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Machine learning‑based automated 
classification of headache 
disorders using patient‑reported 
questionnaires
Junmo Kwon1,2, Hyebin Lee1,2, Soohyun Cho3, Chin‑Sang Chung3, Mi Ji Lee3* & 
Hyunjin Park2,4*

Classification of headache disorders is dependent on a subjective self-report from patients and its 
interpretation by physicians. We aimed to apply objective data-driven machine learning approaches 
to analyze patient-reported symptoms and test the feasibility of the automated classification of 
headache disorders. The self-report data of 2162 patients were analyzed. Headache disorders were 
merged into five major entities. The patients were divided into training (n = 1286) and test (n = 876) 
cohorts. We trained a stacked classifier model with four layers of XGBoost classifiers. The first layer 
classified between migraine and others, the second layer classified between tension-type headache 
(TTH) and others, and the third layer classified between trigeminal autonomic cephalalgia (TAC) and 
others, and the fourth layer classified between epicranial and thunderclap headaches. Each layer 
selected different features from the self-reports by using least absolute shrinkage and selection 
operator. In the test cohort, our stacked classifier obtained accuracy of 81%, sensitivity of 88%, 
69%, 65%, 53%, and 51%, and specificity of 95%, 55%, 46%, 48%, and 51% for migraine, TTH, TAC, 
epicranial headache, and thunderclap headaches, respectively. We showed that a machine-learning 
based approach is applicable in analyzing patient-reported questionnaires. Our result could serve as a 
baseline for future studies in headache research.

Headache disorders are the most common neurological symptoms and have a substantial impact on sufferers. 
A proper diagnosis of headaches is essential for its treatment. Currently, the diagnosis of headache disorders is 
highly dependent on self-report from patients and the interpretation of the self-report by clinicians. The Inter-
national Classification of Headache Disorder (ICHD) was published to aid a standardized diagnosis of headache 
disorders1. The ICHD has three chapters including primary headache disorders, secondary headache disorders, 
and painful cranial neuralgias/facial pain. These chapters include a number of disorders and their subtypes. 
However, its clinical application may be challenging for physicians who are inexperienced in headache medicine.

There have been efforts to aid the diagnosis of primary headache disorders using neurophysiological tests2, 
neuroimaging3,4, and blood-based biomarkers5,6; however, these have not replaced clinical interviews. Previ-
ous studies have mainly focused on migraine with little focus on the differential diagnosis of other headache 
disorders7,8. Recently, a simple questionnaire for the screening of migraine was developed and validated for 
research purposes9. The clinical diagnosis of headache disorders should, however, be based on a holistic approach 
since a single characteristic cannot replace the proper diagnosis.

Recently, data-driven approaches using machine learning or deep learning have been tested in the medical 
field to avoid biases attributed to human factor10–12. These approaches have been used mostly for neuroimaging 
analysis in headache research3,4. In this study, we aimed to analyze self-reported symptoms of patients to classify 
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four headache disorders including migraine, by using machine learning approaches. Real-world questionnaires 
obtained from more than 2000 patients were used for this study.

Methods
Subjects.  This study was approved by the institutional review board (IRB) of the Samsung Medical Center 
(IRB 2018-10-029). Written informed consents were obtained from patients or their guardians. Our study was 
performed in full accordance with local IRB guidelines. A total of 2162 patients who visited our headache clinic 
for the first time between January 2017 and December 2018 were included in our prospective headache clinic 
registry. The registry was retrospectively screened for this study. All patients completed structured question-
naires. Based on the questionnaire and clinical interview, the diagnosis of headache disorders was made using 
the ICHD-3 beta or ICHD-3 (whichever was the most updated at the time of visit) by headache specialists (MJL 
with 10 years of experience and C-SC with 30 years of experience).

Headache clinic registry.  The questionnaire for assessing patients on their first visit was developed by 
a headache specialist (MJL) and has been used in the Samsung Medical Center headache clinic since 2015. 
The questionnaire consists of 75 screening questions (Supplementary Table S1) including headache characteris-
tics (e.g., intensity, location, nature of pain, and aggravation during or avoidance of physical activities), disease 
course (onset, the mode of onset, and the time of aggravation), associated symptoms (e.g., nausea, vomiting, 
photophobia, phonophobia, osmophobia, autonomic symptoms), aura, information regarding the medication 
used for headaches, past medical history (e.g. hypertension, diabetes, insomnia, depression, anxiety, and oth-
ers), and social history (e.g. caffeine intake, smoking, alcohol consumption, and occupation). In addition to data 
from the questionnaire, patient demographics including age, sex, and body mass index (BMI) were prospectively 
recorded in the headache clinic registry and used for the analysis in this study. The ICHD-3-based diagnosis of 
each patient was coded in the registry.

