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Abstract: Novel insights in the development of a precision medicine approach for treating
the neurodegenerative diseases (NDDs) are provided by emerging advances in the field of
pharmacoepigenomics. In this context, microRNAs (miRNAs) have been extensively studied
because of their implication in several disorders related to the central nervous system, as well as for
their potential role as biomarkers of diagnosis, prognosis, and response to treatment. Recent studies
in the field of neurodegeneration reported evidence that drug response and efficacy can be modulated
by miRNA-mediated mechanisms. In fact, miRNAs seem to regulate the expression of pharmacology
target genes, while approved (conventional and non-conventional) therapies can restore altered
miRNAs observed in NDDs. The knowledge of miRNA pharmacoepigenomics may offers new clues
to develop more effective treatments by providing novel insights into interindividual variability in
drug disposition and response. Recently, the therapeutic potential of miRNAs is gaining increasing
attention, and miRNA-based drugs (for cancer) have been under observation in clinical trials. However,
the effective use of miRNAs as therapeutic target still needs to be investigated. Here, we report
a brief review of representative studies in which miRNAs related to therapeutic effects have been
investigated in NDDs, providing exciting potential prospects of miRNAs in pharmacoepigenomics
and translational medicine.

Keywords: microRNA; neurodegenerative diseases; precision medicine; pharmacoepigenomic; drug
response; epidrug

1. Introduction

The great advances in high-throughput next generation sequencing (HT-NGS) technologies and
large-scale computation facilities have enabled a deeper investigation also in neurodegenerative
diseases (NDDs), providing a more comprehensive overview of these complex and multifactorial
disorders and promoting the development of a precision medicine approach, e.g., for their monitoring
and cure [1]. NDDs are mostly characterized by progressive neuronal loss in the central nervous system
(CNS) causing a decline in several CNS functions [2]. The most known NDDs include Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis
(ALS), in which neurodegeneration represents the main pathological hallmark. However, in the last
decades other multifactorial disorders have been added in the NDDs category, due to evidences
of consistent neurodegenerative components together with other pathogenic processes, like the
autoimmune neuroinflammation in multiple sclerosis (MS) [3].

Cells 2020, 9, 75; doi:10.3390/cells9010075 www.mdpi.com/journal/cells

http://www.mdpi.com/journal/cells
http://www.mdpi.com
https://orcid.org/0000-0001-9321-7433
https://orcid.org/0000-0002-1307-9083
https://orcid.org/0000-0003-4338-0392
http://dx.doi.org/10.3390/cells9010075
http://www.mdpi.com/journal/cells
https://www.mdpi.com/2073-4409/9/1/75?type=check_update&version=2


Cells 2020, 9, 75 2 of 19

Among the new players identified, microRNAs (miRNAs) are certainly the most extensively
studied because of their potential role as biomarkers for diagnosis, prognosis, and response to treatment.
Indeed, the discovery of miRNAs and their implication in several CNS-related disorders have opened
up new prospects in the search for biomarkers and therapeutic targets, in order to monitor the disease
progression and to possible guide individualized treatments [1,4–7].

MiRNAs are a class of small non-coding RNAs that are involved in the regulation of gene
expression at the posttranscriptional level by base-pairing and repress translation of target mRNAs [8].
The official miRNA repository database (miRbase; Release 22.1) currently lists 1917 precursor miRNAs
and 2654 mature miRNAs in the human genome that act in concert to regulate up to approximately
60% of all coding genes [9]. Specifically, miRNAs act as sequence-targeting guides that associate with
the RNA-induced silencing complex (RISC) to knockdown the mRNAs. In addition, they can also
modulate biological processes by targeting competing endogenous RNAs (ceRNAs) which carry the
same miRNA response elements (MREs) [10] and by generating negative or positive feedback loops
with transcription factors [11].

Emerging evidences demonstrated that dysfunctional miRNA regulatory networks have been
associated to several NDDs [12–16]. In the human brain, miRNAs act not only as fine-tuners but
also as master regulators of neuronal circuit development, maturation, and function, and it is able to
influence processes such as cell-fate determination, cell migration, neuronal polarization, cognition,
synapse formation, and plasticity [17]. Of note, the discovery of miRNAs in body fluids (blood, saliva,
urine, serum, and cerebrospinal fluid, CSF) proved to be particularly relevant in NDDs, in which the
analysis of peripheral biomarkers could be helpful e.g., for a more accurate detection of a given disease
onset [18]. More importantly, recent studies in the field of neurodegeneration showed unexpected
miRNA-mediated mechanisms in the regulation of drug response and efficacy: (i) miRNAs can regulate
the expression of pharmacology-related target genes and/or (ii) pharmacological therapies can restore
altered miRNA expression levels [18,19]. Indeed the involvement of miRNAs in response to drugs is
part of an emerging branch of pharmacogenomics, which is referred to as pharmacoepigenomics [20].
The knowledge of miRNA pharmacoepigenomics not only may provide novel insights into the
interindividual variability to drug disposition and response, but also offers new clues to develop more
effective treatments [21].

