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Segmentation of shoulder rehabilitation
exercises for single and multiple
inertial sensor systems
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Abstract

Introduction: Digital home rehabilitation systems require accurate segmentation methods to provide appropriate

feedback on repetition counting and exercise technique. Current segmentation methods are not suitable for clinical

use; they are not highly accurate or require multiple sensors, which creates usability problems. We propose a model for

accurately segmenting inertial measurement unit data for shoulder rehabilitation exercises. This study aims to use

inertial measurement unit data to train and test a machine learning segmentation model for single- and multiple-

inertial measurement unit systems and to identify the optimal single-sensor location.

Methods: A focus group of specialist physiotherapists selected the exercises, which were performed by participants

wearing inertial measurement units on the wrist, arm and scapula. We applied a novel machine learning based segmen-

tation technique involving a convolutional classifier and Finite State Machine to the inertial measurement unit data.

An accuracy score was calculated for each possible single- or multiple-sensor system.

Results: The wrist inertial measurement unit was chosen as the optimal single-sensor location for future system

development (mean overall accuracy 0.871). Flexion and abduction based exercises mostly could be segmented with

high accuracy, but scapular movement exercises had poor accuracy.

Conclusion: A wrist-worn single inertial measurement unit system can accurately segment shoulder exercise

repetitions; however, accuracy varies depending on characteristics of the exercise.
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Introduction

Shoulder impairments caused by musculoskeletal

conditions or chronic diseases require a management

plan which includes rehabilitation in the home environ-

ment.1–3 An important component of home rehabilita-

tion is the exercise programme provided by

physiotherapists, yet low levels of adherence to these

programmes are observed.4,5 The development of dig-

ital biofeedback systems, which aim to support and

motivate patients during home rehabilitation, is the

focus of a new field of rehabilitation technologies.6,7

These digital biofeedback systems contain an exter-

nal sensor which collects biomechanical data, which is

then analysed by the system and relayed to the user.

Analysis of shoulder kinematics may be performed

with a variety of sensors, but these are often not suit-
able for home rehabilitation. Electromyography, real-
time ultrasound and marker-based motion tracking
systems are costly and require specialist training, mean-
while commercial gaming consoles cannot detect the
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subtleties of rehabilitation exercise movements.8–12

Inertial measurement units (IMUs) are suitable alter-
natives for tracking human movement in home rehabil-
itation interventions, due to their low cost, small size
and ease-of-use.13,14 IMUs consist of an accelerometer,
gyroscope and magnetometer and are capable of mea-
suring quantities such as acceleration and angular
velocity of a body. Most commercial devices currently
available are triaxial; therefore, each sampled quantity
is measured in 3D, on the axes x, y and z. IMU-based
systems for shoulder rehabilitation have been devel-
oped for measurement and analysis of range of move-
ment (ROM),15 function16 and activities of daily living
(ADLs).17 However, these systems are usually devel-
oped as assessment tools for clinicians only, and not
for use in unsupervised home rehabilitation.

The analysis of IMU data for rehabilitation exer-
cises has two main stages.18 The first stage, referred
to as ‘segmentation’, detects primitive movements,
which constitute the basic unit of a rehabilitation exer-
cise (i.e. a repetition). A digital tool with highly accu-
rate segmentation abilities, meaning that it identifies
and counts repetitions correctly and free from error,
can perform features such as repetition counting, auto-
matic logging of exercise sessions and compilation of
progress reports without manual data entry. Poor seg-
mentation accuracy would result in a system which is
unreliable and misleading, and will ultimately fail to be
valuable for the end user i.e. patients undergoing home
rehabilitation. Accurate segmentation is also crucial for
success in the second stage of IMU data analysis,
named ‘classification’. In the classification stage, each
repetition is given a label which categorises it based on
certain characteristics, such as movement speed, move-
ment direction or movement quality. This stage does
not always involve exercise detection; the system is usu-
ally aware already of the specific exercise being per-
formed. Several systems have managed to segment
and classify upper limb exercises to a clinically accept-
able level, but they require multiple IMUs for data
collection, which may be seen as impractical in a
home rehabilitation context.19,20 A single-IMU
system, being both more user-friendly and cost-
effective, would be ideal for home rehabilitation. Lee
et al.21 developed a single-IMU exercise system for the
upper limb, but this required manual segmentation and
was tested on one upper limb exercise only. There is a
clear need for an accurate segmentation model that is
based on minimal IMU data input, containing a com-
prehensive exercise programme, which is capable of
being implemented and evaluated in the home setting.

