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An adaptive synaptic array using Fowler–Nordheim
dynamic analog memory
Darshit Mehta 1,3, Mustafizur Rahman 2,3, Kenji Aono 2 & Shantanu Chakrabartty 1,2✉

In this paper we present an adaptive synaptic array that can be used to improve the energy-

efficiency of training machine learning (ML) systems. The synaptic array comprises of an

ensemble of analog memory elements, each of which is a micro-scale dynamical system in its

own right, storing information in its temporal state trajectory. The state trajectories are then

modulated by a system level learning algorithm such that the ensemble trajectory is guided

towards the optimal solution. We show that the extrinsic energy required for state trajectory

modulation can be matched to the dynamics of neural network learning which leads to a

significant reduction in energy-dissipated for memory updates during ML training. Thus, the

proposed synapse array could have significant implications in addressing the energy-

efficiency imbalance between the training and the inference phases observed in artificial

intelligence (AI) systems.
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Implementation of reliable and scalable synaptic weights or
memory remains an unresolved challenge in the design of
energy-efficient ML and neuromorphic processors1. Ideally,

the synaptic weights should be “analog” and should be imple-
mented on a non-volatile, and yet easily modifiable storage
device2. Furthermore, if these memory elements are integrated in
proximity with the computing circuits or processing elements,
then the resulting compute-in-memory (CIM) architecture3,4 has
the potential to mitigate the “memory wall”5–7 which refers to the
energy-efficiency bottleneck in ML processors that arises due to
repeated memory access. In most practical and scalable imple-
mentations, the processing elements are implemented using
CMOS circuits; as a result, it is desirable that the analog synaptic
weights be implemented using a CMOS-compatible technology.
In literature, several multi-level non-volatile memory devices
have been proposed for implementing analog synapses. These
include two-terminal memristive devices such as resistive
random-access memories (RRAM)8, magnetic random-access
memories (MRAM)9, Phase Change Memory (PCM)10, Spin-
Transfer Torque Magnetic RAM (STT-MRAM)11, Conductive
Bridge RAM12 or the three terminal devices like the floating-gate
transistors13, ferroelectric field-effect transistor-based memory
(FeFET)14, Charge Trap Memory15 and Electrochemical RAMs
(ECRAM)16. In all of these devices, the analog memory states are
static in nature, where each of the states needs to be separated
from others by an energy barrier ΔE. For example, in RRAM
devices the state of the conductive filament between two elec-
trodes determines the stored analog value, whereas in charge-
based devices like floating-gates or FeFET, the state of polariza-
tion determines the analog value. To ensure non-volatile storage,
it is critical that the energy-barrier ΔE is chosen to be large
enough to prevent memory leakage due to thermal fluctuations
and other environmental disturbances. However, the height of the
energy barrier ΔE also sets the fundamental limit on the energy
dissipated to switch between different analog storage states. For
example, switching the RRAM memory state requires 100 f J per
bit17, whereas STT-MRAM requires about 4.5pJ per bit18. A
learning/training algorithm that adapts the stored weights in
quantized steps (…,Wn−1, Wn, Wn+1, …) so as to minimize a
system-level loss-function L(W), as shown in Fig. 1(a), has to
dissipate a minimum energy of (…, ΔEn−1, ΔEn, ΔEn+1, …) for
memory updates. Separating the static states by an energy-barrier
also allows the learning algorithm to precisely control the para-
meter retention time (parameter leakage) between subsequent
parameter updates, however, this mode of updates do not exploit
the physics of learning to optimize for energy-efficiency. In many
energy-efficient ML training formulations, and in particular
analog ML systems, the loss-function L(W) is represented by an
equivalent energy-functional of a physical ML system19 and
learning/training involves a natural evolution of the system
dynamics towards the minimum energy (optimal) state based on
input stimuli (or equivalently training data). Thus, the physics of
the system evolution process selects the minimum energy path
towards the desired optimum. A synaptic element that is matched
to this system dynamics needs to be adaptive with respect to its
memory retention time which can then be traded-off with respect
to the energy-dissipation per update.