In this review, we first reported some representative studies in which miRNAs possibly involved
into therapeutic effects have been investigated in some NDDs. In particular, we detailed the existing
data on AD, PD, and MS, as they are the only NDDs with consistent literature regarding the issue
of interest. To our knowledge, there are no studies on miRNomic profiles in response to treatments
for other NDDs like HD and ALS. Finally, we focused on exciting potential prospects of miRNAs in
pharmacoepigenomics and translational medicine.

2. MiRNAs as Pharmacoepigenomic Targets for NDDs

The rapid and major advances in epigenomics are impacting the modern pharmacology, giving
rise to a burgeoning field known as pharmacoepigenomics, that is a genome-wide scale study of the
epigenetic basis of individual variations of the drug response [22]. Epigenomics refers to genome-wide
studies on three interacting molecular mechanisms: DNA methylation, modification of histones
in chromatin, and RNA-mediated regulation of gene expression via non-coding RNAs, such as
miRNAs, circular RNAs, and long non-coding RNAs [23]. Over the last two decades, epigenomics
has begun to exert a great impact in different areas such as the study of CNS development, learned
behavior, neurotoxicology, cognition, addiction, and lately of many neurological and neurodegenerative
pathologies [24]. DNA methylation, i.e., the addition of a methyl group on the fifth carbon at
cytosine, is the predominant epigenetic modification of eukaryote genomic DNA. It occurs in
cytosine–phosphate–guanine (CpG) islands and in non-CpG (CpH) sites [25]. CpH methylation
is present predominantly in the neuronal genome and accumulates during synaptogenesis [26].
Among the others, Lister et al. [27] reported a whole-genome base-resolution analysis of DNA cytosine
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modifications and transcriptome analysis in the frontal cortex of human and mouse brains at multiple
developmental stages. Their results highlighted the role of the epigenome in pathological disruptions
of the neural circuits [27]. Additionally, the imbalance in histone acetylation levels and consequently
the dysfunction in transcription have been associated with a wide variety of NDDs [28]. In vitro and
in vivo animal models and post-mortem analysis of brains derived from NDDs patients reported
overexpressed level of histone deacetylases (HDACs), thus encouraging new therapeutic approaches
in this direction [29–31].

Finally, miRNAs mediated post-transcriptional regulation represents a newly recognized
mechanism that attracted much interest in recent years. Two models of miRNA-mediated therapeutic
effects have been proposed: direct and indirect. The first model reveals that most of the approved
drugs for NDDs can directly restore the expression level of altered miRNAs and possibly contribute
to their therapeutic effect [18]. The second model suggests that miRNAs may influence the drug
efficacy by regulating the expression of genes involved in drug absorption, distribution, metabolism,
and excretion (ADME) [32,33]. This epigenetic regulation of miRNAs in ADME genes could justify
why different patients may respond differently to the same treatment. Understanding the factors that
cause inter-individual differences in the efficiency of a given drug metabolism is mandatory for the
possibility to develop the so-called personalized or precision medicine, as well as for the promotion of a
more efficient drug development [33], even though this process may complicate the already complex
molecular mechanisms of drug activity.

Figure 1. Circular view of microRNAs (miRNAs) and related drugs. Yellow nodes represent miRNAs,
green nodes represent multiple sclerosis (MS) disease-modifying therapies, blue nodes represent
Parkinson’s disease (PD) treatments, and red nodes represent AD treatments. The color of edges is
associated to neurodegenerative diseases (NDDs), and the size of the nodes is proportional to the
degree of the nodes (number of incoming and outcoming edges). The network is visualized using
Cytoscape v3.7.1. (Institute for Systems Biology, Seattle, WA, USA).

In the following section, we attempt to provide a brief review of the so far investigated miRNomic
profiles in response to the available conventional (and non-conventional) treatments of some NDDs
(Table 1). The attention was addressed mainly to AD, PD, and MS, for which we were able to find
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consistent and detailed studies on the issue of interest. Figure 1 shows the miRNAs involved in drug
response in the investigated NDDs.

3. Alzheimer’s Disease

Alzheimer’s Disease (AD) is the most common neurodegenerative disorder [34] and a progressive
chronic condition representing the leading cause of dementia among people aged 65 and older [35]. AD is
characterized by a progressive decline of cognitive abilities, with behavioral and psychotic symptoms
that leads to premature loss of personal autonomy and death [36]. The major neuropathological
hallmarks are extraneuronal senile plaques (mainly constituted of aggregated amyloid β-peptide) and
intraneuronal neurofibrillary tangles (NFTs) (rich in abnormally phosphorylated tau) [35–37].