The challenge of segmenting exercise sensor signals,
as described in detail by Lin et al.,22 can be approached
using a variety of methods, including zero-velocity
crossing (ZVC), dynamic time warping (DTW) and

hidden Markov models (HMMs). While each method
has its advantages, none of them entirely fulfil the
needs of the above-described application. ZVC or
local minima/maxima are based on specific features
of the signal exceeding a threshold, whereupon the
algorithm detects an exercise repetition has occurred.
These methods do not require any prior knowledge of
the activities performed by the subjects and are com-
putationally economical. However, ZVC methods tend
to over-segment the input signals, which would lead to
erroneous repetition counting and confusion or frustra-
tion for the user.23 DTW compares temporal and spa-
tial differences between the performed movements and
a pre-determined ideal (or ‘golden’) movement tem-
plate. DTW-based methods can segment accurately,
but are computationally expensive, and suffer from
the issue of singularity, where short portions of move-
ments are mapped to fit the target patterns, and there-
fore identified as such.24 Additionally, DTW-based
methods are not designed to segment in ‘real time’,
meaning that users must wait until an exercise set is
finished before receiving any feedback. Alternatively,
HMMs model the input signal in a sequence of unob-
servable states, but despite being more flexible, they
also tend to over-segment.22 In an earlier paper, we
assessed this system against ZVC and HMM for
seven shoulder exercises recorded at the Wrist sensor
and found this system consistently achieved the highest
accuracy, precision and recall.25 ZVC and HMM meth-
ods suffered from over-segmentation, as can be seen by
their relatively lower precision scores. This paper
assesses the algorithm across a broader set of exercises
and considers the clinical relevance of the findings with
regards to developing a digital biofeedback system.

There is a need for a model which possesses the var-
ious strengths of these systems, while also operating in
real time, being computationally cheap and delivering
accurate segmentation counts. This project proposes
the use of a deep learning model, which does not
require feature engineering or much domain knowl-
edge, can scale well with unseen movements and will
not over-segment the data. To fulfil the technological
and practical needs of a digital biofeedback system for
shoulder rehabilitation, we aim to use a single IMU to
collect biomechanical data, and a novel machine-
learning algorithm to process and segment the signal
in real-time. Future steps will involve developing an
exercise classifier, and this was a consideration when
designing the protocol for IMU data collection.

There were two main aims of this study. Firstly, we
collected a reference set of IMU data for a set of shoul-
der rehabilitation exercises designed by specialist physi-
otherapists, and used this data to train a segmentation
model, which could operate with either single or multiple
sensor input. Secondly, the accuracy of the segmentation

2 Journal of Rehabilitation and Assistive Technologies Engineering



model was evaluated for multi- and single-sensor sys-
tems, and the most suitable location for a single sensor

system with this exercise set was identified.

Methodology

Exercise selection

This system focuses on the specific clinical scenario of
early stage post-operative rehabilitation following shoul-
der surgery. The initial system development required a
suitable exercise programme which was both compre-

hensive enough to form a clinically relevant system
and sufficiently refined to not over-burden the data col-
lection and analysis processes. A focus group of three
physiotherapists with experience in shoulder rehabilita-
tion assisted in the development of this programme.

Ethical approval was granted by Beacon Hospital
Research Ethics Committee. Participants were asked
to list the most commonly prescribed exercises in this
clinical scenario and to develop a descriptive definition

of each movement. They then discussed the various
compensatory movement patterns (‘deviations’) associ-
ated with these exercises in a post-operative population.
Participants were asked to focus on deviations which

would prove detrimental to achieving full motor recov-
ery and not on variations of ‘normal’ movement. Several
proposed deviations were excluded and their descrip-
tions and reasons for exclusion are as follows:

• Neck movement during scapular retraction – none
of the three IMUs were in a location that could
detect this.

• Inadequate ROM during all exercises – in the early
post-operative stages this is mainly caused by pain
and oedema, and the user cannot increase ROM

volitionally in these circumstances.

This resulted in a total of 11 exercises and 31 devia-
tions as listed in Table 1.

Focus group participants also highlighted that, to
meet both strengthening and ROM goals, several
movements should be performed both as isotonic exer-
cises and as static stretches within the programme. We

therefore included a variety of ‘hold’ times from five to
ten seconds in the data collection protocol. The list of
exercises and their associated stretches and deviations
can together be referred to as the different exercise

‘variations’, which would be performed by participants
in the IMU data collection phase of the study.