In this paper, we present such a synaptic element that uses
dynamical states (instead of static states) to implement analog
memory and is matched to the dynamics of ML training. The core
of the proposed device is itself a micro-dynamical system and the
system-level learning/training process modulates the dynamical
state (or state trajectory) of the memory ensembles. The concept
is illustrated in Fig. 1b, which shows a reference ensemble tra-
jectory that continuously decays towards a reference zero vector
without the presence of any external modulation. However,

during the process of learning, the trajectory of the memory
ensemble is pushed towards an optimal solution W*. The main
premise of this paper is that the extrinsic energy (…, ΔEn−1, ΔEn,
ΔEn+1, …) required for modulation, if matched to the dynamics
of learning, could reduce the energy-budget for ML training. This
is illustrated in Fig. 1c which shows a convergence plot corre-
sponding to a typical ML system as it transitions from a training
phase to an inference phase. During the training phase, the
synaptic weights are adapted based on some learning criterion
whereas in the inference phase the synaptic weights remain fixed
or are adapted intermittently to account for changes in the
operating conditions. As a result, during the training phase the
number of weight updates is significantly higher than during the
inference phase. Take for example support-vector machine
(SVM) training, the number of weight updates scale quadratically
with the number of support vectors and the size of the training
data, whereas adapting the SVM during inference only scales
linearly with the number of support-vectors20. Thus, for a con-
stant energy dissipation per update, the total energy-dissipated
due to weight updates is significantly higher in training than
during inference. However, if the energy-budget per weight
updates could follow a temporal profile as shown in Fig.1c,
wherein the energy dissipation is no longer constant, but inver-
sely proportional to the expected weight-update rate, then the
total energy dissipated during training could be significantly
reduced. One way to reduce the synaptic weight update or
memory write energy budget is to trade-off the weight’s retention
rate according to the profile shown in Fig. 1c. The desired
retention rate profile could then be achieved by adaptively
changing the energy-barrier height as shown in Fig. 1c - inset.
During the training phase, the synaptic element can tolerate lower
retention rates or parameter leakage because this physical process
could be matched to the process of weight decay or regularization,
a technique commonly used in ML algorithms to achieve better
generalization performance21. As shown in Fig. 1c, the synapse’s
retention rate should increase as the training progresses such that
at convergence or in the inference phase the weights are stored as
a non-volatile memory.

In this paper, we describe a dynamic analog memory (DAM)
that can exhibit a temporal profile similar to that of Fig. 1c.
Furthermore, the memory is implemented on a standard CMOS
process without the need for any additional processing layers.
Figure 1d shows a micrograph of a DAM array where each ele-
ment of the array implements the circuit shown in Fig. 1e. In the
Supplementary section I, we provide additional details for
implementing the circuit of Fig. 1e in a standard CMOS process.
The proposed DAM requires a Fowler–Nordheim (FN) quantum-
tunneling barrier which can be created by injecting sufficient
electrons onto a polysilicon island (floating-gate) that is elec-
trically isolated by thin silicon-di-oxide barriers22. As the electron
tunnels through the triangular barrier, as shown in Fig. 1f, the
barrier profile changes which further inhibits the tunneling of
electrons. We have previously shown that the dynamics of this
simple system is robust enough to implement time-keeping
devices23 and self-powered sensors24. In this paper, we use a pair
of synchronized FN-dynamical systems to implement a DAM
suitable for implementing ML training/inference engines. Fig-
ure 1g shows the dynamics of two FN-dynamical systems, labeled
as SET and RESET, whose analog states continuously and syn-
chronously decay with respect to time. In our previous work22,24,
we have shown the dynamics across different FN-dynamical
systems can be synchronized with respect to each other with an
accuracy greater than 99.9%. However, when an external voltage
pulse modulates the SET system, as shown in Fig. 1g, the
dynamics of the SET system becomes desynchronized with
respect to the RESET system. The degree of desynchronization is
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a function of the state of the memory at different time instances
(Fig. 1g, insets g1–g3) which determines the memory’s retention
rate. For instance, at time-instant t1, a small magnitude pulse
would produce the same degree of desynchronization as a large
magnitude pulse at the time-instant t3. However, at t1 the pair of
desynchronized systems (SET and RESET) would resynchronize
more rapidly as compared to desynchronized systems at time-
instants t2 or t3. This resynchronization effect results in shorter
data retention; however, this feature could be leveraged to
implement weight-decay in ML training. At time-instant t3, the
resynchronization effect is weak enough that the FN-dynamical
system acts as a persistent non-volatile memory with high data-
retention time. In the Methods section, we describe how the FN-
dynamical system mathematical model can be matched to ML
training formulation and the weight-decay dynamics required for
learning and generalization. The model also shows that the vol-
tage or energy required for updating the memory can be annealed
according to the profile shown in Fig. 1c.

