were
considered statistically significant.

3. Results

3.1. Serum Biochemical Analysis. As previously mentioned,
renal function was checked through creatinine serum levels
48 h prior AKI in the ISS and mESC groups, which exhib-
ited normal values (0 69 ± 0 19 for the ISS group and
0 73 ± 0 17mg/dl for the mESC group). After that, the creat-
inine was analyzed on day 4 post-AKI showing a significant
increment in the ISS and mESC groups (2 33 ± 0 68 and
1 86 ± 0 53mg/dl, respectively). Likewise, this metabolite
was evaluated at day 8 post-AKI evidencing a decrement
(1 62 ± 0 83 for the ISS group and 1 15 ± 0 11mg/dl for the
mESC group) (Figure 1). In the ISS group, a statistical signif-
icance was shown at days 4 and 8 post-AKI concerning
preinduction values; nevertheless, the mESC group only
showed a statistical significance at day 4 post-AKI regarding
preinduction values. However, no statistical significance was
observed between the ISS and mESC groups.

Once KI was evidenced, histopathological, genetic,
phenotypic, and spectroscopic analyses were carried out at
days 4 and 8 post-AKI.

3.2. Histopathological Description. Five mice of each group
were sacrificed at days 4 and 8 post-AKI, and three kidney
tissue sections of each kidney were obtained to analyze the
tubular system and glomeruli.

Both groups (the ISS and mESC groups) exhibited a
segmental focal glomerulosclerosis (SFG) (1) and interstitial
nephritis characterized by inflammatory infiltrated (2), as
well as characteristics related to ATN, such as tubular
dilatation (3) and diffuse denudation of the tubular cells
plugging the tubular lumen (4). Even though these histolog-
ical changes were observed in both groups, it is worth to

Table 2: Ratio assignment obtained from Fourier-transform infrared microspectroscopy (FTIRM).

Ratio name Chemical description Spectral assignment

Protein/lipid
Amide II bending N-H and stretching vibration C-N

(δNH-vC-N)/CH3 asymmetric stretching vibration (vasCH3)
1543 cm-1/2960 cm-1

Olefinic/total lipid

=CH cis stretching vibration (cisvC=C-H)/[=CH cis stretching
vibration (cisvC=C-H)+CH2 asymmetric stretching vibration
(vasCH2)+CH2 symmetric stretching vibration (vsCH2)+C=O

stretching (vC=O)+CH2 bending (δCH2)]

3013 cm-1/(3013 + 2921 + 2854 + 1746 + 1457 cm-1)

Olefinic/total CH2

=CH cis stretching vibration (cisvC=C-H)/[CH2 asymmetric
stretching vibration (vasCH2)+CH2 symmetric stretching

vibration (vsCH2)+CH2 bending (δCH2)]
3013 cm-1/(2921 + 2854 + 1457 cm-1)

CH2/CH3
CH2 asymmetric stretching vibration (vasCH2)/CH3 stretching

vibration (vasCH3)
2921 cm-1/2960 cm-1

Lipid peroxidation C=O stretching (vC=O)/CH2 bending (δCH2) 1746 cm-1/1457 cm-1
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mention that in the mESC group the tubules were less
dilated; moreover, cytoplasmic vacuoles in the proximal
tubular cells (5) and binucleation (6) were also detected
(Figure 2).

3.3. Gene Expression. In this research, genes that encode
enzymes involved in the mitochondrial metabolic pathways
such as PDK4 and HO-1 were studied in the three groups,
considering two measurement times for the ISS and mESC
groups at days 4 and 8 post-AKI. Changes in the relative
expression by RT-qPCR of the genes mentioned above are
summarized in Figure 3.

The results showed that PDK4 gene expression increased
up to 47-fold at day 4 in the ISS group with respect to the
healthy group; nevertheless, in the mESC group, the expres-
sion decreased to 0.01-fold with respect to the healthy group.
After that, at day 8 post-AKI, the expression of this gene
decreased in the ISS group to 0.7-fold, and in the group
treated with mESC, the expression increased to 0.08-fold.
It is important to mention that in both groups at day 8
post-AKI, the expression was lower than that in the
healthy group (Figure 3(a)).