The AD genetic background discriminates between early-onset familial AD (FAD), other cases
of sporadic early onset AD, and late-onset AD. The rare cases of early-onset FAD are caused by
high-penetrant mutations in genes coding for amyloid precursor protein (APP), presenilin 1 (PSEN1),
and presenilin 2 (PSEN2). Late-onset AD is multifactorial and associated with many different genetic
risk loci (>20), with the apolipoprotein E ε4 allele being a major genetic risk factor [38].

Although very recent promising steps in the direction of finding effective treatments, to date
there is no cure for AD; however, few drugs and care strategies seem to improve or stabilize some
symptoms, leading to positive changes especially for the quality of life of patients and their families [39].
The pharmacological therapies currently available for AD patients include two classes of drugs [40]:
(i) Donepezil, rivastigmine, and galantamine, which are cholinesterase inhibitors recommended for
patients with mild, moderate, or severe AD dementia [40,41]; (ii) memantine, either a non-competitive
N-methyl-D-aspartate (NMDA) receptor antagonist and a dopamine agonist approved for the treatment
of patients with moderate-to-severe AD [40–42]. Among these drugs, possible effects of donepezil
involving miRNAs have been observed by Wang et al. [43] in APP/PSEN1 transgenic mice. They found
that the level of miR-206-3p expression was enhanced in the animal model of AD, while the treatment
with donepezil decreased this level in the hippocampus and cortex of APP/PSEN1 transgenic mice [43].
Since increased miR-206 levels seem to contribute to the pathology of the disease by downregulating a
neurotrophin called brain-derived neurotrophic factor (BDNF) [44], this finding suggests that miR-206
could be a pharmacological target for developing novel therapeutic approaches [43].

No effective therapies are currently available for treating the neurotoxicity observed during
the disease [45]. Furthermore, most of the aforementioned drugs are only able to relieve some AD
symptoms while they may have some deleterious side effects, like agitation/aggression, confusion,
dizziness, falls, respiratory infections, and gastrointestinal symptoms [46], so the urgency to develop
effective therapeutic agents for treating the disease is more than clear.

Finally, several reports demonstrated that Statins multiple effects, including anti-inflammatory
properties, may be beneficial in AD; indeed, researches suggested that the inflammation does contribute
to the pathogenesis of the disease [47]. Some clinical data provided evidence of a possible association
between the use of Statins and the reduced risk of AD. In a study conducted in order to verify these
evidences, Huang et al. [47] observed that Simvastatin ameliorated the memory deficits both in AD
patients and in the animal model of AD. They also found that one specific Statin (Simvastatin) inhibited
the apoptosis of neural stem cells and improved the survival of the neurons by modulating the
expression of miR-106b [47].

Besides the traditional medicine, the pharmacological activities of some natural substances
have been also investigated, as they also exerted significant impact in the expression levels of some
miRNAs potentially implicated in the AD pathogenesis. Osthole (7-methoxy-8-isopentenoxycoumarin,
C15H16O3), a natural Coumarin first derived from Cnidium plant, is an active constituent extracted from
some medicinal plants, commonly used in the clinical practice of traditional Chinese medicine [48,49]. In
literature there are evidences that Osthole has several pharmacological effects, such as neuroprotection,
osteogenesis, anti-inflammation, anti-apoptosis, and anti-oxidation [49–52], and in fact it showed a
neuroprotective potential in AD [53]. Although the exact molecular mechanism has not yet been fully
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elucidated [48], some studies suggest a possible involvement of miRNAs in its therapeutic efficacy.
Li et al. [45] demonstrated a protective role of Osthole in the neuronal synapse, since it significantly
increased the expression of miR-9 in APP-overexpressed cells [45]. Later on, they hypothesized a
cross-talk between miR-9 and the Notch signaling pathway in AD models and observed that Osthole
may promote the NSCs differentiation via the upregulation of miR-9 and the subsequent inhibition of
the Notch signaling pathway in APP-expressing cells [54]. Jiao et al. [48] reported a neuroprotective
activity of Osthole that involves the upregulation of miR-107 in AD. Furthermore, they observed that
the administration of Osthole to APP/PS1 transgenic mice significantly improved the cognitive function
by decreasing the Aβ contents in the hippocampal and cortex region of the brain [48]. MiRNA-101a-3p
was also reported as Osthole-mediated miRNA in AD [52], since it seemed to improve the learning
and memory ability of APP/PS1 mice, to increase the miRNA-101a-3p expression and to reduce the
levels of APP at the same time [52].

Acori graminei Rhizoma (AGR) and Ginsenoside Rg1 (GRg1) are other traditional Chinese herbal
drugs experimented in cognitive impairments; in particular, AGR has been used to treat senile dementia,
while GRg1 showed neuroprotective role in AD [55]. In a study aimed to identify the therapeutic effect
of GRg1 and AGR in the animal model of AD, Shi et al. [55] found that the combination of GRg1 and
AGR promoted the expression of miR-873-5p, suggesting that these non-traditional drugs might have
some benefit in the AD treatment with a potential mechanism in part mediated by miR-873-5p.