Results
Dynamic analog memory with an asymptotic non-volatile
storage. The dynamics of the FN-tunneling-based DAM (or FN-
DAM) were verified using prototypes fabricated in a standard
CMOS process (micrograph shown in Fig. 1d). The FN-DAM
devices were programmed and initialized through a combination

of FN tunneling and hot electron injection. A detailed description
of the general programming process can be found in24 and in the
“Methods” section we describe implementation specific to this
work. The tunneling nodes (WS and WR in Fig. 1e) were initi-
alized to around 8 V and decoupled from the readout node by a
decoupling capacitor to the sense buffers (shown in supplemen-
tary information Fig. 1). The readout nodes were biased at a lower
voltage (~3 V) to prevent hot electron injection25 onto the
floating-gate during the readout operation. The capacitive
decoupling of the read-out circuitry from the memory also
reduces the effect of read disturbances and in Supplementary
Fig. 2, we show measurement results that verify that the effect of
read disturbance is random and the magnitude of the disturbance
is less than the precision of the memory update and read-out
circuits.

Figure 2 shows the measured dynamics of the FN-DAM device
in different initialization regimes used in ML training, as
described in Fig. 1g. The different regimes were obtained by
initializing the tunneling nodes (WS and WR) to different voltages
(see “Methods” section), whilst ensuring that the tunneling rates
on theWS andWR nodes were equal. Initially (during the training
phase), tunneling-node voltages were biased high (readout node
voltage of 3.1 V), leading to faster FN tunneling (Fig. 2, inset a1).
A square input pulse of 100 mV magnitude and 500 ms duration
(5 f J of input energy) was found to be sufficient to desynchronize
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the SET node by 1 mV. This desynchronization, w= (WS − WR),
stores the state of the dynamical analog memory. However, as
shown in Fig. 2b, the rate of resynchronization in this regime is
high, which leads to a decay in the stored weight down to 30% in
40 s. At t= 90 s, the voltage at node WS has reduced (readout
node voltage of 2.9 V shown in Fig. 2, inset a2), and a larger
voltage amplitude (500 mV) is required to achieve the same
desynchronization magnitude of 1 mV. This corresponds to an
energy expenditure of 125 fJ. However, as shown in Fig. 2c, the
rate of resynchronization is low in this regime, leading to a decay
in the stored weight down to 70% its value in 40 s. Similarly, at a
later time instant t= 540 s (Fig. 2, inset a3), a 1 V signal
desynchronizes the recorder by 1 mV, and as shown in Fig. 2d, in
this regime 95% of the stored weight value is retained after 40 s.
This mode of operation is suitable during the inference phase of
machine learning when the weights have already been trained, but
the models need to be sporadically adapted to account for
statistical drifts. Modeling studies described in Supplementary
section III show that the write energy per update starts from as
low as 5 f J and increases to 2.5 pJ over a period of a period of
12 days. During the same time, the memory becomes less plastic
with the increase in the memory retention time as shown in
Supplementary section IV. Asymptotically, the FN-DAM exhibits
retention times similar to that of other FLASH-based memory.

