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Tumor cells can persist undetectably for an extended period of time in primary tumors and
in disseminated cancer cells. Very little is known about why and how these tumors per-
sist for extended periods of time and then evolve to malignancy. The discovery of cancer
stem cells (CSCs) in human tumors challenges our current understanding of tumor recur-
rence, drug resistance, and metastasis, and opens up new research directions on how
cancer cells are capable of switching from dormancy to malignancy. Although overlapping
molecules and pathways have been reported to regulate the stem-like phenotype of CSCs
and metastasis, accumulated evidence has suggested additional clonal diversity within the
stem-like cancer cell subpopulation. This review will describe the current hypothesis link-
ing CSCs and metastasis and summarize mechanisms important for metastatic CSCs to
re-initiate tumors in the secondary sites. A better understanding of CSCs’ contribution to
clinical tumor dormancy and metastasis will provide new therapeutic revenues to eradicate
metastatic tumors and significantly reduce the mortality of cancer patients.
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INTRODUCTION
Solid tumors account for the major cancer burden, and epithelial
cancers arising in breast, lung, colon, prostate, and ovary comprise
approximately 80% of all cancers (Visvader and Lindeman, 2008).
However, over 90% of mortality in cancer patients is attributed
to the subsequent spread of cancer cells to distant tissues (Weigelt
et al., 2005; Jemal et al., 2006; Steeg, 2006). In patients, the threat of
tumor can return after chemotherapy and radiation remains ter-
rifying and painfully real. In breast cancer, for example, metastasis
can occur after decades of apparent disease-free period prior to the
development of distant metastasis (Meltzer, 1990; Uhr et al., 1997).
This phenomenon is referred to as clinical tumor dormancy and is
frequently observed in cancer patients. Both clinical observations
and experimental models have revealed that cancer patients may
have hundreds to thousands of disseminated cancer cells detectable
in circulation but only a small portion of the disseminated cancer
cells progress to form clinically overt metastases (Tarin et al., 1984;
Weiss, 1990, 1992).

Metastasis is a multi-step process. It is well recognized that can-
cer cells capable of metastasizing acquire epithelial–mesenchymal
transition (EMT)-like phenotype allowing them to disseminate
from the primary tumor and intravasate into the circulation. In
circulation, these disseminated cancer cells have to survive and
then eventually extravasate into foreign tissues. Finally, few of these
cells will adapt in the microenvironment and form macrometas-
tases. Experimental evidence has demonstrated that early step of
metastasis (intravasate, survival, arrest, and extravasation) can be
highly efficient (Cameron et al., 2000; Suzuki et al., 2006). How-
ever, only a small subset of these cells (∼2%) can initiate growth
as micrometastases, and an even smaller fraction of these cells
(∼0.02%) are able to persist and form macrometastases (Cameron
et al., 2000; Chambers et al., 2000, 2001; Suzuki et al., 2006). There-
fore, the later steps of metastasis appear to be the most critical steps

for metastatic dormancy. In spite of the clinical importance of
metastasis, the mechanisms underlying the process of dormancy
and outgrowth of macrometastases remain poorly understood.

Accumulating evidence suggests that a subpopulation of cancer
cells exhibit stem-like properties and is capable of tumor initia-
tion, invasive growth, and disseminating to distant organs (Reya
et al., 2001; Li et al., 2007; Liu et al., 2010; Marotta and Polyak,
2009; O’Brien et al., 2009). These cancer stem cells (CSCs) have
the ability to self-renew to give rise to other tumorigenic cells, as
well as undergo differentiation to give rise to the phenotypically
diverse non-tumorigenic cancer cells. Several characteristics of
CSCs, including the phenotypic plasticity, make them more likely
to succeed in the later steps of metastasis. This review will focus
on specific stem cell features of CSCs relating to cancer metastasis
and implications of CSC theory on treatment strategies against
metastasis.

