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1  | INTRODUC TION

In the swine industry, the number of weaning piglets and their total 
weight are particularly important traits. Direct selection for these 
traits is often restricted in practice due to external interventions such 
as cross-fostering, whereby piglets are transferred between sows to 
equalize litter size. As a result, the number of nursing piglets at a sow 
can be different from the number of farrowing piglets. The purpose 
of cross-fostering is to reduce piglet mortality at preweaning (Straw, 
Dewey, & Burgi, 1998). This management technique, however, can 
make it difficult to adequately estimate genetic parameters for litter 

size and weight at weaning (Su, Lund, & Sorensen, 2007). Therefore, 
in actual pig breeding, weaning is improved by selecting for total 
number born (Sorensen, Vernersen, & Andersen, 2000), number born 
alive (NBA) (Holl & Robinson, 2003), and litter size on day 5 based 
on the biological dam (Nielsen, Su, Lund, & Madsen, 2013; Su et al., 
2007). These traits are not or only slightly affected by cross-fostering 
because they are generally evaluated before or just after it. However, 
the genetic correlation between total number born and mortality re-
mains unfavorable, and selection for higher total number born will 
increase the number of stillborn piglets. Putz, Tiezzi, Maltecca, Gray, 
and Knauer (2015) suggested that a higher amount of cross-fostering 
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Abstract
Direct selection for litter size or weight at weaning in pigs is often hindered by ex-
ternal interventions such as cross-fostering. The objective of this study was to infer 
the causal structure among phenotypes of reproductive traits in pigs to enable sub-
sequent direct selection for these traits. Examined traits included: number born alive 
(NBA), litter size on day 21 (LS21), and litter weight on day 21 (LW21). The study 
included 6,240 litters from 1,673 Landrace dams and 5,393 litters from 1,484 Large 
White dams. The inductive causation (IC) algorithm was used to infer the causal 
structure, which was then fitted to a structural equation model (SEM) to estimate 
causal coefficients and genetic parameters. Based on the IC algorithm and tempo-
ral and biological information, the causal structure among traits was identified as: 
NBA	→	LS21	→	LW21	and	NBA	→	LW21.	Owing	to	the	causal	effect	of	NBA	on	LS21	
and LW21, the genetic, permanent environmental, and residual variances of LS21 and 
LW21were much lower in the SEM than in the multiple-trait model for both breeds. 
Given the strong effect of NBA on LS21 and LW21, the SEM and causal information 
might assist with selective breeding for LS21 and LW21 when cross-fostering occurs.
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reduced the genetic correlation between litter sizes in different days 
after farrowing. In the absence of cross-fostering, selection could 
rely directly on the number of weaning piglets and their total weight. 
However, the beneficial effect of cross-fostering on piglets’ survival 
increases selection intensity and makes selection more efficient be-
cause more candidates of a specific sire and dam can be obtained.

Gianola and Sorensen (2004) adapted the structural equation 
model (SEM) to mixed-effects models in quantitative genetics to con-
vey causal relationships among traits. Valente, Rosa, Gianola, Wu, and 
Weigel (2013) suggested that SEM made it possible to predict the ef-
fects of external interventions. Importantly, uncovering this informa-
tion among reproductive traits in pigs might be useful for adequately 
evaluating weaning traits even in the case of cross-fostering. For such 
evaluation the causal structure among preweaning and weaning traits 
should be determined first, but previous studies about causal structure 
among reproductive traits in pig have not focused on weaning traits 
(Chitakasempornkul et al., 2019; Varona, Sorensen, & Thompson, 2007).

The objective of this study was to infer the causal structure and 
estimate causal coefficients among phenotypes of farrowing and 
weaning traits in two breeds of pigs. This study is the first to de-
scribe a phenotypic causal structure among farrowing and weaning 
reproductive traits in pigs.

2  | MATERIAL S AND METHODS

2.1 | Ethical statement

Approval of Animal Care and Use Committee was not required for 
this study because the data were acquired from an existing database.