4. Parkinson’s Disease

Parkinson’s disease (PD) is the second-most common neurodegenerative disease [56] characterized
by both motor and non-motor system symptoms. The disease occurs mostly in the older ages but an
early-onset PD has been also described [57]. Resting tremor, rigidity, bradykinesia, and loss of postural
reflexes are the classical parkinsonian motor symptoms [58]. They are most likely the result of the
dopamine deficiency caused by the prominent death of dopaminergic neurons in the pars compacta of
the substantia nigra, which is the typical pathological hallmark of the disease [59]. PD patients may also
complain non-motor symptoms, including cognitive impairment, depression and sleep disorders, at
any stage of the disease, even before the onset of the motor signs [58,60].

Although the full etiology of PD is still partially unknown, the development of the disease seems to
rely on the combination of genetic and environmental factors [59,61], as in fact several causative genes
seem to be implicated [62]. Currently no clinically validated biomarkers for PD monitoring has been
identified [62]. However, there are evidences that miRNAs can be associated with PD pathophysiology
as well, since they seem to be involved in the disease progression by regulating different PD-related
genes [14,63–65].

Current therapies for PD are able to treat most of the symptoms quite effectively [59]. Since the
main cause of PD is the dopamine deficiency, the pharmacological treatment of the disease is closely
related to the restoration of this neurotransmitter’s levels [66].

l-dopamine (l-dopa), a precursor of dopamine, was the first symptomatic treatment for PD [67].
Although it is the most effective medication, in some cases other therapeutic approaches, e.g., with
monoamine oxidase type B inhibitors, amantadine, anticholinergics, β-blockers or dopamine agonists,
may be used as first-line therapy to avoid some motor complications related to the administration of
l-dopa, such as dyskinesia, impulsive and compulsive behaviors, and hallucinations [68]. However, as
far as we know, changes of the expression levels of selected miRNAs have been investigated mostly
during the l-dopa treatment. Schwienbacher et al. [69] profiled the expression levels of five candidate
miRNAs (miR-29a-3p, miR-29b-3p, miR-30a-5p, miR-30b-5p, and miR-103-3p) in three different data
sets (l-dopa-treated PD patients, drug-naïve PD patients, and unaffected controls). They reported a
trend of upregulation for miR-30b-5p in drug-naïve patients, while the expression of miR-30a-5p was
upregulated in plasma samples of l-dopa-treated PD patients [69]. A significant overexpression of
miR-29a-3p, miR-30b-5p, and miR-103a-3p in l-dopa-treated PD patients was also found by Serafin et
al. [62].
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Alieva et al. [70] investigated the expression levels of different miRNAs in PD patients treated with
different medications, including dopamine receptor agonists, l-dopa, and amantadine. They observed
that the levels of miR-7, miR-9-3p, miR-9-5p, miR-129, and miR-132 in treated PD patients were higher
than those of the controls [70]. A similar result was obtained in another study [58], in which the l-dopa
treatment induced significant changes in the expression profile of several miRNAs. In particular, they
found that the expression levels of miR-16-2-3p, miR-26a-2-3p, and miR-30a were able to discriminate
between treated and untreated patients [58]. In contrast to these studies reporting that l-dopa treatment
could increase the expression levels of different miRNAs, Caggiu et al. [61] observed a significant
decrease in miR-155 in patients treated with the higher doses of l-dopa.

Although further studies are needed to confirm these data, it seems that miRNAs are very sensitive
at least to some of the treatments currently used in the clinical practice of PD, so also in this disease
they may became the targets of innovative therapeutic strategies [70].

5. Multiple Sclerosis

MS is a heterogeneous neurological disorder of the CNS characterized by autoimmune
inflammation coupled to demyelination and neurodegeneration [3]. MS most often follows a
relapsing-remitting course (RRMS), in which acute episodes of clinical/MRI activity are followed by
partial or complete recovery [71]. Over the time course (around 10−15 years from the onset), some of
the RRMS patients (20%−30%) complain of a progressive accumulation of disability, possibly due to
neurodegeneration: It means that they are converting into the so-called secondary progressive MS
(SPMS). Finally, in a minority of patients (7%−10%) the clinical pattern is characterized by a chronic
progressive deterioration of the neurological abilities from the very onset of the disease, which is
referred to as primary progressive MS (PPMS) [72].