The data of 2018 were used as the training cohort and the data of 2017 were used as the test cohort. There 
was no overlap between the two cohorts because the questionnaire was evaluated only for new patients. For 
the analysis, we merged headache disorders with similar entities into seven groups: migraine, tension-type 
headache (TTH), trigeminal autonomic cephalalgia (TAC), epicranial headache (including primary stabbing 
headache and occipital neuralgia), thunderclap headache ([TCH] including primary and secondary causes of 
TCH), other primary headache disorders, and secondary headaches other than those causing TCHs. Among 
these, we excluded other primary headaches (n = 49, training cohort) due to the high heterogeneity in the subtype. 
Secondary headache disorders other than TCH (n = 122, training cohort) were also excluded because this subtype 
presented with heterogeneous diseases that required diagnoses from the clinical course rather than headache 
characteristics. Data from 2162 patients, including the training cohort (n = 1286) and test cohort (n = 876), were 
finally used for this study. Further details of the patients are given in Table 1.

Stacked classifier model.  We adopted a stacked model that consisted of four layers of binary XGBoost13 
classifiers as shown in Fig.  1. Each layer of binary XGBoost classifier was used to classify subjects into two 
groups: the target subtype and the rest. We explored all possible orders of the stacked classifier and chose the 
order with the best accuracy in the training cohort. The first layer classified the most dominant subtype (i.e., 
migraine) and the rest (i.e., non-migraine). This enabled less challenging issues to be tackled first. The second 
layer classified between TTH and the rest (i.e., non-TTH). The third layer classified TAC and the rest (i.e., 
epicranial headaches and TCH). The final layer classified epicranial headaches and TCH. Our ordering of the 
classifier is similar to a multi-scale approach where one starts solving a large-scale problem before progressing 
on to small-scale problems.

Table 1.   Distribution of primary headache subtypes. Values are reported as mean with standard deviation in 
parenthesis. p values were obtained from the Kolmogorov–Smirnov test for continuous information and Chi-
square test for categorical information. SD standard deviation, IQR inter-quartile range.

Information Training cohort (n = 1,286) Test cohort (n = 876) p value

Age

Mean (SD) 47 (15) 45 (15)
0.1092

Range (IQR) 11–90 (35–57) 14–88 (34–56)

Sex

male:female 373:913 275:601 0.2534

Subtypes

Migraine 864 600

0.8329

Tension-type headache 144 91

Trigeminal autonomic cephalalgia 79 57

Epicranial headache 104 61

Thunderclap headache 95 67
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Feature selection.  Each patient assessment was turned into a long feature vector. Continuous variable 
responses were normalized with a value between − 1 and 1. Categorical variable responses were converted to a 
one-hot vector. Multi-hot encoding was adopted for some categorical questions with multiple responses. Thus, 
the assessment of 75 questions for each patient was transformed into features with 128 dimensions. We applied 
the least absolute shrinkage and selection operator (LASSO)14 in choosing a few important features for each 
stacked classifier layer. For example, the LASSO was used to select features that can distinguish between migraine 
from non-migraine subtypes in the first layer. The LASSO was applied using the stratified tenfold cross-valida-
tion. From the cross-validation, features that appeared at least three times out of the ten folds were chosen. These 
features were chosen as the set of stable features and the threshold of three was chosen to maximize the classifier 
performance on average in the left-out fold in the training cohort within the tenfold cross-validation. The final 
model was re-trained using the stable features from the entire training cohort.

Classifier performance.  The selected stable features were used to train the stacked XGBoost classifier. 
The trained classifier was evaluated on the independent test cohort. Sensitivity, specificity, and accuracy were 
assessed to quantify the performance of the classifiers in both cohorts. The classifiers were also evaluated using 
minimum sensitivity and specificity among the subtypes, to provide summary statistics over the subtypes. A 
confusion matrix was also provided.