2.2 | Data

Data from Landrace and Large White populations from two farms for 
the years 2001–2017 were provided by CIMCO Corporation. All mat-
ings were performed by artificial insemination. Landrace, Large White, 
and Duroc sire breeds were used for matings. The NBA was recorded 
1 day after farrowing and it took into account the number of piglets that 
seemed to be alive at farrowing but were actually dead. Records sus-
pected of cross-fostering or with missing values were not included in 
the analyses. Overall, the final dataset comprised of 6,240 litters from 

1,673 Landrace dams and 5,393 litters from 1,484 Large White dams. 
Parity varied from one to eight. Pedigree data for Landrace and Large 
White sows included reproductive data on 2,102 dams and 1,849 sires.

Reproductive traits were NBA, litter size on day 21 (LS21), and 
litter weight on day 21 (LW21) after farrowing. Descriptive statistics 
for each trait are presented in Table 1.

2.3 | Statistical analyses

A multiple-trait animal model (MTM) was used for initial analysis. 
The following MTM was considered:

where y is a vector of observations; β is a vector of systematic effects, 
including farrowing year (17 levels), farrowing month (12 levels), parity 
(8 levels), farm (2 levels), and mating sire breed (3 levels); u is a vector 
of random additive genetic effects; c is a vector of permanent environ-
mental effects on the dams; e is a vector of random residuals; and X, Z, 
and W are known incidence matrices.

The joint distribution of the random vectors u, c, and e was given 
by:

where G0 is the additive genetic (co)variance matrix, A is the additive 
(numerator) genetic relationship matrix, C0 is the permanent envi-
ronmental (co)variance matrix, I is an identity matrix with suitable di-
mensions, and R0 is the residual (co)variance matrix. Such (co)variance 
matrices can be expressed as:
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Trait

Landrace Large White

NBA LS21 LW21 NBA LS21 LW21

N 6,240 6,240 6,240 5,393 5,393 5,393

Mean 10.81 9.25 52.49 10.40 9.15 53.33

SD 2.90 2.47 12.30 2.71 2.39 12.94

Minimum 1.00 1.00 4.00 1.00 1.00 4.60

Maximum 20.00 17.00 93.20 20.00 16.00 88.70

Abbreviations: LS21, litter size on day 21; LW21, litter weight on day 21; NBA, number born alive.

TA B L E  1   Descriptive statistics of 
reproductive traits
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where �2
ui
 is the additive genetic variance of trait i, �uiuj is the additive 

genetic covariance between traits i and j, �2
ci
 is the permanent environ-

mental variance of trait i, �cicj is the permanent environmental covari-
ance between traits i and j, �2

ei
 is the residual variance of trait i, �eiej is 

the residual covariance between traits i and j, and i and j for 1, 2, and 3 
represent NBA, LS21, and LW21, respectively.

The program GIBBS2F90 (Misztal et al., 2002) was used to fit 
the model within a Bayesian approach and to implement Gibbs 
sampling in order to obtain samples from posterior distributions 
of genetic, permanent environmental, and residual (co)variances. 
A total of 1,000,000 samples were generated; however, 500,000 
were discarded as a conservative burn-in and the remaining sam-
ples were thinned every 10 iteration, resulting in a total of 50,000 
samples for posterior analysis. The results of Geweke's diagnostic 
(Geweke, 1992) and effective sample size derived by the program 
POSTGIBBSF90 (Misztal et al., 2002) were used to assess conver-
gence with their recommended criteria.