To date, there is no definitive treatment available for MS, and the current therapeutic strategy
is mostly addressed to reduce the risk of relapses and potentially the subsequent disability
progression [73–76]. Patients are treated with disease-modifying therapies (DMTs), which have
different mechanisms of action that aim to suppress or modulate the dysregulated immune system,
limit CNS inflammation, and prevent relapses and new CNS lesions [73]. Currently, a total of 18 DMTs
are approved by the FDA, but most of them are prescribed for RRMS patients. Recently, a new
treatment (Siponimod) has received the first positive approval from the European Medicine Agency
(EMA) specifically for treating the SPMS patients, whereas Ocrelizumab is currently the only DMT that
is approved for patients with PPMS.

Increasing evidence showed that several DMTs were able to restore the expression levels
of miRNAs dysregulated in MS patients. Figure 2 shows a schematic representation of miRNA
pharmacoepigenomics reported in MS. Interferon-β (IFN-β) and glatiramer acetate (GA) were the
first two DMTs approved more than 20 years ago for the treatment of MS. IFN-β represents an
efficacious first-line therapy whose mechanism of action lies in its ability to modulate the immune
system activity, mainly by reducing the migration of peripheral T lymphocytes to the CNS [77].
The first longitudinal study on the miRNA expression changes in response to IFN-β showed that
an up-regulation of IFN-β-responsive genes was coupled to a down-regulation of several miRNAs
(including members of the miR-29 family) in peripheral blood mononuclear cells (PBMCs) of RRMS
patients [78]. The involvement of miRNAs in response to IFN-β was pointed out by a clinical
trial, where the participants received standard IFN-β therapy for nine days [79]. Data showed that
aberrant expression levels of miR-145 and miR-20a-5p were normalized in the whole blood of RRMS
patients treated with IFN-β [80]. The pioneer study on the miRNA modulation by GA reported
that the administration of GA was able to restore normal levels of miR-146a and miR-142-3p, which
were upregulated in PBMCs of the RRMS patients [81]. Later, Singh et al. [82] demonstrated that
GA treatment was able to modulate the expression levels of miR-155-5p, miR-27a-3p, miR-9-5p,
and miR-350-5p, in plasma and urine exosome, so they were suggested as potential biomarkers of
drug response.
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Figure 2. Schematic representation of miRNA pharmacoepigenomics reported in MS by Cytoscape v3.7.1. Yellow nodes represent miRNAs. Fingolimod, Natalizumab,
Glatiramer Acetate, Interferon-β, and Dimethyl fumarate, are shown in green, blue, purple, orange, and brown, respectively. The size of the nodes is proportional to
the degree of the nodes. It is worthy to mention that, among the more frequently used disease-modifying therapies (DMTs) in relapsing-remitting course (RRMS),
Fingolimod, Glutiramer Acetate, and Natalizumab seem to significantly impact the expression levels of common miRNAs (and possibly target genes), while their
mechanisms of action are quite different (see the text). Indeed, this observation may suffer from some biases due to e.g., the selection of the investigated miRNAs, the
molecular methods used, etc., so more definitive conclusions can be drawn after planned studies.
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The effects of other two DMTs, Natalizumab and Fingolimod, on miRNA profiling have been
investigated [83]. Natalizumab, a monoclonal antibody able to prevent immune cell infiltration
into the CNS, reduced miR-150 levels in the CSF with a concurrent increase of miR-150 levels in
plasma [83]. Fingolimod, an agonist of the sphingosine-1 phosphate receptor (S1P1) that prevents
immune cell migration into the brain, showed a divergent pattern in patients who started the
treatment, since the plasma levels of miR-150 decreased during the treatment, while the CSF levels
remained unchanged [83]. Fingolimod was also reported to restore the blood levels of several miRNAs
downregulated in MS patients, including miR-23a, a key regulator of myelination [18], miR-15b, a
suppressor of Th17 differentiation, and miR-223, involved in inflammatory processes by targeting
STAT5 [84]. Finally, Sáenz-Cuesta et al. [85] demonstrated that the first dose of Fingolimod affects
the circulating extracellular vesicles (EVs) in MS patients, where an elevated EV concentration with a
dramatic change in their miRNA cargo resulted since the very early administration of the drug.

The expression levels of miR-126 and miR-17 resulted downregulated in CD4+ T cells of RRMS
patients under treatment with Natalizumab, while they were upregulated during the clinical relapse,
suggesting that the therapeutic effect of Natalizumab may be mediated by these two miRNAs possibly
implicated in the pathogenesis of MS [86,87]. In addition, 10 miRNAs resulted differentially expressed in
B-lymphocytes obtained from RRMS patients treated with Natalizumab [88]. Two clusters, miR-17∼92
and miR-106b∼25, were particularly deregulated. In another study, 1-year treatment with Natalizumab
increased the blood levels of miR-18a, miR-20b, miR-29a, and miR-103 in RRMS patients, all miRNAs
downregulated in the CD4+ T-cells of RRMS patients compared to controls [89]. In addition, in the
animal model of MS (experimental autoimmune encephalomyelitis, EAE), genetic deletion of the
miRNA cluster miR-106a∼363 (containing Natalizumab-regulated miR-20b) resulted in a more severe
disease course, and it upregulated in vivo the miR-20b target genes [89]. In addition, the treatment
with Natalizumab restored the expression levels of miR-26a and miR-155 [90], which were upregulated
in PBMCs of MS patients, as well as in urine exosome, plasma, and in the spinal cord samples from EAE
mice [82]. Notably, miR-155 plays a central role in many processes involved in the pathogenesis of MS,
such as immune cell activation, neurodegeneration and permeabilization of the BBB [18]. Monocytes
from RRMS patients receiving Natalizumab showed reduced expression of the proinflammatory
miR-155, compared to untreated MS patients [91]. Similar changes were observed in patients receiving
Dimethyl fumarate, which is the first oral first-line drug approved for the treatment of RRMS [91].