The next set of experiments verified if the analog state of an
FN-DAM device can be adapted (incremented or decremented)
using digital pulses (using a digital logic or a spiking neuron).
Each of the differential DAM elements in the FN-DAM device
was programmed by independently modulating the SET and
RESET junctions shown in Fig. 1e. The corresponding WS and
WR nodes were initially synchronized with respect to each other.
After a programming pulse was applied to the SET or RESET
control gate, the difference between the voltages at the WS and
WR nodes was measured using an array of sense buffers. In results
shown in Fig. 3a–d, a sequence of 100 ms-long 3 V SET and
RESET pulses was applied. The measured difference between the
voltages at theWS andWR nodes indicates the current state of the
memory. Each SET pulse increments the state while a RESET
pulse decrements the state. In this way, the FN-device can
implement a DAM that is bidirectionally programmable with

unipolar pulses. Note that, unlike conventional FLASH memory,
the magnitude of the programming pulse is significantly lower.
Figure 3d also shows the cumulative nature of the FN-DAM
updates which implies that the device can work as an
incremental/decremental counter.

Figure 3e, f show measurement results that demonstrate the
resolution at which an FN-DAM can be programmed as an
analog memory. The analog state can be updated by applying
digital pulses of varying frequency and variable number of pulses.
In Fig. 3e, four cases of applying a 3 V SET signal for a total of
100 ms are shown: a single 100 ms pulse; two 50 ms pulses; four
25 ms pulses; and eight 12.5 ms pulses. The results show the net
change in the stored weight was consistent across the 4 cases. A
higher frequency leads to a finer control of the analog memory
updates. Note that any variations across the devices can be
calibrated or mitigated by using an appropriate learning
algorithm26. The variations could also be reduced by using
careful layout techniques and precise timing of the control
signals.

Characterization of FN-DAM. The FN-DAM device can be
programmed by changing the magnitude of the SET/RESET pulse
or its duration (equivalently number of pulses of fixed duration).
Figure 4a shows response when the magnitude of the SET and
RESET input signals varies from 4.1 to 4.5 V. The measured
response shown in Fig. 4a shows an exponential relationship with
the amplitude of the signal. When short-duration (10 ms) pulses
are used for programming, the stored value varies linearly with
the number of pulses, as shown in Fig. 4b. However, repeated
application of pulses with constant magnitude produces a suc-
cessively smaller change in programmed value due to the
dynamics of the DAM device (Fig. 4c). One way to achieve a
constant response is to pre-compensate the SET/RESET control
voltages such that a target voltage difference w= (WS − WR) can
be realized. The differential architecture increases the device state
robustness against disruptions from thermal fluctuations
(Fig. 4d). The stored value on DAM devices will leak due to
thermal-induced processes or due to trap-assisted tunneling.
However, in DAM, the weight is stored as the difference in the
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voltages corresponding to WS and WR tunneling junctions which
are similarly affected by temperature fluctuations. This is shown
in Fig. 4d where the FN-DAM array was programmed/operated
at 100 °C and the dynamic response was measured over a dura-
tion of 15 h. The baseline drift due to the memory read-out cir-
cuits were first calibrated during the first 400 min and used for
zeroing out the dynamical response of each of the FN-DAM
device. Then, at 400 min time instant a SET pulse (3.3 V for 1 s
duration) was applied to all the FN-DAM devices which pro-
grammed all the devices to a specific memory state. The degree of
desynchronization was continuously measured and is plotted in
Fig. 4d. Over a duration of 8 h the drift in the stored analog value

is less than 10%. This result could also be used to estimate the
memory retention time as described in the Supplementary
Information section IV, which is expected to vary depending on
the current state of the memory.