2.4 | The inductive causation algorithm

The inductive causation (IC) algorithm was applied to the residual (co)
variances obtained from MTM analysis to infer a potential causal struc-
ture among the three traits, as already proposed by Valente, Rosa, de 
los Campos, Gianola, and Silva (2010). The residual (co)variances ob-
tained from the MTM provide information from the joint distribution 
of phenotypic traits conditional on genetic effects. This method cor-
rects for confounding effects when traits are genetically correlated 
(Rosa et al., 2011; Valente et al., 2010). The IC algorithm performs a 
series of statistical decisions based on partial correlations (ρ) between 
traits and consists of the following three steps (Pearl, 2000):

Step 1: Based on ρ, a statistical decision is made as to whether 
two traits are connected by an undirected edge. If ρ conditioning 
of the combination of all other traits between traits Y1 and Y2 
differs from 0, Y1 and Y2 are connected by an undirected edge 
(Y1–Y2).

Step 2: Based on ρ, a statistical decision is made about the exis-
tence of an unshielded collider. When three traits Y1, Y2, and Y3 are 
connected with undirected edges to form a trio such as Y1–Y2–Y3, 
whereby two nonadjacent traits (Y1 and Y3) have a common adjacent 
trait (Y2), and Y1 and Y3 are conditionally dependent on any possible 
set that includes the adjacent trait Y2, the edges should be oriented 
toward	the	common	adjacent	trait;	for	example,	Y1	→	Y2	←	Y3,	then	
Y2 is considered an unshielded collider. If Y1 depends on Y3 or Y3 
depends	on	Y1	(i.e.,	Y3	→	Y1	or	Y1	→	Y3)	in	this	case,	Y2	is	consid-
ered a shielded collider, which the IC algorithm cannot detect be-
cause Y1 and Y3 are always conditionally dependent on any possible 
set.

Step 3: When possible, the remaining undirected edges are ori-
ented so that no new unshielded colliders or cycles are introduced.

Statistical decisions regarding whether to declare ρ as null or not 
were based on from 75% to 95% highest posterior density (HPD) 
intervals, in 5% increments. If the intervals contained the value 0, 

the correlation was declared null. The analysis was performed using 
an R (R Development Core Team, 2009) script written by Valente 
and Rosa (2013).

2.5 | SEM analysis

The SEM was fitted to the causal network inferred by the IC algo-
rithm. The model can be described as:

with the joint distribution of vectors u*, c*, and e* as:

where vectors y, β*, u*, c*, e*, X, Z, A, and I have a similar meaning as 
described above for the MTM. However, here, these vectors rep-
resent systematic and random effects directly affecting each trait, 
that is, effects that are not mediated by other phenotypic traits 
(Gianola & Sorensen, 2004; Rosa et al., 2011; Valente et al., 2013). 
Additionally, Λ is a 3 × 3 matrix with 0 on the diagonal and with struc-
tural coefficients (linear effects between pairs of traits) or 0 on the 
off-diagonals, G*

0
 is the SEM additive genetic (co)variance matrix (it 

describes variance and covariances of direct genetic effects), �*

0
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diagonal matrix with the SEM permanent environmental variances, 
and �*

0
 is a diagonal matrix with the SEM residual variances. These 

permanent environmental and residual covariances were assumed 
to be 0 in the SEM. Such direct SEM (co)variance matrices can be 
expressed as:
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for 1, 2, and 3 represent NBA, LS21, and LW21, respectively.

This model was fitted to estimate genetic parameters and causal 
coefficients representing causal effects with the assumed causal 
structure mentioned above. The covariances of permanent environ-
mental and residual effect were conducted as diagonal to achieve 
parameter identifiability. Importantly, in the SEM, the causal parents 
of	a	given	trait	 (e.g.,	Y1	is	the	causal	parent	of	Y2	in	Y1	→	Y2)	are	
included as covariates in the SEM assigned to that trait. The program 
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GIBBS2F90 was used to fit this model and to obtain posterior sam-
ples for SEM parameters; a Gibbs sampling strategy similar to that 
used for the MTM was employed here as well.

3  | RESULTS

The posterior means and 95% HPD intervals describing G0, C0, and 
R0 obtained with the MTM for each breed are listed in Table 2. No 
major differences were observed between Landrace and Large 
White pigs in terms of genetic and permanent environmental (co)
variances. However, the residual variance of NBA was larger in 
Landrace than in Large White pigs with no 95% HPD interval overlap 
observed between breeds. In contrast, residual variance of LW21 
and covariance between LS21 and LW21 were greater in Large 
White than Landrace.