Comparison with other methods.  To ensure the methods used in our study are well-suited in classifying 
headache subtypes, we compared our feature selection method (LASSO) with support vector machine recursive 
feature elimination (SVM-RFE)15 and minimum-redundancy maximum-relevancy (mRMR)16 approaches. The 
numbers of the selected features using mRMR and SVM-RFE for each classifier layer were fixed as those of 
LASSO. The selected features were fed into the stacked XGBoost classifier. We also compared XGBoost with 

Figure 1.   Structure of the stacked classifier model. TTH tension-type headache, TAC​ trigeminal autonomic 
cephalalgia.
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other binary classifiers such as k-nearest neighbor (k-NN), support vector machine (SVM), and random forest 
in each of the stacked layers with features selected by LASSO.

Results
Selected features.  The feature selection procedure led to 32, 19, 6, and 22 features that corresponded to 
the first, second, third, and fourth layers of the stacked classifier from the training cohort (Table 2), respectively. 
Table 2 showed selected features positively correlated with the corresponding target subtypes. The top three 
prominent features in the first layer (migraine vs. non-migraine) were mode of onset: gradual, female sex, and 
absence of lacrimation. The top three prominent features in the second layer (TTH vs. non-TTH) were mode 
of onset: gradual, nature of pain: vague/cloudy, and cognitive complaint during headache attack. The top three 
prominent features in the third layer (TAC vs. specific headache syndromes including epicranial headache and 
thunderclap headache) were headache attack during sleep, headache triggered by upset stomach, and conjunc-
tival injection. The top three prominent features in the fourth layer (epicranial headache vs. thunderclap head-
ache) were location: retroauricular, nature of pain: electric shock-like, and nature of pain: jabbing, assuming 
epicranial headache as the positive subtype in the specific headache syndromes classifier.

Table 2.   Selected features from different layers of the classifier. The features listed in the right column 
positively correlated with the target subtype listed in the left column. TTH tension-type headache, TAC​ 
trigeminal autonomic cephalalgia, TCH thunderclap headache.

Layer Selected features

First (migraine classifier)
32 features

Mode of onset: gradual (1st), female sex (2nd), absence of lacrimation (3rd), nausea/vomiting, 
headache triggered by upset stomach, not located in the temple, photophobia, absence of conjunc-
tival injection, absence of brainstem aura: vertigo, ear fullness/tinnitus, not located in the vertex, 
headache-related disability in daily routines, absence of headache attack during sleep, aggravation 
by physical activity, not in location: all over the head, not in location: back of the head, osmopho-
bia, not in location: retroauricular, head motion-induced worsening, phonophobia, no pulsating 
nature, throbbing nature, no stabbing nature, absence of motion sickness, absence of agitation, ver-
tigo, headache-associated ocular pain, nature of pain: vague/cloudy, dull-ache-like nature, general 
weakness, not in location: forehead, dizziness

Second (TTH classifier)
19 features

Mode of onset: gradual (1st), nature of pain: vague/cloudy (2nd), cognitive complaint during head-
ache attack (3rd), hypertension, absence of head motion-induced worsening, absence of avoidance 
of physical activity, nature of pain: dull-ache, no jabbing nature, nature of pain: drumming, 
absence of headache-induced awakening during sleep, nature of pain: pulsating, nausea/vomiting, 
headache attack in the afternoon, absence of headache-associated ocular pain, absence of aggrava-
tion by physical activity, absence of ocular pain, absence of disability in daily routines, female sex

Third (TAC classifier)
6 features

Headache attack during sleep (1st), headache triggered by upset stomach (2nd), conjunctival injec-
tion (3rd), location: periocular, lacrimation, male sex

Fourth (Epicranial headache classifier)
22 features

Location: retroauricular (1st), nature of pain: electric shock-like (2nd), nature of pain: jab-
bing (3rd), absence of headache triggered by upset stomach, no explosive nature, no tightening 
nature, no drumming nature, mode of onset: gradual, allodynia, nature of pain: tingling, absence 
of alleviation by sleeping, nature of pain: stabbing, location: temple, absence of aggravation by 
physical activity, nature of pain: vague/cloudy, no dull-ache-like nature, absence of ocular pain, 
photophobia, absence of nausea/vomiting, nature of pain: twinge, absence of headache-associated 
gastrointestinal discomfort