FN-DAM based co-design of classifiers and neural networks.
We first experimentally demonstrate the benefits of FN-DAM-
based weights when training a simple linear classifier. For these
results, two FN-DAM devices were independently programmed
according to the perceptron training rule27. We trained the
weights of a perceptron model to classify a linearly separable
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dataset comprising of 50 instances of two-dimensional vectors, as
shown in Fig. 5a. During each epoch, the network loss function
and gradients were evaluated for every training point in a ran-
domized order, with time interval between successive training
points being two seconds. Figure 5b shows that after training for 5
epochs, the learned boundary can correctly classify the given data.
Figure 5c shows the evolution of weights as a function of time. As
can be noted in the figure, initially the magnitude of weight
updates (negative of the cost function gradient) was high for the
first 50 s, after which the weights stabilized and required smaller
updates. The energy consumption of the training algorithm can
be estimated based on the magnitude and number of the SET/
RESET pulses required to carry out the required update for each
misclassified point. As the SET/RESET nodes evolve in time, they
require larger voltages for carrying out updates, shown in Fig. 5d.
The gradient magnitude was mapped onto an equivalent number
of 1 kHz pulses, rounding to the nearest integer. Figure 5e shows
the energy (per unit capacitance) required to carry out the weight
update whenever a point was misclassified. Though the total
magnitude of weight update decreased with each epoch, the
energy required to carry out the updates had lower variation
(Fig. 5f). The relatively larger energy required for smaller weight
updates at later epochs led to longer retention times of the
weights. Similar energy-dissipation and weight update profiles
were also obtained when a larger FN-DAM array is used to store
the training parameters of a three-layer neural network imple-
menting a multi-layer perceptron (MLP). Details of the network
architecture and training procedure are described in the Methods
section and in Supplementary Information section VII.
Figure 6a–c shows the FN-DAM training dynamics when the
MLP neural network is trained on the Fisher Iris dataset28. In
particular, Fig. 6c shows that by adapting the programming
pulses, the energy-dissipation profile across training and infer-
ence can be equalized, as was proposed in Fig. 1c. The dynamical
systems model summarized in the Methods section can also be
used to evaluate the energy-efficiency gains that can be obtained
by co-designing a convolutional neural network (CNN) training
engine using FN-DAMs. Details of the CNN architecture are

provided in the supplementary information section VII. The
result of the co-design is shown in Fig. 6d and in Table 1where we
show that an FN-DAM-based deep neural network (DNN) can
achieve similar classification accuracy as a conventional DNN. To
compare the energy dissipation of the FN-DAM neural network
implementation, we used a RRAM energy per bit dissipation
metric (100 f J/bit)17 and for an FN-DAM implementation we
used an energy dissipation model described in Supplementary
Information section III. Note that amongst CMOS-compatible
non-volatile analog memories RRAM is one of the most energy-
efficient synapses. The result in Fig. 6e shows that training an FN-
DAM-based neural network dissipates significantly lower energy
compared to the RRAM-based neural network. Note that for this
demonstration, only the fully connected layers were trained while
the feature layers were kept static. This mode of training is
common for many practical DNN implementations on edge
computing platforms where the goal is not only to improve the
energy-efficiency of inference but also for training29. The results
in Fig. 6e and Table 1 show that the neural network training and
accuracy are robust even when mismatch is introduced into the
FN-DAM model. Details of the mismatch model are provided in
the “Methods” section.

Discussions
In this paper, we reported a FN quantum tunneling-based DAM
(FN-DAM) whose physical dynamics can be matched to the
dynamics of weight updates used in ML or neural network
training. During the training phase, the weights stored on FN-
DAM are plastic in nature and decay according to a learning-rate
evolution that is necessary for the convergence of the gradient-
descent training30. As the training phase transitions to an infer-
ence phase, the FN-DAM acts as a non-volatile memory. As a
result, the trained weights are persistently stored without
requiring any additional refresh steps (used in volatile embedded
DRAM architectures31). The plasticity of FN-DAM during the
training phase can be traded off with the energy required to
update the weights. This is important because the number of
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weight updates during training scale quadratically with the
number of parameters, hence the energy budget during training is
significantly higher than the energy budget for inference. The
dynamics of FN-DAM bears similarity to the process of annealing
used in neural network training and other stochastic optimization
engines to overcome local minima artifacts32. Thus, it is possible
that FN-DAM implementations or ML processors can naturally
implement annealing without dissipating any additional energy. If
such dynamics were to be emulated on other analog memories, it
would require additional hardware and control circuitry.