Finally, the treatment with Rituximab, a monoclonal antibody that is administered off-label for
treating particular MS forms, was able to restore in patients with neuromyelitis optica (NMO) the
aberrant levels of brain-specific or brain-enriched miRNAs, including miR-125b, miR-760, miR-135a,
miR-134, miR-138, and miR-135b [92].

6. MiRNAs Involved in MS Drug Resistance

In the era of Precision Medicine, the big challenge faced by the specialists also in MS is to
distinguish between responders and not-responders to a given therapy before starting the treatment
and, consequently, to support the clinicians in planning the best therapeutic option available for an
individual patient. Treatment of non-responder patients is a critical issue in the clinical management
of MS and, unfortunately, it remains a widely unexplored field [18]. Eftekharian et al. [93] investigated
for the first time the miRNA involvement in MS drug resistance and showed different miRNA patterns
in MS patients responding to Fingolimod compared to non-responders. In their preliminary study,
miR-34a-5p and miR-211-5p were found down-regulated in non-responder patients compared to
responders, while miR-204-5p was up-regulated [93]. Serum exosomal miRNAs were found to be
altered after treatment with Fingolimod [94]. The comparison between stable responders (i.e., patients
with no evidence of Gd-enhancing lesions at both baseline and 6-month follow-up) and positive
responders (i.e., patients showing active Gd-enhancing lesions at baseline and no enhancing lesions after
6 months of treatment) revealed that the expression levels of two miRNAs (miR-150-5p and miR-548e-3p)
decreased with treatment, while the expression of miR-130b-3p, miR-654-5p, and miR-487b-3p increased.
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Additionally, 11 miRNAs (miR-203a, miR-193a-5p, miR-379-5p, miR-370-3p, miR-382-5p, miR-493-3p,
miR-432-5p, miR-485-5p, miR-2110, miR-1307-3p, and miR-1908-5p) were significantly upregulated
in stable responders after 6 months of treatment [94]. In line with this study, a recent work profiled
the expression of exosome-associated miRNAs in serum of naïve and IFN-β-treated groups of MS
patients [95]. A total of 16 exosome-associated miRNAs were found differentially expressed in
IFN-β-treated RRMS patients with response to therapy compared to those without response. In details,
2 miRNAs (miR-22-3p and miR-660-5p) were upregulated, while 14 (miR-486-5p, miR-451a, let-7b-5p,
miR-320b, miR-122-5p, miR-215-5p, miR-320d, miR-19-3p, miR-26a-5p, miR-142-3p, miR-146a-5p,
miR-15-3p, miR-23a-3p, and miR-223-3p) were downregulated [95]. Furthermore, the expression
level of miR-29b-3p was reported downregulated under IFN-β treatment in RRMS responders versus
non-responders, suggesting that the down-regulation of miR-29b-3p may be used as biomarker of
discriminating responsiveness [96]. Another recent study has evaluated the expression of the miR-326
in PBMCs of RRMS patients who were responders and non-responders to IFN-β treatment [97].
MiR-26a-5p expression level was found significantly up-regulated in RRMS patients responding to
IFN-β, overall suggesting that miRNA profiling may be useful to reduce ineffective treatments [98].

Although to be considered with caution, there are some evidences that miRNAs may be also
helpful in the clinical practice as markers of side effects related to the administration of a given
DMT in MS. Despite being very effective especially in RRMS patients with high clinical/MRI activity,
Natalizumab has been in fact associated with an increased risk of developing progressive multifocal
leukoencephalopathy (PML), a severe demyelinating disease of CNS caused by the reactivation of a
latent infection of JC virus (JCV) [99]. Muñoz-Culla et al. [99] were the first to explore the blood miRNA
signature in order to stratify the individual PML risk. They observed a differential expression of 3
miRNAs (miR-320, miR-320b, and miR-629) between the PML and non-PML groups after 12 months of
treatment and suggested that these miRNAs might serve as possible biomarkers for individual PML
risk assessment.
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Table 1. List of miRNAs involved into therapeutic effects of available conventional (and non-conventional) treatments for some NDDs. For each disease, the
investigated drug, the differentially expressed miRNAs, their source, the type of comparison and the published papers are indicated.