STEM CELL CHARACTERISTICS RELATING TO
TUMOR DISSEMINATION
It is well recognized that some cancer cells are capable of under-
going an EMT-like transformation and develop a migratory and
invasive phenotype to detach from the primary tumor (Kang and
Massague, 2004; Micalizzi et al., 2010; Gomes et al., 2011; Nau-
seef and Henry, 2011; Said and Williams, 2011; Yao et al., 2011).
EMT is a biologic process that allows epithelial cells to undergo
multiple biochemical changes that acquire a mesenchymal cell
phenotype with an enhanced migratory capacity, invasiveness,
elevated resistance to apoptosis, and increased production of
ECM components (Kalluri, 2009; Yilmaz and Christofori, 2009).
CSCs have been hypothesized to be the disseminating subpopu-
lation and supported by accumulating evidence that CSCs also
express EMT markers, and more importantly, induction of EMT
in transformed epithelial cells promotes the generation of CSCs
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(Yang et al., 2004; Mani et al., 2008; Floor et al., 2011; Jor-
dan et al., 2011; Wu, 2011; Wu and Yang, 2011; Krantz et al.,
2012). For example, in colon cancer, nuclear accumulation of
β-catenin, the feature of Wnt signaling activation and stem cell
signaling, is found at the invasive front of the primary tumor
(Fodde and Brabletz, 2007). Stem-like cells isolated from normal
mammary glands and breast tumors also express EMT mark-
ers (Damonte et al., 2007; Mani et al., 2008). Stem-like breast
cancer cells isolated from exposing breast cancer cells to cycles
of hypoxia and reoxygenation also show up-regulation of sev-
eral EMT-inducing factors (Louie et al., 2010). Overexpression
of EMT-inducing transcription factors such as Snail or Twist,
in transformed mammary epithelial cells (HMLEM) increased
tumor-initiating frequency in immune-deficient mice (Mani et al.,
2008). Similar to the embryonic programming of EMT, activa-
tion of EMT signaling in CSCs is also regulated by a reciprocal
feedback loop between the ZEB family of EMT inducers and miR-
200 family of EMT suppressors (Hurteau et al., 2007; Burk et al.,
2008; Gregory et al., 2008; Korpal et al., 2008; Park et al., 2008)
as well as a second reciprocal feedback loop with EMT suppres-
sor, miR-34, and EMT inducer, Snail (Kim et al., 2011; Siemens
et al., 2011). Together, these observations lend support to the
model of migrating CSCs that confer the plasticity of switching
between cellular states and detaching efficiently from the primary
tumor.

STEM CELL CHARACTERISTICS RELATING TO DORMANCY
AND METASTASIS
In addition to the self-renewing and EMT phenotypes, CSCs also
exhibit other stem cell properties that are beneficial for them to
adapt in the foreign microenvironment and eventually form clin-
ical overt metastasis. It is apparent that several unique properties
necessary for ensuring long life span of normal stem cells may con-
tribute to protection of CSCs in the adverse microenvironment.
For example, normal stem cells have increased capacity for DNA
repair and express higher levels of anti-apoptotic proteins than
differentiated cells (Cairns, 2002; Potten et al., 2002; Wang et al.,
2003; Park and Gerson, 2005; Shinin et al., 2006). After dissem-
inated cancer cells arrive at the foreign microenvironment, the
suppressive target organ can form a barrier to halt the progression
of metastasis and induce dormancy. The enhanced anti-apoptotic
and DNA repair capability of CSCs could increase the survival
of CSCs for a long period of time under metabolic and/or other
environmental stress (e.g., hypoxia) in the target organ and allow
them to find adaptive solutions.

Evidence supporting this model comes from studies show-
ing CSCs have increased drug resistance capacity. For example,
it has been shown that stem-like subpopulation of cancer cells
express high levels of ATP-binding cassette (ABC) transporters
that can actively efflux drugs and shield them from the adverse
effects of chemotherapeutic insult (Pardal et al., 2003; Lou and
Dean, 2007; Dean, 2009; Donnenberg et al., 2009; Ding et al.,
2010; Moitra et al., 2011). In addition to an increased drug efflux
capacity, CSCs also exhibit intrinsic resistance to apoptosis. For
instance, autocrine production of cytokines such as IL-4 has been
shown to increased anti-apoptotic proteins and induces resis-
tance to therapy-induced cytotoxicity in different cancer types

(Conticello et al., 2004). For patients with colon cancer, IL-4
antagonist was shown to strongly enhance the anti-tumor effi-
cacy of conventional chemotherapeutic drugs through selective
sensitization of colon CSCs that are CD133+ (Todaro et al., 2007).
There is also growing evidence that CSCs are inherently resis-
tant to radiation (Koepke, 2006; Rich, 2007; Debeb et al., 2009;
Pajonk et al., 2010; Croker and Allan, 2012; D’Andrea, 2012).
For example, the effectiveness of radiotherapy is mediated by the
induction of reactive oxygen species (ROS) in cancer cells. How-
ever, it has been found that both human and mouse mammary
CSCs contain lower ROS levels than more differentiated tumor
cells and accumulate less DNA damage upon radiation (Diehn
et al., 2009). Lower ROS levels in CSCs appear to result from
increased expression of free radical scavenging systems (Diehn
et al., 2009; Wang et al., 2010; Kobayashi and Suda, 2012; Shi
et al., 2012). Together, the experimental evidence is consistent with
clinical observations that drug resistance is seemingly higher in
metastatic disease. More importantly, the inherent feature of drug
resistance in CSCs could activate stress responses to protect them
from growth-suppressing conditions in the target organ microen-
vironment and allow them to persist in foreign tissues for a long
period of time.