Several challenges exist in scaling the FN-DAM to large neural-
networks. Training a large-scale neural network could take days
to months33 depending on the complexity of the problem,
complexity of the network, and the size of the training data. This
implies that the FN-DAM dynamics need to match the long
training durations as well. Fortunately, the 1/log characteristics of
FN devices ensure that the dynamics could last for durations
greater than a year34. The other challenge that might limit the
scaling of FN-DAM to large neural network is the measurement

precision. The resolution of the measurement and the read-out
circuits limit the energy-dissipated during memory access and
how fast the gradients can be computed (Supplementary Infor-
mation Fig. 5). For instance, a 1 pF floating-gate capacitance can
be initialized to store 107 electrons. Even if one were able to
measure the change in synaptic weights for every electron tun-
neling event, the read-out circuits would need to discriminate
100 nV changes. A more realistic scenario would be measuring
the change in voltage after 1000 electron tunneling events which
would imply measuring 100 µV changes. However, this will
reduce the resolution of the stored weights/updates to 14 bits.
This resolution might be sufficient for training a medium-sized
neural network; however, it is still an open question if this
resolution would be sufficient for training large-scale
networks35,36. A mechanism to improve the dynamic range and
the measurement resolution is to use a current-mode readout
integrated with current-mode neural network architecture. If the
read-out transistor is biased in weak-inversion, 120 dB of
dynamic range could be potentially achieved. However, note that
even in this operating mode, the resolution of the weight would
still be limited by the number of electrons and the quantization
due to electron transport. Addressing this limitation would be a
part of future research.

If the proposed FN-DAM were to be used as a static analog
memory, then measuring 1 mV differences to distinguish between
different memory states would be challenging, especially if device
mismatch were to be taken into account. However, the analog
value stored on the FN-DAM array is updated within a learning
loop that minimizes a system level objective function (cumulative
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Fig. 6 Synaptic memory for deep neural network tasks. a–c Experimental training on Fisher Iris dataset over five trials: a Five-fold cross-validation
accuracy of model over 20 epochs for training set (120 points) and validation set (30 points). b Total pulses required in implementing weight update for
entire synaptic array during each epoch. c Energy per unit capacitance expended in updating the weights. Note: scale of Y-axis is set to match that of panel
(b). Error bars in a–c indicate standard deviation estimated across five trials. d, e Simulated training on MNIST dataset: d Network loss for three types of
network models. Inset shows same data with x-axis in log scale. e Energy dissipated in updating the network weights for three types of network models.
Inset shows same data with X-axis in log scale.

Table 1 Test accuracy obtained for different variants of
CNNs on the MNIST task.

Accuracy (%) After 9 epochs After 10 epochs

Standard CNN 98.9 98.9
FN-DAM CNN 98.9 99.2
FN-DAM CNN with mismatch 97.9 97.3
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loss or distance). Thus, the effect of any static mismatch across
the memory cells gets calibrated out during the process of
training. The important aspect for the calibration process to be
successful is that the memory update be monotonic with respect
to error-gradient and the precision of the updates be high enough
(typically greater than 12 bits). Both of these requirements are
met by FN-DAM due to the physics of electron tunneling. In fact,
the effect of calibration due to learning can be seen in the FN-
DAM neural network training (Fig. 6d, e) where the classification
accuracy is independent of the initial choice of the FN-DAM state
and the mismatch in FN-DAM device characteristics. The effect
of blurring, due to the presence of thermal noise is in fact ben-
eficial for training the neural network since it helps in overcoming
artifacts due to local minima. Once the FN-DAM has transitioned
to a non-volatile state (during inference), the effect of blurring is
significantly reduced as the energy barrier separating different
analog states is significantly higher than energy due to thermal
fluctuations. However, the effect of blurring due to measurement
noise needs to be compensated by averaging or increasing the
cumulative measurement time.