IMU data collection procedure

Participants were a convenience sample of healthy
adults who were recruited via posters in the university

campus. Exclusion criteria were current shoulder or
upper limb injury limiting normal range of movement
and inability to provide informed consent. Participants
provided informed consent, and their height, weight
and upper limb measurements were recorded. Ethical
approval for this study was granted by the Human
Research Ethics Committee of University College
Dublin.

Data collection took place in a university laboratory.
Three IMUs (SHIMMER, Shimmer research, Dublin,
Ireland), labelled ‘Wrist’, ‘Arm’ and ‘Traps’, were
attached to specific locations on the right arm of the
participants using adhesive tape and bandaging.
Placement and orientation of IMUs were consistent
across all participants (Figure 1). IMU parameters
were set as follows: sampling frequency 102.4Hz,
tri-axial low-noise accelerometer �2 g and tri-axial
gyroscope �500 dps. These settings were adapted from
previous research using IMUs to collect rehabilitation
exercise data.13,26 These exercises are low-velocity and
low-impact, so an accelerometer range of �2G achieves
maximum granularity in the data and still ensures that
all sensor data was captured. ConsensysPRO v1.5.0
software by Shimmer was used to configure the IMUs
and manage the data.

The lead investigator demonstrated the first exercise
variation to the participant, who then held the specified
starting position for one second before performing ten
repetitions of the movement at a moderate pace with a
rest of �0.5–1 s in between repetitions. This procedure
was repeated for each of the 31 exercise variations.
Exercises were performed in standing, except those
listed as supine exercises, which were performed on a
plinth. All data collection sessions were observed by a
physiotherapist and any variations from the instructed
exercise technique, such as additional or incomplete
repetitions, were noted so that they could be appropri-
ately labelled and would not compromise the dataset
integrity. High-definition video cameras were used to
record participants laterally and posteriorly, so their
performance could be reviewed if any discrepancies in
data were noted during the analysis phase.

Data analysis

The segmentation system implemented for the isolation
of the repetitions has a two-tier structure. The first
component is a convolutional classifier, which classifies
small sliding windows extracted from the streaming
IMU signals. Each sliding window can be classified as
either dynamic or dormant, depending on whether it
corresponds to a period of movement or to a period of
‘silence’ (no movement). A window size of 30 data
points was chosen. With a fixed sampling frequency
of 102.4Hz, each window is �0.3 s. Considering the
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Table 1. Exercises, abbreviations and variations for data collection.

Exercise (Abbreviation) Image Variations

1. Shoulder flexion in standing (FLEX) i. Correct technique

ii. Towards coronal plane

iii. Elevated scapula

iv. Trunk extension

2. Shoulder flexion in supine (FLEX SUP) i. Correct technique

ii. 10 s hold

3. Shoulder flexion with fingers on wall (FLEX WALL) i. Correct technique

ii. Elevated scapula

iii. 10 s hold

4. Shoulder flexion holding stick (FLEX STICK) i. Correct technique

ii. Elevated shoulder

5. Shoulder abduction in standing (ABD) i. Correct technique

ii. Towards sagittal plane

iii. Elevated scapula

iv. Compensatory elbow flexion

6. Shoulder abduction holding stick (ABD STICK) i. Correct technique

ii. Elevated shoulder

7. Shoulder rotation with shoulder adducted,

elbow 90� flexion (ROT)

i. Correct technique

ii. Shoulder in abduction

8. Shoulder rotation in supine, shoulder

90� abduction, elbow 90� flexion (ROT SUP)

i. Correct technique

ii. Elbow extension

iii. 10 s hold

9. Shoulder rolls (ROLL) i. Correct technique

ii. Without protraction/retraction

iii. Small range movement

10. Scapular retraction (RET) i. Correct technique, 5 s hold

ii. Elevated scapula, 5 s hold

iii. 1 s hold

11. Elbow winging (ELBOW) i. Correct technique

ii. Reduced shoulder flexion

iii. 10 s hold
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expected length of both the exercise movements and
pause between exercises, this is a suitable window size
to enable both detection of short pauses between con-
secutive repetitions and extraction of discriminative

features from windows.27 Consecutive windows over-

lapped by 29 points. As convolutional classifiers can

automatically learn meaningful features from the raw
input, no data pre-processing for the IMU signals is

required. The window labels produced by the convolu-

tional classifier are then streamed as input to a finite

state machine (FSM), a stateful component that
models the high-level movement patterns of the exer-

cise repetitions. The FSM keep track of the movement

phase currently under execution (eccentric, concentric,

isometric), and for each individual primitive it returned
the starting point and the ending point (Figure 2).