Based on the posterior distribution of R0, ρ between traits was 
estimated and applied in Step 1 for causal structure search using dif-
ferent HPD interval contents. None of the HPD intervals contained 
0, indicating that the three traits were connected by an undirected 
edge (Figure 1). In our case, there was no unshielded collider be-
cause none of the traits were “unshielded”. Therefore, Step 2 of the 
IC algorithm was not able to indicate any link. This suggested the IC 

algorithm could not detect any directed edges among these traits. 
Then, temporal prior knowledge about the relationship between 
NBA and LS21 or LW21 was applied to specify directions, that is, 
NBA	→	LS21	and	NBA	→	LW21,	as	NBA	is	expressed	before	LS21	
or LW21. We also applied prior biological knowledge about the re-
lationship	between	LS21	and	LW21,	that	is,	LS21	→	LW21,	meaning	
that litter size affects total litter weight because the vice versa is 
generally difficult to be explained by a biological system. Hence, we 
assumed the causal structure shown in Figure 2, which describes the 
additive effect of genetic, permanent environmental, and residual 
parameters.

The dispersion parameters and their structural coefficients were 
fitted into the SEM with the assumed structure (Figure 2) and are 
presented in Tables 3 and 4. A comparison of dispersion parame-
ters for each trait between MTM (Table 2) and SEM (Table 3) re-
vealed that all variances for LS21 and LW21 (but not NBA) in the 
SEM were lower than in the MTM. These differences were found in 
both breeds although some residual variances differed significantly 
between them. Here, λi,j denotes a structural coefficient from the jth 
to the ith trait; this means that when the jth trait increases by 1 unit, 
the ith trait increases by λi,j units. The direct effect of NBA on LS21 
(λLS21, NBA) was positive. The indirect effect of NBA on LW21 via 
LS21 (λLS21, NBA × λLW21, LS21) was also positive, but the direct effect 

TA B L E  2   Posterior means and 95% highest posterior density (HPD) intervals for the dispersion parameters pertaining to the multiple-
trait animal model

Parameter

Landrace Large White

Posterior mean

95% HPD interval

Posterior mean

95% HPD interval

Low High Low High

�2
u1

0.98 0.60 1.38 0.87 0.48 1.28

�u1u2
0.66 0.38 0.97 0.62 0.30 0.94

�u1u3
1.26 −0.01 2.53 1.69 0.09 3.33

�2
u2

0.63 0.37 0.89 0.57 0.29 0.84

�u2u3
1.74 0.66 2.85 2.37 0.96 3.84

�2
u3

19.90 13.39 26.81 29.76 19.51 40.19

�2
c1

0.50 0.23 0.79 0.68 0.39 1.00

�c1c2
0.42 0.19 0.64 0.54 0.30 0.79

�c1c3
1.62 0.63 2.57 2.16 0.92 3.36

�2
c2

0.40 0.20 0.61 0.45 0.24 0.67

�c2c3
2.01 1.16 2.91 2.12 1.02 3.19

�2
c3

14.59 9.42 19.77 17.24 9.97 24.54

�2
e1

5.85 5.62 6.09 4.92 4.70 5.14

�e1e2
4.06 3.88 4.25 3.70 3.51 3.88

�e1e3
9.67 8.98 10.36 10.53 9.75 11.35

�2
e2

4.59 4.40 4.77 4.37 4.18 4.56

�e2e3
13.30 12.63 13.98 15.25 14.39 16.06

�2
e3

83.54 80.14 86.96 107.28 102.40 112.00

Note: �2
ci
, permanent environmental variance of trait i; �cicj, permanent environmental covariance between traits i and j; �2

ei
, residual variance of trait i; 

�eiej
, residual covariance between traits i and j; �2

ui
, additive genetic variance of trait I; �uiuj, additive genetic covariance between traits i and j, and i and j 

for 1, 2, and 3 represent number born alive, litter size on day 21, and litter weight on day 21, respectively.
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of NBA on LW21 (λLW21, NBA) was negative. Finally, the total effect 
of NBA on LW21 (λLW21, NBA + λLS21, NBA × λLW21, LS21) was positive. 
Although all coefficients were significantly different between both 
breeds, their signs were always in the same direction.