Fourth (TCH classifier)
22 features

Not in location: retroauricular (1st), no electric shock-like nature (2nd), no jabbing nature (3rd), 
headache triggered by upset stomach, nature of pain: explosive, nature of pain: tightening, nature 
of pain: drumming, mode of onset: thunderclap, absence of allodynia, no tingling nature, allevia-
tion by sleeping, no stabbing nature, not in location: temple, aggravation by physical activity, no 
vague/cloudy nature, nature of pain: dull-ache, ocular pain, absence of photophobia, nausea/vom-
iting, no twinge nature, headache-associated gastrointestinal discomfort

Table 3.   Classifier performance of both cohorts.

Cohort Baseline (%) Accuracy (%) Headache subtype Sensitivity (%) Specificity (%)

Training 67.19 81.80

Migraine 87.07 93.52

Tension-type headache 66.10 54.17

Trigeminal autonomic cephalalgia 85.19 58.23

Epicranial headache 64.71 63.46

Thunderclap headache 64.29 56.84

Test 68.49 80.71

Migraine 88.47 94.67

Tension-type headache 69.44 54.95

Trigeminal autonomic cephalalgia 65.00 45.61

Epicranial headache 52.73 47.54

Thunderclap headache 50.75 50.75
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Classifier performances.  The performances of the classifiers for both cohorts were given in Table 3 and 

the performance using the confusion matrices were in Tables 4 and 5. The stacked XGBoost classifier using the 
selected features attained an accuracy of 82%, sensitivity of 87%, 66%, 85%, 65%, and 64% for the five subtypes, 
and specificity of 94%, 54%, 58%, 63%, and 57% for the five subtypes in the training cohort. The baseline accu-
racy (i.e., assigning all cases as the dominant subtype) was 67%. The stacked XGBoost classifier using the selected 
features led to an accuracy of 81%, sensitivity of 88%, 69%, 65%, 53%, and 51% for the five subtypes, and specific-
ity of 95%, 55%, 46%, 48%, and 51% for the five subtypes in the test cohort. The baseline accuracy (i.e., assigning 
all cases as the dominant subtype) was 68%. Our approach performed better (p value < 10−8) than the baseline 
naïve classifier in the test cohort using Fisher’s exact test.  

Comparison of feature selection methods.  Our feature selection method (LASSO) was compared to 
SVM-RFE and mRMR approaches. The numbers of the selected features using mRMR and SVM-RFE for each 
classifier layer were fixed as those of LASSO. The selected features were fed into the stacked XGBoost classi-
fier. An overall accuracy, minimum sensitivity, and minimum specificity of the stacked XGBoost classifier were 
evaluated in the test cohort. Table 6 showed that features obtained through LASSO led to the best performance 
in the test cohort.

Comparison of binary classifiers.  We compared XGBoost with k-NN, SVM, and random forest classifi-
ers in each of the stacked layers in terms of overall accuracy, minimum sensitivity, and minimum specificity. The 
evaluation was performed in the test cohort (Table 7). The same features chosen from the feature selection stage 
using LASSO were used for all the classifiers. Although there were small differences in classifier performances, 
XGBoost still outperformed the other classifiers.

Table 4.   Confusion matrix for the training cohort. The bold numbers in the main diagonal denote correctly 
classified subjects.

Headache subtype Migraine Tension-type headache
Trigeminal autonomic 
cephalalgia Epicranial headache

Thunderclap 
headache

Migraine 808 23 3 13 17

Tension-type headache 46 78 1 13 6

Trigeminal autonomic 
cephalalgia 18 4 46 6 5

Epicranial headache 25 9 2 66 2

Thunderclap headache 31 4 2 4 54

Table 5.   Confusion matrix for the test cohort. The bold numbers in the main diagonal denote correctly 
classified subjects.