STEM CELL CHARACTERISTICS RELATING TO THE
FORMATION OF CLINICALLY OVERT METASTASIS
It has been observed that a high proportion of distant metas-
tases are differentiated and in some cases metastases can show a
greater degree of cellular differentiation than the primary tumors.
For example, increased E-cadherin expression in metastases com-
pared to the primary tumors has been reported in human patient
specimens (Oka et al., 1993; Kowalski et al., 2003; Chao et al.,
2010). Furthermore, the importance of epithelial phenotype in
the formation of secondary tumors has been demonstrated in
different metastasis models, including bladder cancer (Chaffer
et al., 2005, 2006, 2007), prostate cancer (Oltean et al., 2006; Yates
et al., 2007), colorectal cancer (Vincan et al., 2007a,b), and breast
cancer (Tsuji et al., 2008, 2009; Chao et al., 2010). Hence, both
clinical and experiment evidence points to the necessity of dis-
seminated cancer cells undergoing a mesenchymal to epithelial
reverting transition (MET) in the secondary microenvironment
to form macrometastases. Consequently, it has been proposed
that metastatic cancer cells possess the phenotypic plasticity and
acquired EMT-like phenotype for disseminating from the primary
tumor and subsequently, a second transition from the EMT-like
to MET-like state occurs to facilitate the formation of metastatic
tumors at target organs (Brabletz, 2012). However, it is unclear
whether EMT/stem-like cancer cells (CSCs) cooperate with non-
EMT cancer cells for successful colonization at target organs or
CSCs maintain a fused cell phenotype with incomplete or mixed
epithelial characteristics that can be used to initiate the subse-
quent adaptation in the foreign microenvironment. For example,
Tsuji et al. (2008) showed that cancer cells with an induced EMT
state increase invasiveness locally in the primary tumor but fail
to promote distant colonization when introduced in circulation.
Also, co-culture of hepatocytes and EMT-like prostate cancer cells
resulted in up-regulation of E-cadherin in these cells (Yates et al.,
2007). We also found that brain metastatic breast cancer cells
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utilize oxidative metabolism that is similar to the normal epithe-
lial cells instead of the glycolytic metabolism utilized by rapidly
proliferating EMT-like breast cancer cells (Chen et al., 2007).

To complicate matters further, the metastatic niche can also
supplies extrinsic factors that can further influence the prolifer-
ation and cellular states of metastatic cancer cells. Proliferation
of disseminated CSCs in the targeted organs can be regulated
by growth-suppressing and growth-stimulating factors secreted
by or into the microenvironment. For example, a single dor-
mant cancer cell or a dormant micrometastasis can turn into
clinically detectable metastasis through an increased secretion
of angiogenic factors in the metastatic niche to promote the
recruitment and formation of new blood vessels (angiogenesis;
Takahashi and Mai, 2005; Gao et al., 2008; Raza et al., 2010;
Saharinen et al., 2011; Garcia and Kandel, 2012). It has been
reported that CSCs promote tumor angiogenesis by actively
secreting angiogenic factors such as vascular endothelial growth
factor (VEGF; Bao et al., 2006; Seton-Rogers, 2011). In addition
to secreted factors, cell–cell interactions in the microenviron-
ment can also mediate protection of disseminated CSCs in the
metastatic niche. For instance, it has been shown that mes-
enchymal stem cells (MSCs) induce the production of regulatory
T cells (Tregs) when co-cultured with breast cancer cells allow-
ing for immune subversion of breast cancer cells in the bone
marrow (Patel et al., 2010). Also, it has been shown that bone
marrow-derived MSCs could promote the expansion of CSC pop-
ulation in the co-culture system and accelerate tumor growth
in the xenograft mouse model (Liu et al., 2011). Therefore,
interactions between disseminated CSCs and tumor-associated
MSCs may play a role in preventing the elimination of cancer
cells by normal anti-tumor immune responses in the metastatic
microenvironment.

THERAPEUTIC CONSEQUENCES AND PERSPECTIVES OF
MIGRATING CANCER STEM CELLS
The presence of a distinct population with stem cell characteristics
among disseminated and circulating cancer cells has an impor-
tant clinical relevance in metastasis formation and recurrence,
but more importantly for their role in resistance to conventional

anti-cancer therapy. The stem-like properties of CSCs have been
shown to be advantageous in protecting them from environmental
and genotoxic stresses. The observed phenotypic plasticity of CSCs
and their inherent anti-apoptotic ability can potentially render
them capable of navigating through the entire metastatic cascade.
It is apparent that current therapeutic strategies fail to account
for potential molecular and proliferative differences between dif-
ferent subpopulations of tumor cells. This may explain why the
majority of therapies fail in treating patients with metastatic dis-
eases. CSC model also has significant implications for cancer
progression. It has been observed in clinics that remission gen-
erally becomes more difficult to achieve with each relapse, and
the diagnosis of metastatic disease significantly reduces patient
survival. This suggests that the cancer cell population becomes
increasingly aggressive over time, perhaps reflecting the selectively
killing of the non-tumorigenic cells and enriching for the inher-
ently therapeutic resistant CSCs in the metastatic tumor. Indeed,
accumulating experimental evidence has confirmed this suspicion
and demonstrated the potential benefit of selectively targeting the
stem-like subpopulation in preventing cancer progression (Gupta
et al., 2009; Newman et al., 2012). However, alternative evidence
opposing CSC model also exists suggesting that CSCs may not be
the only cell type to sustain tumor growth and generate metas-
tasis (Kelly et al., 2007; Yoo and Hatfield, 2008). Despite of the
controversial origin or source of stem-like subpopulations, it is
clear that a better definition and understanding of CSCs in clinical
tumor dormancy as well as cancer relapse will have a signifi-
cant impact on the mortality of patients with advanced stage of
cancer.
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