4  | DISCUSSION

The objective of this study was to investigate the causal structure 
and estimate the causal coefficients among preweaning and weaning 

traits in pigs, which could then be used for direct selection based on 
litter size and litter weight at weaning when cross-fostering is em-
ployed. Although it was impossible to artificially change the empiri-
cal NBA values, we assumed that this artificial change could be done 
by cross-fostering just after farrowing and NBA assessment. This as-
sumption allowed us to determine the causal structure among NBA, 
LS21, and LW21, as well as estimate the causal coefficients.

The IC algorithm was based on 95% HPD intervals and returned 
a completely undirected structure. This result indicated that the 
structure was very reliable because the level for statistical decision 
was high and all causal coefficients were still statistically different 
from 0. Although many studies have reported a genetic relationship 
among reproductive traits (Chen, Baas, Mabry, Koehler, & Dekkers, 
2003; Putz et al., 2015; Roehe & Kennedy, 1995), only a few have 
described phenotypic causal structures among reproductive traits 
in pigs. For example, Varona et al. (2007) observed a negative causal 
relationship between litter size and average piglet weight at birth in 
Large White animals. Chitakasempornkul et al. (2019) used the IC 
algorithm to infer a causal phenotypic network among reproductive 
traits at birth and found a negative relationship between NBA and 
average piglet body weight, with the latter negatively affecting the 
total number born during subsequent gestation in gilts. However, 
they did not focus on weaning traits and this study is the first to de-
scribe a phenotypic causal structure among farrowing and weaning 
reproductive traits in pigs. In addition, the structure described here 
was common in both Landrace and Large White breeds, suggesting 
that it may be stable among different breeds in spite of differences in 
magnitude of causal coefficients. In fact, these differences indicate 
that such coefficients may need to be estimated for each population 
or breed.

F I G U R E  1   Undirected graph detected by the inductive 
causation algorithm with 95% HPD intervals. LS21, litter size on day 
21; LW21, litter weight on day 21; NBA, number born alive

F I G U R E  2   Directed graph assumed based on Figure 1 plus 
temporal and biological information. LS21, litter size on day 21; 
LW21, litter weight on day 21; NBA, number born alive

Parameter

Landrace Large White

Posterior mean

95% HPD interval

Posterior mean

95% HPD 
interval

Low High Low High

�2
u∗
1

0.93 0.55 1.34 0.82 0.43 1.21

�u∗
1
u∗
2

0.03 −0.07 0.12 −0.02 −0.11 0.07

�u∗
1
u∗
3

0.26 −0.39 0.91 0.56 −0.21 1.37

�2
u∗
2

0.20 0.13 0.27 0.13 0.08 0.18

�u∗
2
u∗
3

0.66 0.35 0.97 0.80 0.46 1.13

�2
u∗
3

14.54 10.72 18.45 18.44 13.17 23.85

�2
c∗
1

0.53 0.23 0.82 0.71 0.42 1.02

�2
c∗
2

0.07 0.02 0.12 0.06 0.02 0.10

�2
c∗
3

5.65 3.11 8.11 7.65 4.28 11.09

�2
e∗
1

5.85 5.62 6.09 4.92 4.70 5.13

�2
e∗
2

1.76 1.69 1.83 1.58 1.51 1.64

�2
e∗
3

42.99 41.21 44.69 50.98 48.73 53.19

Note: �2
c∗
i

, permanent environmental variance of trait i; �2
e∗
i

, residual variance of trait I; �2
u∗
i

, additive 
genetic variance of trait I; �u∗

i
u∗
j
 , additive genetic covariance between traits i and j, and i and j for 1, 

2, and 3 represent number born alive, litter size on day 21, and litter weight on day 21, respectively.