Disease Drug miRNA Source Comparison Ref.

Alzheimer’s Disease

Donepezil miR-206-3p Hippocampus, cortex - Mouse Treat vs Non treat [43]

Simvastatin miR-106b SH-SY5Y cells; APP/PS1 mice brain tissues Treat vs Non treat [47]

Osthole
miR-9 APP-overexpressed cells Treat vs Non treat [45,54]

miR-107 APP-overexpressed cells; APP/PS1 mice Treat vs Non treat [48]
miR-101a-3p APP-overexpressed cells; APP/PS1 mice Treat vs Non treat [52]

AGR-GRg1 miR-873-5p Hippocampus - Mouse Treat vs Non treat [55]

Parkinson’s disease
l-Dopa

miR-30b-5p, miR-30a-5p Plasma Treat vs Non treat [69]
miR-29a-3p, miR-30b-5p, miR-103a-3p PBMCs Treat vs Non treat [62]
miR-16-2-3p, miR-26a-2-3p, miR-30a Peripheral blood Treat vs Non treat [58]

miR-155 PBMCs Treat vs Non treat [61]

l-Dopa
Dopamine receptor agonists

Amantadine
miR-7, miR-9-3p, miR-9-5p, miR-129, miR-132 Peripheral blood Treat vs Non treat [70]

Multiple Sclerosis

Interferon-β

miR-29 PBMCs Treat vs Non treat [78]
miR-145, miR-20a-5p Whole blood Treat vs Non treat [80]

miR-22-3p, miR-660-5p, miR-486-5p, miR-451a,
let-7b-5p, miR-320b, miR-122-5p, miR-215-5p,

miR-320d, miR-19-3p, miR-26a-5p, miR-142-3p,
miR-146a-5p, miR-15-3p, miR-23a-3p,

miR-223-3p

Exosome Res vs Non res [95]

miR-29b-3p PBMCs Res vs Non res [96]
miR-326 PBMCs Res vs Non res [97]

miR-26a-5p PBMCs Res vs Non res [98]

Glatiramer acetate
miR-146a, miR-142-3p PBMCs Treat vs Non treat [81]

miR-155-5p, miR-27a-3p, miR-9-5p, miR-350-5p Plasma and urine exosome Treat vs Non treat [82]

Natalizumab

miR-150 CSF, Plasma Treat vs Non treat [83]
miR-126, miR-17 CD4 + T cells Treat vs Non treat [86,87]

miR-17~92, miR-106b~25 B lymphocytes Treat vs Non treat [88]
miR-18a, miR-20b, miR-29a, miR-103 Blood, CD4 + T cells Treat vs Non treat [89]

miR-26a, miR-155 PBMCs Treat vs Non treat [90]
miR-155 Monocytes Treat vs Non treat [91]
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Table 1. Cont.

Disease Drug miRNA Source Comparison Ref.

Multiple Sclerosis

Dimethyl fumarate miR-155 Monocytes Treat vs Non treat [91]

Fingolimod

miR-150 Plasma Treat vs Non treat [83]
miR-23a, miR-15b, miR-223 Blood Treat vs Non treat [84]

miR-34a-5p, miR-211-5p, miR-204-5p Peripheral blood Res vs Non res [93]
miR-150-5p, miR-548e-3p, miR-130b-3p,

miR-654-5p, miR-487b-3p, miR-203a,
miR-193a-5p, miR-379-5p, miR-370-3p,
miR-382-5p, miR-493-3p, miR-432-5p,
miR-485-5p, miR-2110, miR-1307-3p,

miR-1908-5p

Serum exosomal Stable res vs
Positive res [94]

Progressive Multifocal
Leukoencephalopathy Natalizumab miR-320, miR-320b, miR-629 Blood Treat vs Non treat [99]

Neuromyelitis Optica Rituximab miR-125b, miR-760, miR-135a, miR-134, miR-138,
miR-135b Blood Treat vs Non treat [92]
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7. Potential Role of miRNA Polymorphisms in Drug Response and Efficacy

Over the association between miRNomic profiles and their therapeutic effects in NDDs,
polymorphisms within or near miRNA binding sites can modify miRNA affinity with the corresponding
mRNA targets. This intriguing aspect highlights the existence of “genetic of the epigenetic” contribution
to the onset, progression, and inter-individual variations of the drug response [1].

A class of functional polymorphisms, named miR-polymorphisms or miRSNPs, are reported as
new player in miRNA-mediated gene regulation [100]. MiRSNPs refer to polymorphisms present at,
or near-by, the miRNA binding sites of their target genes as well as in those genes that are involved in
miRNA biogenesis [100]. MiRSNPs have been shown to influence the drug response by affecting the
expression of drug target genes, mostly in the field of cancer chemotherapy response and survival [101].