With respect to HO-1 gene expression at day 4 post-AKI,
as observed in PDK4 gene, the expression of this gene also
increased up to 115-fold in the ISS group with respect to
the healthy group; in the same way, the expression increased
in the mESC group to 4-fold in relation to the healthy
group. Finally, at day 8 post-AKI, the expression decreased
in both groups to 0.4 for the ISS group and to 0.6 for the
mESC group, almost reaching the expression of the healthy
group (Figure 3(b)).

3.4. Immunodetection of p53. Figure 4 shows the immunode-
tection of the proapoptotic protein p53 in mouse kidney
histological samples, specifically in the proximal tubule

region. The expression of the protein p53 at day 4 post-AKI
was evidenced in the ISS and mESC groups; however, in the
group treated with ISS, this expression was higher, increasing
significantly at day 8 post-AKI in the ISS groups with respect
to the mESC group, highlighting that a statistical significance
was observed in all groups concerning the healthy group and
between ISS and mESC groups.

3.5. Fourier-Transform Infrared Microspectroscopy. The
averages of the raw and normalized FTIRM spectra of the
three groups are shown in Figure 5(a), and the spectral band
assignments are summarized in Figure 5(b). Two measure-
ment times for the ISS and mESC groups were considered
at days 4 and 8 post-AKI. In the biological fingerprint region
(1800-800 cm-1), different representative bands associated to
biomolecules are evidenced such as lipids, proteins, carbohy-
drates, and nucleic acids.

Regarding the fingerprint region, in the spectral interval
between 1700 and 1500 cm-1 related to amide I and II groups
of the proteins, an increase in the absorption bands in the
AKI groups (ISS and mESC) was shown; at day 4 post-AKI,
the mESC group exhibited the highest peak intensity at
1656 cm-1 which corresponds to amide I, decreasing at
day 8. Nevertheless, in the ISS group, even though an
increment in the intensity of this band was observed with
respect to the healthy group, it retained almost equal at days
4 and 8 post-AKI. After that, it has shown the following
absorption bands at 1457 cm-1, 1340 cm-1, 1238 cm-1, and
1084 cm-1, which are related to CH2 bending of lipids,
collagen, and PO-

2 asymmetric and symmetric stretching of
phospholipids and nucleic acids, respectively. These bands
show high intensity in the ISS group compared to the healthy
group, whereas these bands in the mESC group were lower in
intensity with respect to the healthy group (Figure 5).

On the other hand, employing the second derivative
spectra, the ratios of protein/lipid, olefinic/total lipid,
olefinic/total CH2, CH2/CH3, and lipid peroxidation were
calculated (Table 2), in order to determinate structural and
compositional alterations, like lipid concentration, acyl chain
flexibility, and lipid peroxidation (Figure 6).

Concerning ratio analysis to evaluate the alterations in
lipids, Figure 6(a) shows the protein/lipid ratio. Even though
we did not find a statistically significant difference between
groups, a ratio decrement in the ISS group at day 4 post-
AKI with respect to the healthy group was evidenced, while
the mESC group presented higher ratio values at days 4 and
8 post-AKI.

Moreover, Figures 6(b) and 6(c) show the ratios of olefi-
nic/total lipid and olefinic/total CH2 associated with unsatu-
rated lipid levels. The olefinic/total lipid ratio significantly
increased in the ISS group on day 4, decreasing after that
on day 8. Nevertheless, in the mESC group, no statistical
significance was shown at days 4 and 8 with respect to the
healthy group. In the same way, the olefinic/total CH2 ratio
increased in the ISS group at days 4 and 8 post-AKI, finding
a statistically significant difference, whereas the mESC group
exhibited a decrement in this ratio at day 4 and a slight
increment at day 8 post-AKI, highlighting that no statistical
significance was observed in this group.
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Figure 1: Serum creatinine levels. The graph displays the serum
creatinine values of the groups treated with isotonic salt solution
(ISS) and mouse embryonic stem cells (mESC) 48 h prior acute
kidney injury (AKI), at days 4 and 8 post-AKI. The bars represent
the means ± standard deviation (p < 0 0001).
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Regarding chain length of lipids, the CH2/CH3 ratio
depicted in Figure 6(d) displays that this ratio significantly
decreased in the ISS group compared to the healthy group;
even though in the mESC group a slight increment was evi-
denced, the ratios were quite similar to the healthy group.