In this work, we have used a voltage buffer (source follower) to
the read the state of the FN-DAM cell. However, a current mode
readout could also be used to differentiate mV changes in FN-
DAM voltages. In particular, if the read-out transistor is biased in
weak-inversion, then the exponential dependence between the
gate voltage and the drain current could be used amplify the
change in voltage. We have previously used this method in37 for
floating-gate current memory arrays and in38 we reported an
active feedback-based approach to improve the resolution of the
voltage-mode read-out. However, in both these implementations
there will exist a trade-off with the accuracy of the measurement
resolution and the read-out speed39.

Another limitation that arises due to finite number of electrons
stored on the floating-gate and transported across the tunneling
barrier during SET and RESET, is the speed of programming.
Shorter duration programming pulses would reduce the change in
stored voltage (weight) which could be beneficial if precision in
updates is desired. In contrast, by increasing the magnitude of the
programming pulses, as shown in Fig. 4a, the change in stored
voltage can be coarsely adjusted. However, this would limit the
number of updates before the weights saturate. Note that due to
device mismatch the programmed values would be different on
different FN-DAM devices.

In terms of endurance, after a single initialization, the FN-
DAM can support 103–104 update cycles before the weight
saturates. However, at the core FN-DAM is a FLASH technology
and could potentially be reinitialized again. Given that the
endurance of FLASH memory is 103 8, it is anticipated that FN-
DAM to have an endurance of 106–107 cycles. In terms of other
memory performance metrics, the ION/IOFF ratio for the FN-
DAM is determined by the operating regime and the read-out
mechanism. Supplementary Fig. 5 shows the expected ratio esti-
mated using the FN-DAM model. Also, FN-DAM when biased as
a non-volatile memory requires on-chip charge-pumps only to
generate high-voltage programming pulses for infrequent global
erase; thus, compared to FLASH memory, FN-DAM should have
fewer failure modes9. Since FN-DAM can also be implemented
on conventional FLASH memories, the synapses could be scaled
to future 3-D and 2.5D FLASH processes where high synaptic
densities can be achieved for implementation of large-scale neural
networks.

The main advantage of FN-DAM compared to other emerging
memory technologies is its scalability and compatibility with
CMOS. At its core, FN-DAM is based on floating-gate memories
which have been extensively studied in the context of machine
learning architectures13. Furthermore, from an equivalent circuit

point of view, FN-DAM could be viewed as a capacitor whose
charge can be precisely programmed using CMOS processing
elements. Due to its unique decay characteristics, FN-DAM also
provides a balance between weight-updates that are not too small
so that learning never occurs versus weight-updates being too
large such that the learning becomes unstable. The physics of FN-
DAM ensures that weight decay (in the absence of any updates)
towards a zero vector (due to resynchronization) which is
important for neural network generalization40. For implementing
a large-scale neural network, the FN-DAM form-factor would be
required to be reduced which would affect device variability and
mismatch41–44. However, in our prior work,23,34 we have shown
that the dynamics of the FN-DAM cell (in steady-state) is
determined primarily by the gate-oxide thickness, a parameter
that is very well controlled across processes. An oxide thickness
greater than 10 nm ensures that the electron-leakage mechanism
is dominated by FN quantum tunneling (instead of direct
quantum tunneling). Thus, FN-DAM devices should be imple-
mentable on most sub-10nm CMOS processes that allow fabri-
cation of thicker gate-oxide transistors for input/output devices.

Like other analog non-volatile memories, FN-DAM could be
used in any previously proposed CIM architectures. However, in
conventional CIM implementations the weights are trained off-
line and then downloaded on chip without retraining the
processor1. This makes the architecture prone to analog artifacts
like offsets, mismatch, and non-linearities. On-chip learning and
training mitigates this problem whereby the weights self-calibrate
for the artifacts to produce the desired output2. However, to
support on-chip training/learning, weights need to be updated at
a precision greater than 12 bits36. In this regard, FN-DAM
exhibits a significant advantage compared to other analog
memories. Even though in this proof-of-concept work, we have a
used a hybrid chip-in-the-loop training paradigm, it is anticipated
that in the future the training circuits and FN-DAM modules
could be integrated together on-chip.