The overall performance of the segmentation

method was assessed with the leave-one-subject-out

(LOSO) cross-validation protocol.28 The validation
folds generated with LOSO are designed so that repe-

titions from the same subject cannot be distributed

between the training data and the test data. This results

in a more accurate estimate of the system generalisa-
tion capabilities with respect to subject variability.

Segmentation accuracy (ACC), the proportion of

repetitions in the testing data which have correctly

segmented, is the metric used to assess the segmenta-
tion ability of the algorithm.18 To compute this, the

Figure 2. Signal segmentation of accelerometer and gyroscope data fromWrist IMU for three repetitions of shoulder abduction exercise.
acc: accelerometer; gyro: gyroscope.

Figure 1. Orientation and placement of IMU sensors.
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training dataset was manually labelled in advance

with ground truth segment coordinates, to compare

with the coordinates proposed by the algorithm. In

this system, and as described by Bevilacqua et al.,25

any coordinate generated by the segmentation

algorithm was reviewed by an investigator and

identified as a true positive (TP) if it corresponded to

or fell within 50 data points either side of a ground

truth coordinate, or a false positive (FP) if it was

further than 50 data points from any of the ground

truth coordinates. Instances where the ground truth

coordinates did not have a correspondence within the

set of generated coordinates were marked as false

negatives (FN). For the purpose of accuracy

computation, we allowed the set of TN points to be

empty. Precision and recall are metrics which provide

additional detail regarding accuracy of a model.

Precision (PRE) reports the percentage of coordinates

which were correctly labelled; recall (REC) reports

the ratio of correctly labelled coordinates to the

total number of labelled coordinates.22 Precision,

recall and accuracy were calculated as follows, where

tp is true positive, fp is false positive and fn is false

negative:

Precision ¼ tp

tp þ fp
Recall ¼ tp

tpþ fn

Accuracy ¼ tpþ tn

tpþ tnþ fpþ fn

We chose a threshold accuracy level of �0.85 to

select the exercises, which were acceptable for inclusion

in our system prototype as biofeedback exercises; exer-

cises falling below this level will be included but with-

out segmentation-related biofeedback.

Results

IMU data for the 31 variations was collected from

35 participants (22 male, 13 female, age: 22–69).

A mean of 677 (range 449–1079) repetitions per exer-

cise and a mean of 240 (range 98–300) repetitions per

variation were collected, with some loss of data due to

dropped signals or automatic reconfiguration of sensor

parameters to default settings. Twenty percent of the

data was allocated for algorithm testing and the

remainder used for training purposes. Results for

accuracy testing are presented in Tables 2 and 3.

A score of 1 signifies that all co-ordinates

corresponding to repetition start and end points were

correctly identified, with no false positive or false

negative co-ordinates detected.

Discussion

The results demonstrate that this novel machine-
learning system can segment IMU data for shoulder
rehabilitation exercises to a high level of accuracy,
although there are some exceptions to this. The accu-
racy of this system varies between exercises, as several
exercises possess characteristics which make segmenta-
tion fundamentally challenging. Overall, flexion and
abduction exercises can be segmented to an excellent
(>0.95) or very good (>0.90) level. This high level of
accuracy is due to the large-magnitude movements cre-
ated during these exercises, forming distinct and clear
patterns in the IMU signal. However, in FLEX
WALL, participants are instructed to ‘walk your fin-
gers up the wall,’ which creates noise in the wrist IMU,
resulting in a high number of false positive co-ordinates
for this sensor. Traps as a single-sensor system pro-
duced poor results in six exercises (see Table 2), as
these exercises involved little movement around the
scapula, and larger limb movements. Conversely, in
the ROLL exercise, which involves broad scapular
movements and minimal limb motion, Traps out-
performed Wrist and Arm sensors. We included the
Traps sensor to monitor for elevation of the scapula,
as the focus group had identified this as a common
compensatory movement following shoulder surgery.
Other sensor-based systems designed to detect scapular
motion have been successfully developed using multiple
IMUs, electromagnetic sensors and ultrasonogra-
phy,29–31 but are not suitable for patient use in home
rehabilitation. RET and ROLL, which both primarily
involve motions of the scapulae against the thorax,
achieved poor accuracy overall. These comparatively
subtle, low-velocity movements created low-
magnitude IMU signals with less meaningful patterns
for segmentation purposes, particularly in the limb-
worn sensors. RET, ROLL and FLEX WALL did
not achieve an accuracy of �0.85 and so, while they
will be included in the system prototype as part of the
exercise programme, they will not have segmentation-
related biofeedback features.