Headache subtype Migraine Tension-type headache
Trigeminal autonomic 
cephalalgia Epicranial headache

Thunderclap 
headache

Migraine 568 5 4 7 16

Tension-type headache 25 50 1 9 6

Trigeminal autonomic 
cephalalgia 21 2 26 2 6

Epicranial headache 11 13 3 29 5

Thunderclap headache 17 2 6 8 34

Table 6.   Comparison of the proposed method with other feature selection methods in the test cohort in terms 
of classifier performance. The bold values indicate the highest score in each performance metric. LASSO least 
absolute shrinkage and selection operator, SVM-RFE support vector machine recursive feature elimination, 
mRMR-MIQ minimum-redundancy maximum-relevancy mutual information quotient, mRMR-MID 
minimum-redundancy maximum-relevancy mutual information difference.

Feature selection method Accuracy Minimum sensitivity Minimum specificity

LASSO 0.8071 0.5273 0.4561

SVM-RFE 0.8014 0.4468 0.3443

mRMR-MIQ 0.7180 0.1600 0.0877

mRMR-MID 0.7055 0.0833 0.0597
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Discussion
In this study, we applied a machine learning approach to classify major headache disorders using questionnaires 
completed by patients in a real-world setting. We found that machine learning is applicable in analyzing ques-
tionnaires. The performance of the machine learning approach in the classification of migraine was excellent 
however, its accuracy in classifying headache disorders other than migraine was inferior to that in classifying 
migraine. Nonetheless, our automated classification results could be still meaningful as the gold standard for the 
diagnosis of headache is a manual skillful application of the current classification criteria (currently ICHD-3, 
published in 2018). In the era of ICHD-3, there have been no studies evaluating the reliability and accuracy of the 
diagnosis of primary headache disorders made by primary care providers or general non-headache neurologists. 
Furthermore, there has been no classification methods other than ICHD-3.

Our study is one of the first studies to apply machine learning in the analysis of patient-reported question-
naires to classify primary headache disorders7. The diagnosis of headache disorders requires a skillful interview 
with patients and a comprehensive decision algorithm. We tested whether machine learning can substitute the 
role of the clinical interview. However, the samples of each headache disorder other than migraine and TTH 
were insufficient for the training. Headache disorders or syndromes other than migraine and TTH were merged 
into broader categories such as epicranial headaches or TCHs, which was not ideal for the detailed classification 
of second- or third-digit ICHD codes. In addition, secondary headaches other than those causing TCHs were 
excluded from the analysis since they cannot be incorporated into one entity. Secondary headaches should be 
diagnosed by clinical courses and causative workups rather than headache features. Taken together, our approach 
could not replace physician-based diagnosis due to insufficient results. However, this study demonstrated the 
feasibility of developing a better algorithm-based automated classification for headache disorders. Besides, our 
results might be used to inform or assist physicians by pre-screening with the most important factors of the 
stacked classifier (i.e., Table 2) or increasing the accuracy of less-specialized providers.

Our approach adopted a stacked XGBoost classifier that resulted in an overall accuracy of 81%, sensitivity 
and specificity of over 87% in the diagnosis of migraine. Our results were superior to the results from a previous 
study in which more selective data were used7. Existing studies on the classification of headache disorders with 
machine learning have focused on a few selected headache disorders such as migraine and tension-type headache 
due to challenges with sample size7,8. Previous studies used the random forest for classification however, our 
study adopted the XGBoost. XGBoost belongs to the boosting classifiers in which both the variance and bias 
of the classifier is reduced, while random forest belongs to the bagging classifiers in which only the variance of 
the classifier is reduced13. XGBoost has shown improved performance in many recent machine learning chal-
lenges where high-dimensional features were involved. The performance of XGBoost in classifying migraine was 
superior in our study because migraine is characterized by diverse features which cannot be fully incorporated 
in conventional statistical models, due to the complexity and challenge of multiple testing. Manual analysis even 
by human experts, may be time-consuming and prone to errors. However, with the automated classification 
algorithm suggested by this study, multiple features of headache disorders can be systematically identified. This 
automated classification algorithm is thus time efficient and could minimize human error in the diagnosis of 
headache disorders.