About lipid peroxidation levels (Figure 6(e)), this ratio
increased in the ISS group at day 8 post-AKI, finding a statis-
tically significant difference; nonetheless, the mESC group
showed almost the same ratios than the healthy group.

Finally, to correlate the multiple variables obtained
from the second derivative spectra, a PCA was performed
in the C=O stretching vibration region of lipids region
(1752-1731 cm-1). In Figure 7, the first three components
(PC1, PC2, and PC3) are depicted explaining the 98% of
the total variation of the initial data. This analysis revealed
that each studied group is separated in a cluster; nonetheless,
some data of the healthy and mESC groups at day 8 are
correlated in the PC1 and PC3.
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inflammatory infiltrated (2), tubular dilatation (3), and diffuse denudation of the tubular cells plugging the tubular lumen (4). The
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were analyzed at days 4 and 8 postacute kidney injury. RT-qPCR was performed in triplicate for each sample; bars represent means ± SD.
Expression levels were normalized against the housekeeping gene β-actin (∗∗p < 0 001 and ∗∗∗p < 0 0001).
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4. Discussion

Recent development in cell therapy has demonstrated
promising therapeutic effects in KI. Nonetheless, before
considering the use of this therapy as a medical option,
genetic and biomolecular effects need to be widely studied.
For this reason, in this research, we induced AKI in mice
employing CDDP, evaluating the mESC implant effects; for
which purpose, genetic, phenotypic, and spectroscopic
analyses were developed through RT-qPCR, immunocyto-
chemistry, and FTIRM.

Firstly, the KI was confirmed through creatinine serum
biochemical analysis. It has been reported that in mice,
normal serum creatinine range is 0 630 ± 0 097mg/dl [36],
a value that is quite similar to the one obtained in this
research before AKI, confirming that all the animals used
in this study were healthy. In the same way, similar to

Takai et al. who stated values of serum creatinine of
1 72 ± 0 37mg/dl 24h after CDDP (30mg/kg) administra-
tion in mice [36], we reported values of 2 33 ± 0 68mg/dl
in the ISS group and 1 86 ± 0 53mg/dl in the mESC group
at day 4 post-AKI, evidencing a remarkable increase of
creatinine in both groups; nevertheless, at day 8 post-AKI,
a decrement was observed in both groups (1 62 ± 0 83 for
the ISS group and 1 15 ± 0 11mg/dl for the mESC group),
which is related to a better renal function. Although no
statistical significance was observed between the ISS and
mESC groups, it is important to mention that neither
was between the creatinine values obtained in the mESC
group prior AKI and at day 8 post-AKI, which could be
related to the initial renal function restoration.

Regarding histopathological analysis, the classification
of the World Health Organization for tubulointerstitial
diseases considers the etiology, clinical, and histological
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Figure 4: Immunodetection of p53. The graph displays the quantification of fluorescence of the proapoptotic proteins (p53) on kidney tissue;
bars represent the means ± SD. p represents the value of statistical significance in protein expression between the healthy group and isotonic
salt solution (ISS) and mouse embryonic stem cells (mESC) groups. Representative images of immunofluorescence of p53 protein on kidney
tissues of mice subjected to acute kidney injury (AKI) treated with ISS or mESC at days 4 and 8 post-AKI (n = 5 with three biological
replicates, 200x).
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characteristics, stating that the CDDP causes ATN [37]. In
this respect, our results showed that in both groups (ISS
and mESC) at days 4 and 8 post-AKI, histological character-
istics related to toxic ATN were observed, such as inflamma-
tory infiltrate, tubular dilatation, and cell desquamation
which plugged the tubular lumen (Figure 2). These results
agree with Takai et al. who examined mouse kidneys
obtained 72h after CDDP administration, reporting tubular
necrosis, dilatation, and hyaline cast [36]. In the same way,
agree with Liu et al. who i.p. injected 20mg/kg of CDDP in
mice, reporting severe pathological changes characterized
by the distortion of the overall kidney morphology, mainly
dilation of renal tubules [38] and also with Ciarimboli et al.
who i.p. injected 15mg/kg of CDDP, reporting 4 days after