TA B L E  3   Posterior means and 95% 
highest posterior density (HPD) intervals 
for the dispersion parameters pertaining 
to the structural equation model
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In our structure, NBA could directly affect LS21 and LW21, and 
indirectly affect LW21 via LS21. This means that LS21 was not only 
affected directly by u*

LS21
 but also indirectly by u*

NBA
. LW21, on the 

other hand, was affected directly by u*
LW21

 and indirectly by both 
u
*

NBA
 and u*

LS21
. We believe that u*

NBA
 might represent genes affecting 

uterine size or ovulation rate, u*
LS21

 may include genetic effects de-
termining the piglets’ survival (e.g., quality and quantity of colostrum 
or piglet crushing), and u*

LW21
 may represent total volume and quality 

of milk produced (Valente et al., 2013). Cross-fostering can affect 
the estimation of genetic effects associated with these traits in the 
MTM because direct effects cannot be distinguished and can vary 
with the number of nursing piglets. If the number of nursing piglets 
is artificially changed by cross-fostering, these direct genetic effects 
can be accurately estimated by the SEM because in this case direct 
genetic effects are independent of the number of nursing piglets. 
Therefore, inferring a causal structure can benefit direct selection 
based on LS21 and LW21 when cross-fostering is applied.

The genetic, permanent environmental, and residual variances of 
LS21 and LW21 in the SEM were smaller than in the MTM in both 
breeds because components of these effects were different in the 
two models. In the MTM, the effects represent overall effects, which 
include all direct and indirect (i.e., mediated by other phenotypic 
traits) effects on each trait. In contrast, the effects represent only di-
rect effects in the SEM (i.e., not mediated by other traits in the causal 
structure) (Valente et al., 2013). The reduction in variance of down-
stream traits conditioning upstream traits was in agreement with the 
results observed for bovine milk fatty acid (Bouwman, Valente, Janss, 
Bovenhuis, & Rosa, 2014) and bovine meat quality (Inoue et al., 2016). 
The substantial reduction in variances of LS21 and LW21 indicated 
that these two traits were strongly affected by NBA. Accordingly, 
an artificial change (i.e., an external intervention) in the number of 
nursing piglets by cross-fostering could strongly affect the pheno-
type and estimated breeding values of LS21 and LW21. In addition, 
its usefulness in breeding for LS21 and LW21 with cross-fostering on 
computer simulation or real data should be confirmed in the future.

In general, residual covariance matrix is constructed as diagonal to 
achieve parameter identifiability. The permanent environmental and re-
sidual covariance matrices were set as diagonal in the SEM of this study. 
Although this restriction was strong it was necessary to identify the 

parameters, previous studies used the same method to identify them 
(Bouwman et al., 2014; Inoue et al., 2016; Rosa et al., 2011; Valente 
et al., 2010). However, when the covariances among permanent envi-
ronmental effects or among residual effects would not be 0, the causal 
effects would be over- or underestimated. Such covariances can be 
taken account by the statistical model with proper fixed and random ef-
fects, but we cannot find whether the model was sufficient. Therefore, 
it is noted that the parameter could have resulted in bias in this study.

In conclusion, we describe here the causal structure among NBA, 
LS21, and LW21 based on the IC algorithm and temporal and biolog-
ical information. The causal structure allowed for the estimation of 
causal coefficients. A comparison of dispersion parameters for LS21 
and LW21 between the MTM and SEM indicated that the phenotype 
arising from LS21 and LW21 traits could be strongly affected by the 
NBA trait. This finding suggests that cross-fostering could have a big 
impact on LS21 and LW21, and thus the causal information might be 
useful for direct selection based on LS21 and LW21 when cross-fos-
tering is employed.
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