Our stacked classification model well reflected features of each headache disorder. Top three features used 
in our classification model show insights into each headache disorder when compared to the ICHD-3 criteria1. 
First, the mode of onset was important in migraine, TTH, and epicranial vs. TCH classifiers. This important 
feature should be always considered in the differential diagnosis of secondary and primary headaches, but it has 
not been listed in the ICHD-3 criteria for migraine, TTH, and epicranial headaches1. While migraine and TTH 
are typical examples of gradual-onset headaches, thunderclap onset is the most important syndrome-defining 
features of TCH as its nomenclature implies. For TAC, the mode of onset was not included in the classifier, as 
most patients with TAC experiences a relatively rapid evolution of headache attack. Second, the demographic 
feature was also important, while the ICHD only deals with headache characteristics. For example, female sex was 
ranked as the second important feature of classifying migraine. This may suggest that the female predominance 
is more robust in migraine than in other primary headache disorders at least in clinic-based samples. Third, the 
nature of pain was important in TTH and epicranial vs. TCH classifiers: vague and/or cloudy nature of pain for 
TTH and electric-shock like and jabbing natures for epicranial headaches. These features well reflect the nature 
of corresponding headache disorders, although they are different from features listed in ICHD-3 criteria1. The 
ICHD-3 denotes pressing or tightening quality of pain as features of TTH and stabbing, shooting, or sharp quality 
of pain as epicranial (primary stabbing headache or occipital neuralgia) headaches1. However, these features may 
be less useful in the differential diagnosis as they can co-exist in migraine attacks, TACs, and even TCHs in the 
real world. Fourth, the presence or absence of autonomic symptoms was important in differentiating migraine 

Table 7.   Comparison of the proposed method with other classifiers in the test cohort. The bold values indicate 
the highest score in each performance metric. SVM support vector machine, k-NN k-nearest neighbor.

Classifier Accuracy Minimum sensitivity Minimum specificity

XGBoost 0.8071 0.5273 0.4561

Random forest 0.8037 0.5179 0.4035

SVM 0.7911 0.4730 0.4035

k-NN 0.7717 0.4355 0.3333
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and TACs. The ICHD-3 also denotes autonomic symptoms as characteristic features of TAC​1. Although auto-
nomic symptoms can accompany migraine attacks, they are less prominent when compared to those of TACs17. 
Finally, sleep-awakening hypnic attacks were important in the TAC classifier. The time of headache attack has not 
been included in the ICHD-3. However, most of the primary headaches other than TAC tend to regress during 
sleep. In summary, our data showed these features can have greater relative weights in the differential diagnosis 
between primary headache disorders even though they are not listed as or different from syndrome-defining 
features in the ICHD-31.

To apply our study results to clinical practice, it should be kept in mind that secondary headache disorders 
were excluded in this model. This may have some clinical implications: in addition to clinical history, biochemi-
cal, radiological, or sometimes histologic evaluations are needed to rule out secondary headache syndromes. 
Historically, the clinical course rather than headache characteristics has been more important, whilst this cannot 
be easily captured by the questionnaire. Still, we explored whether automated classification was possible using 
the same approach. The classification performance was unsatisfactory as shown in the Supplement.

Our study has some limitations. First, the results were derived from data from a single center. Thus, our 
results need to be validated in an independent cohort study. Second, we applied conventional machine learning 
approaches in this study. Deep learning could be thought of as a high degree-of-freedom extension of conven-
tional machine learning which has significantly improved classification performance in many domains11,18. 
Deep learning could be certainly applied in headache research and we believe the autoencoder network could 
be effective. Autoencoder network is capable of handling high-dimensional features that are correlated and can 
also learn low-dimensional feature embedding that is robust to noise. The features used in headache were high-
dimensional (e.g., 128 dimensions) and could have a substantial correlation among them due to how the features 
were designed in this study. We plan to pursue research in this direction in the future.

We presented a method to classify subtypes of primary headache by fusing four XGBoost classifiers in 
a stacked fashion. Each classifier captured important characteristics for the target subtype in a data-driven 
approach. Existing studies were insufficient as they only considered fewer subtypes and reported worse classifica-
tion performance than ours. Thus, although our approach was effective for the migraine subtype only, we believe 
our study is a first step towards building a comprehensive computer-aided diagnosis model for headaches. The 
software code for this study is open and can be adopted by other researchers to foster novel machine learning 
research in the migraine field.

Data availability
The data from the Samsung Medical Center is unavailable to the public due to IRB restrictions. Interested 
researchers should contact Dr. Mi Ji Lee (mirony.lee@gmail.com), who oversaw the data collection.

Code availability
The code of this study is available at https​://githu​b.com/junmo​kwon/autom​ated-heada​che-class​ifica​tion.
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