AKI signs of renal toxicity such as tubular protein casts and
vacuolization of proximal tubular cells [39]. Nevertheless,
in the mESC group, although intratubular obstruction and
inflammatory infiltrate were also observed, the microarchi-
tecture was more preserved, and the tubules were less dilated;
in the same way, in the proximal tubular cells, cytoplasmic
vacuoles were detected. About this, it is known that cells with
reversible lesions can be microscopically identified by the
presence of cloudy swelling or hydropic degeneration, being
the result of ion and fluid homeostasis that leads to an
increase of intracellular water. Besides, binucleation was also
shown, representing a consequence of cell injury and a sort of
chromosome hyperplasia which is usually seen in regenerat-
ing cells. These results suggest that in the mice that received
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the mESC treatment, the pathological process of nephro-
toxicity was stopped in the early stages, promoting a
regeneration process [40].

With respect to RT-qPCR analysis, it is known that the
overexpression of PDK4 leads to the enhancement of fatty
acid oxidation (FAO) and decreases the glucose oxidation
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Figure 6: Ratios of structural and compositional alterations obtained from spectroscopic analysis. Ratios related to membrane function,
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[41]. Likewise, Li et al. and Oh et al. have reported that PDK4
mRNA and protein levels are markedly increased in the
kidneys of mice treated with CDDP [22, 29], which also
was seen in this research on day 4 in the ISS group; neverthe-
less, in the mESC group, this upregulation was not seen. It is
important to mention that CDDP induces the upregulation
of PDK4 producing mitochondrial dysfunction, ROS exces-
sive production, and lipid accumulation. Therefore, PDK4
downregulation could hold therapeutic potential for prevent-
ing cisplatin-induced kidney injury [29].

Moreover, as previously mentioned, CDDP can also
induce the generation of various ROS that have a high toxic
potential to produce diseases such as AKI through the
interruption of the mitochondrial respiratory chain, inactiva-
tion of the cellular antioxidant system, or the interaction with
the microsomal cytochrome P450 [31]. About this, the
kidney is especially vulnerable to free radicals, because it is
one of the most critical sites for oxidative processes. A signif-
icant change in cellular redox may represent a sufficient
stimulus for the induction of the expression of genes such
as HO-1 [30] that encodes for a rate-limiting enzyme which
catalyzes group heme into carbon monoxide, iron, and bil-
irubin [42]. Recent studies have reported that in high
states of oxidative stress, the HO-1 expression is induced
as a protective response of cells exposed to diverse toxic
factors [43]. Our results revealed a significant increase in
the expression levels of HO-1 at day 4 in the ISS group
(Figure 3), indicating that this group was subjected to
oxidative stress. In this sense, the implantation of mESC
reduced the environment of oxidative stress in kidney

tissue, which also agrees with the histopathological analysis,
once the restoration of the microarchitecture in the mESC
group was evidenced.

On the other hand, according to the protein analysis, it is
well known that p53 is an essential mediator of cell death
induced by CDDP, causing cell cycle arrest and apoptosis,
as well as activation of oncogenes and hypoxia. There are a
large number of studies related to the expression of this proa-
poptotic protein and nephrotoxicity by CDDP [18, 20, 21].
Our results showed that in the ISS group, the protein P53
was expressed at day 4 post-AKI increasing its expression
considerably at day 8 post-AKI. Nevertheless, in the mESC
group, this protein was almost undetectable at days 4
and 8 post-AKI. As previously mentioned, mice treated
with mESC showed better renal function and less tissue
damage, which correlates with a lower immunodetection
of this proapoptotic protein (Figure 4).