The ability to demonstrate a high level of accuracy
with a single sensor system is both novel and clinically
relevant. While systems using IMUs to track shoulder
movement for home rehabilitation have been success-
fully developed,19,20 so far no effective system exists
using one IMU. In comparison to multi-sensor sys-
tems, a single-sensor system is more user-friendly and
realistically deployable for use in a home rehabilitation
setting. Of the single-sensor systems, the mean overall
accuracy (MOA) for wrist, arm and traps were 0.871,
0.837 and 0.666, respectively (table 3). In comparison,
the most accurate multi-sensor system (Arm and Wrist)
achieved an MOA of 0.918. As only those exercises
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with an accuracy of �0.85 will be developed to have

biofeedback features in the prototype, we considered

these exercises separately and found the MOA was

0.956 for Arm and 0.95 for Wrist. To decide which

sensor is most suitable for a single-sensor system,

usability must also be considered. Users may prefer

the wrist as it is further from the operation site,

which may still be painful or swollen in the early

post-operative stages. The wrist location is also feasi-

ble; in a study of 20 participants with mild to moderate

upper limb impairments; Lee et al.21 found that com-

mercial activity monitors could be independently

applied to the wrist, once the fastening mechanism

did not require a high level of finger and hand dexter-

ity. Forner-Cordero et al.32 report that skin-mounted

IMUs are more likely to produce a distorted signal or

Table 3. MOA, precision and recall of each sensor or sensor combination for all 11 exercises.

Wrist Arm Traps WþA AþT WþT WþAþT

ACC 0.871 0.837 0.666 0.918 0.845 0.888 0.912

PRE 0.918 0.931 0.776 0.948 0.947 0.935 0.94

REC 0.932 0.884 0.802 0.962 0.883 0.937 0.96

ACC: accuracy; PRE: precision; REC: recall; W: wrist sensor; A: arm sensor; T: traps sensor.

Table 2. Accuracy of segmentation system in exercises.