A great number of miR-polymorphisms have been associated with many diseases, including
CNS-related disorders [102]. As an example, association between miR-146a and polymorphisms of
its target gene, interleukin receptor associated kinase 1 (IRAK1), contributed to the susceptibility of
MS patients [103]. Notably, Zhang et al. [104] reported that miR-146a promoted remyelination in CNS
via IRAK1, and that miRIDIAN miR-146a mimic treatment (by Dharmacon) significantly decreased
the level of the protein IRAK1 [104]. The presence of genetic variations in IRAK1, which affect the
interaction between miR-146a and its target gene, can potentially lead to different interindividual drug
response, in different pathologies. As an example, Wang et al. [105] showed that variations within
the miR-433 target site of the gene fibroblast growth factor 20 (FGF20) inhibited the miRNA-target
interaction and, as a consequence, increased FGF20 expression level. This genetic variation conferred
an higher risk of PD by enhancing the levels of the protein α-synuclein that is the first gene identified
as associated with the disease [106].

Ghanbari et al. [107] performed a genome-wide investigation to identify genetic variants in
miRNAs and in miRNA-binding sites that are associated with AD. Variants that are located in the
seed-matching regions of target genes interfered with the interaction between miRNAs and their target
genes, pointing to a function in the drug metabolism and in phenotypic variation [107].

The implication of miRNA variants in gene network and how they can affect the metabolism and
efficacy of drugs in NDDs patients remain to be explored.

8. The Therapeutic Potential of miRNAs

Recently, a new focus has been added in the field of pharmacoepigenomics: The development of
therapeutic epidrugs. In fact, it is now evident that epigenetic status not only can influence the drug
response, but it can also be modulated by drugs [108]. Epigenetic therapy, defined as the use of drugs
to treat or prevent epigenetic defects associated with a given disease, may represent a step forward the
treatment of diseases in which epigenetic regulation plays a role [22,108]. To date, the most studied
epidrugs are the DNA methyltransferase inhibitors (DNMTi), the histone acetyltransferase inhibitors
(HATi/KATi), and the histone deacetylase inhibitors (HDACi). The Food and Drug Administration
(FDA) approved two classes of epidrugs, DNMTi and HDACi, for clinical use in a plethora of diseases,
such as cancer, epilepsy, hypertension, and cardiac arrhythmia [108].

In addition to these epidrugs, miRNAs are also gaining attention for their therapeutic potential,
and in fact miRNA-based drugs are currently in preclinical phase or in phase 1 and phase 2 clinical trials,
mostly in cancer treatment [109]. MiRNAs showed to regulate the expression of efflux and uptake drug
transporters and enzymes, with consequent impact on the drug efficacy [21]. Meanwhile, some miRNAs
may directly reduce the protein outcome of pharmacological targets and thus control the disease
progression. To modulate miRNA expression levels, there are currently two therapeutic strategies:
miRNA mimic (agonist) and anti-miRNA (antagomiR) [4,110]. The first one is used to therapeutically
restore the concentration of a specific miRNA and, as a result, to down-regulate the expression
of specific target/s involved in the disease pathogenesis. Inversely, antagomiR is used to create a
loss-of-function in the miRNA of interest [109,111]. Although to date no such miRNA-drugs have been
entered into the clinicaltrials.gov database for phase 3 trials, there are active trials (early phase) whose

clinicaltrials.gov


Cells 2020, 9, 75 13 of 19

main purpose is to investigate novel miRNA drug candidates. Indeed several Biotech Companies and
Pharmaceutical Industries focus exclusively on advancing miRNA-related drug pipelines, such as
Miragen Therapeutics, Regulus Therapeutics, ENGeneIC, and Abivax [111]. MiRagen Therapeutics
developed MRG-107, a synthetic miRNA antagonist targeting the pro-inflammatory miR-155, whose
expression is elevated in the spinal cord of both familial and sporadic ALS patients. In pre-clinical
models of ALS, inhibition of miR-155 restored microglial function and prolonged cellular survival.

9. Conclusions

The emerging advances in the field of miRNA pharmacoepigenomics open up new possibilities for
the development of a precision medicine approach for many untreatable progressive NDDs. To date,
this apparently futuristic approach has solid foundation in several pharmacological studies. In fact,
it has been demonstrated that some FDA-approved drugs are able to restore selected miRNAs that
resulted altered in NDDs, as well as miRNAs can regulate the expression of pharmacology-related
target genes through direct interaction.

The knowledge of miRNA pharmacoepigenomics not only add knowledge about the
interindividual variability in drug disposition and response, but also offers new clues to develop more
effective treatments.

Nevertheless, the use of miRNAs as potential therapeutic targets remains controversial and still
need to be investigated especially for the methods of delivery and the target specificity, especially in
case of NDDs.
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