Concordant with the genetic and phenotypic analysis, the
FTIRM spectral analysis supported the results mentioned
above. As previously mentioned, structural information of
biomolecules such as lipids, proteins (amide I, amide II,
and amide III), and nucleic acids was obtained (Figure 5).

With respect to the amide I region (1700-1600 cm-1)
related to symmetric stretching vibration of C=O in protein
and nucleic acids [43], this band increased in all groups
compared with the healthy group; in the ISS group, this
increment could be correlated with an augment in protein
synthesis, mainly associated with extracellular matrix pro-
teins, related to fibrosis. CDDP inhibits protein synthesis of
tubular epithelial cells and triggers proapoptotic molecules
associated to inflammatory changes that activate macro-
phages in response to ROS generation, inducing the expres-
sion of inflammatory cytokines such as IL-1, IL-6, TGF-β,
and RANTES, contributing to the subsequent fibroprolifera-
tive process characterized by overexpression and deposition
of collagen types I, III, and IV [44–46]. Even though in the
mESC group this band was also high, it is possible that this
augmentation is not related to an increment in the produc-
tion of matrix proteins, once it has been reported that
changes in proteins and DNA structure could modify amide
I band intensity and SC induce glomerular and tubular cell
proliferation, increasing cellular survival by secreting proan-
giogenic and trophic factors, justifying the augmentation of
this band with the kidney cell proliferation, which also agree
with the histological results once regeneration data such as
binucleation were shown. Moreover, Aggarwal et al. and
Eirin et al. have reported that SC reduce fibrosis in murine
and porcine models of renal stenosis [47, 48].

As previously mentioned, amide I is associated with col-
lagen, reason by which in this research we analyzed specifi-
cally the collagen band at 1340 cm-1, where an increment in
the intensity of this band in the ISS group and a reduction
in the mESC group were observed that could be related to
fibroproliferative process in the ISS group and a fibroprotec-
tive effect in the mESC group, agreeing our results with Liu
et al. who reported an increase in the band at 1338 cm-1 in
liver early fibrosis [49], although it is important to mention
that Liu used synchrotron infrared microspectroscopy to
characterize the liver fibrosis. Besides, these results also agree
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with our histopathological results, once glomerulosclerosis
was also histologically evidenced.

Additionally, information about the concentration of the
biomolecules can be determined from the intensity and the
area spectral bands; moreover, the ratios of the band areas
provide information about metabolic changes that could
correlate to the structure-function relationship [43, 50–52].
In this sense, we analyzed changes in lipid dynamics, such
as lipid concentration, acyl chain flexibility, and lipid perox-
idation, due to it is reported that biomolecular changes such
as lipid alteration, lipid fluidity, protein lipid composition,
and the relation between unsaturated/saturated lipids show
structure-function relationship, which is related to physio-
logical disorders. Moreover, the band ratios have been used
to analyze changes in the cell cycle as well as changes in dif-
ferent metabolic states. In this research, variations in the pro-
tein/lipid ratio were observed, which is concordant with the
p53 protein expression, results that also agree with those
obtained by Yang et al. who reported changes in this ratio
due to metabolic changes induced by radiation regulated by
p53 [43].

In this regard, as previously mentioned, protein/lipid
ratio is related to membrane function. We found a marked
decrement of this ratio in the ISS group, especially at day 4
post-AKI (Figure 5(a)), suggesting an increase in lipid con-
tent in comparison to protein. Different possible mechanisms
could explain these alterations: the oxidative stress induction,
mitochondrial dysfunction, and DNA damage altering lipid
metabolism and protein content, all those mentioned above
induced by CDDP in the proximal tubular cells [53, 54].
CDDP also reduces peroxisomal and mitochondrial FAO
leading to the accumulation of toxic fatty acid amphiphiles.
This reduction occurs due to the DNA-binding inhibition
with the peroxisome proliferation-activated receptor-α
(PPAR-α), decreasing target genes related to FAO and perox-
isome proliferator-activated receptor gamma coactivator 1
(PGC-1) formation [22, 55]. The increase in lipid content is
also related to PDK4 gene overexpression in the ISS group
at day 4 post-AKI, and according to Li et al., CDDP induces
PDK4 overexpression [22]. In this sense, our results suggest
that mESC treatment modulates the protein/lipid ratio and
downregulates PDK4 expression, protecting against CDDP
nephrotoxicity effects.