Exercise Metric Wrist Arm Traps WþA AþT WþT WþAþT

FLEX ACC 0.977 0.971 0.881 0.985 0.983 0.964 0.99

PRE 0.994 0.989 0.953 0.993 0.992 0.9779 0.996

REC 0.983 0.982 0.921 0.992 0.990 0.987 0.995

FLEX SUP ACC 0.941 0.930 0.62 0.965 0.95 0.943 0.963

PRE 0.989 0.994 0.780 0.993 0.995 0.997 0.999

REC 0.952 0.935 0.751 0.971 0.954 0.946 0.964

FLEX STICK ACC 0.974 0.965 0.855 0.99 0.956 0.977 0.989

PRE 0.988 0.982 0.938 0.995 0.995 0.995 0.994

REC 0.986 0.982 0.906 0.995 0.961 0.982 0.994

FLEX WALL ACC 0.669 0.94 0.636 0.897 0.897 0.850 0.918

PRE 0.705 0.982 0.78 0.958 0.95 0.964 0.94

REC 0.928 0.957 0.775 0.933 0.941 0.878 0.975

ABD ACC 0.956 0.963 0.894 0.978 0.978 0.973 0.985

PRE 0.979 0.98 0.91 0.989 0.991 0.987 0.992

REC 0.977 0.982 0.981 0.988 0.987 0.987 0.993

ABD STICK ACC 0.983 0.967 0.905 0.989 0.983 0.985 0.996

PRE 0.99 0.985 0.915 0.994 0.989 0.994 0.999

REC 0.992 0.985 0.987 0.994 0.993 0.99 0.997

ROT ACC 0.858 0.735 0.547 0.876 0.739 0.884 0.899

PRE 0.902 0.879 0.736 0.891 0.801 0.924 0.929

REC 0.947 0.817 0.681 0.981 0.906 0.953 0.966

ROT SUP ACC 0.962 0.713 0.395 0.976 0.754 0.946 0.956

PRE 0.99 0.876 0.504 0.991 0.899 0.947 0.99

REC 0.971 0.793 0.646 0.984 0.824 0.998 0.965

ROLL ACC 0.731 0.701 0.899 0.736 0.896 0.875 0.89

PRE 0.955 0.93 0.973 0.957 0.983 0.973 0.964

REC 0.758 0.745 0.922 0.762 0.91 0.896 0.92

RET ACC 0.52 0.595 0.508 0.664 0.644 0.548 0.545

PRE 0.705 0.701 0.559 0.736 0.923 0.645 0.616

REC 0.664 0.798 0.848 0.871 0.681 0.778 0.825

ELBOW ACC 0.869 0.592 0.423 0.863 0.57 0.806 0.878

PRE 0.935 0.949 0.686 0.943 0.93 0.915 0.942

REC 0.925 0.611 0.525 0.911 0.596 0.871 0.928

ACC: accuracy; PRE: precision; REC: recall; W: wrist sensor; A: arm sensor; T: traps sensor.

Low accuracy scores of <0.85 are italicised.
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artefact if there is soft tissue between the sensor and the
bone. We placed the wrist sensor close to the bone on
the dorsum of the wrist, while the arm sensor was
placed where there is often excess adipose or muscle
tissue. Additionally, the upper arm can often be
wider at the top than at the bottom, a shape in which
displacement of the sensor and loss of orientation can
occur.33 It is evident that the wrist is the optimal loca-
tion for the development of a single-sensor system.

The main musculoskeletal aims of post-operative
exercise programmes are to improve ROM, increase
strength and return to functional patterns of move-
ment.34,35 To achieve this, a variety of exercises are
prescribed, some of which require the user to ‘hold’
at the peak of the movement for several seconds
to increase ROM (i.e. a ‘static stretch’).36 This segmen-
tation model is designed to detect static stretches
by identifying sections of movement with sections of
silence in between as one repetition, regardless of
the number of windows of silence in between them
(Figure 3). As a result, users will be able to perform
any exercise in the system as a stretch as well as a con-
ventional repetition; this greatly expands the versatility
and relevance of the system.

The main limitation of this study is that the IMU
data was collected from participants with no current

shoulder pathologies, and participants needed to be
taught how to perform the exercises with the specified
technique deviations. Ideally, the dataset should be col-
lected from a sample of the system’s target population,
as IMU data from individuals with shoulder dysfunc-
tion will vary from that of a healthy population.
Additionally, the data was collected under laboratory
conditions with a researcher instructing participants on
IMU placement and orientation. ‘Real world’ applica-
tions of IMU-based systems without constant supervi-
sion may suffer from poorer accuracy as a result. It is
important that the validity of this system is now
assessed with a clinical population in a ‘real world’
scenario. As previously mentioned, some data was
lost due to dropped signal or system failure. While it
did not appear to affect results, it would be recom-
mended that any replications of this methodology use
a second investigator to monitor the sensor signal
during data collection. There are no published guide-
lines to follow regarding selecting a threshold to distin-
guish TP from FP, and we were required to self-select
the threshold of �50 data points. These rehabilitation
exercises are performed slowly, and there is a compar-
atively low level of precision required regarding the
exact moment the exercise begins or ends. Therefore,
this is an appropriate timeframe and would lead to a

Figure 3. Accelerometer and gyroscope data of shoulder flexion stretch in supine. Windows of silence, lasting �9 s do not limit the
system’s ability to detect a single repetition.
acc: accelerometer; gyro: gyroscope.
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minimal margin of error in the results, but we
acknowledge this self-selection of metrics as a limita-
tion of this study. Future work will focus on con-
tinuing to refine the algorithm to further improve
accuracy, assessing validity of the algorithm in a clin-
ical population, developing the exercise classification
model and developing a mobile biofeedback applica-
tion to validate the segmentation and classification
system in a clinical population.

Conclusion

Digital biofeedback support systems using IMUs can
assist during home rehabilitation by providing infor-
mation on exercise performance. For this, accurate
segmentation of exercise repetitions is essential.
IMU data for shoulder exercises was used to train
and test a machine learning segmentation system.
The system could accurately segment exercise repeti-
tions using a single sensor located at the wrist
for most of the selected exercises, however, several
exercises were inaccurately segmented largely due to
characteristics of the movement involved. Future
work will focus on developing an exercise classifica-
tion model and accompanying biofeedback mobile
application.
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