Some clinical and experimental studies suggest that there
is a relationship between the progression of kidney damage
and alterations in lipid metabolism, mainly related to lipo-
proteins and triglycerides [56, 57]. The above discussion
due to the loss of urinary proteins stimulates a greater LDL
synthesis [58], and LDL increase in serum (parameter of
nephrotic syndrome) may be attributed to the scarce expres-
sion of the LDL receptor (LDLR). In fact, some studies state
that patients with nephrotic syndrome exhibit an acquired
deficiency of LDLR [59].

Besides, lipid-rich environments are more sensitive to
free radical damage and oxidation products [60]. Our results
suggest that CDDP increased lipid content showing spectro-
scopic changes, specifically in the ratios of olefinic (unsatu-
rated lipids)/total lipid and olefinic/CH2, which are directly
related to variation in lipid metabolism. We found an

increase in these ratios in the ISS group at day 4 post-AKI,
suggesting an unsaturated lipid increment (Figures 6(b)
and 6(c)). Indeed, these ratios have been studied as markers
of unsaturated lipid content, highlighting that membrane
phospholipids, specifically in the unsaturated lipids, are sen-
sitive targets of free radical, especially under pathological
conditions with elevated lipid peroxidation [52]. Addition-
ally, as previously mentioned, CDDP induces free radical
production that can interact with membrane lipids increas-
ing lipid peroxidation [61].

All those as mentioned early indicates that one of the
nephrotoxic effects induced by CDDP involves lipid peroxi-
dation. About this, Ognjanović et al. reported an increase in
lipid oxidation activity related to KI; in our results, we found
that CH2/CH3 ratio decreased in the ISS group, and the ratio
A1746/A1457 related to lipid peroxidation increased signifi-
cantly in this group at day 8 (Figures 6(d) and 6(e)). These
ratio changes indicate an increment in lipid saturation,
corroborating the lipid oxidation as well as the accumulation
of long chain length lipids reported by Yan et al. and Genç
et al. [43, 51]. Furthermore, these events are related to
apoptosis that also is associated with different membrane
changes, such as phosphatidylserine exposure, membrane
blebbing, and vesicle formation. This apoptotic process also
agrees with the histopathological changes and p53 protein
overexpression observed in the ISS group. Our results also
agree with Yan et al. who demonstrated that the radiation
of HCT116 cells induces lipid oxidation, showed by an
A1746/A1457 ratio increment. On the other hand, Shiraishi
et al. have reported that HO-1 overexpression could be
related to a reduction of kidney damage, due to HO-1
degrades heme moiety, acting as scavenging peroxy radical
and inhibiting lipid peroxidation [30, 62], which could
explain the low lipid peroxidation ratio in the ISS group at
day 4 post-AKI, and an augment of this ratio in this group
at day 8 post-AKI, which is also related withHO-1 gene over-
expression in the ISS group at day 4 post-AKI. In the same
way, the decreased lipid metabolism observed in the mESC
group could be related to the low PDK4 expression, which
induced pyruvate dehydrogenase kinase activity.

Finally, there are two ways in which SC recognize the site
of damage and repair and replace the injured cells: one is a
paracrine action mechanism based on the secretion of growth
factors and the other is based on their proliferative and
differentiation capability [5, 8, 11, 12]. Nevertheless, broader
researches are needed in this field, to establish which of the
two mechanisms contributes most significantly to the resto-
ration of the damaged tissue and function.

5. Conclusion

According to the obtained results, mESC diminish the CDDP
nephrotoxic damage, once the protective effect in the reduc-
tion of lipid peroxidation was demonstrated, reflecting a
functional and histological restoration. However, it is neces-
sary to study the action and protective mechanisms of the
ESC, with the aim to propose new prophylactic strategies
in nephrotoxic treatments, expanding the regenerative
medicine options.
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