From a neuromorphic point of view, FN-DAMs could be used
to mimic network level synaptic adaptation or pruning which
plays a pivotal role in determining the optimal network config-
uration during the process of learning. For instance, it has been
reported that a child’s brain has significantly denser connectivity
than an adult brain3 and consumes 50% of the body’s resting
energy metabolism (BMR). Years of learning and synaptic
pruning produces a network that tends towards optimality in
terms of both energy and performance in adulthood, when the
brain accounts for only 20% of the BMR3. The adaptability of the
proposed FN-DAM could be used to mimic this effect in artificial
machine learning systems.

If the FN-DAM updates are driven by constant voltage pulses
(or fixed energy pulses like spikes) then the memory could be
used to emulate the ageing effects in synaptic plasticity that is
observed in neurobiological systems4. Like biological synapses,
the relative change in value stored on FN-DAM or synaptic
efficacy reduces with time for the same magnitude of applied
input voltage pulses (or stimuli)45. Exploiting this feature of the
FN-DAM to mimic neurobiologically relevant synaptic dynamics
in artificial neural networks would also be a topic of future
research.

Methods
Initialization of the FN-DAM array. For each node of each recorder, the readout
voltage was programmed to around 3 V while the tunneling node was operating in
the tunneling regime (Supplementary Fig. 1). This was achieved through a com-
bination of tunneling and injection. Specifically, VDD was set to 7 V, input to 5 V,
and the program tunneling pin was gradually increased to 23 V. Around 12–13 V
the tunneling node’s potential would start increasing. The coupled readout node’s
potential would also increase. When the readout potential went over 4.5 V, elec-
trons would start injecting into the readout floating gate, thus ensuring its potential
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was clamped below 5 V. After this initial programming, VDD was set to 6 V for the
rest of the experiments. See Supplementary section I for further details. After one-
time programming, input was set to 0 V, input tunneling voltage was set to 21.5 V
for 1 min and then the floating gate was allowed to discharge naturally. Readout
voltages for the SET and RESET nodes were measured every 500 ms. The rate of
discharge for each node was calculated, and a state where the tunneling rates would
be equal was chosen as the initial synchronization point for the remainder of the
experiments.

FN tunneling dynamics. The FN tunneling current is a function of the floating-
gate capacitance CT and the floating-gate voltage V(t) and is given by:

IFN V tð Þð Þ ¼ CT
d V tð Þð Þ

dt
¼ CT

k1
k2

� �
V2exp � k2

V

� �
ð1Þ

where k1 and k2 are device specific parameters. Solving (1) leads to the floating-gate
voltage V(t) as22,23

V tð Þ ¼ k2
log k1t þ k0
� � ð2Þ

where k0 depends on initial condition as:

k0 ¼ exp � k2
V0

� �

Weight decay model and FN-DAM dynamics. Many neural network training
algorithms are based on solving an optimization problem of the form:27

min
�w

HðwÞ ¼ α

2
jj�wjj þ Lð�wÞ ð3Þ

where �w denotes the network synaptic weights, Lð�Þ is a loss-function based on the
training set and α is a hyper-parameter that controls the effect of the L2 reg-
ularization. Applying gradient descent updates on each element wi of the weight
vector �w as:

wi;nþ1 � wi;n ¼ �αηnwi;n � ηn
δL �wð Þ
δwi;n

ð4Þ

Where the learning rate ηn is chosen to vary according to ηn � Oð1=nÞ to ensure
convergence to a local minimum:30

The naturally implemented weight decay dynamics in FN-DAM devices can be
modeled by applying Kirchhoff’s Current Law at the SET and RESET floating gate
nodes (see Fig. 1e).

CT
d
dt

WS

� �þ IFN WS

� � ¼ CC
d
dt

VSET

� � ð5Þ

CT
d
dt

WR

� �þ IFN WR

� � ¼ CC
d
dt

VRESET

� � ð6Þ

Where CFG þ CC ¼ CT is the total capacitance at the floating gate. Taking the
difference between the above two equations, we get:

CT
d
dt

WS �WR

� �þ IFN WS

� �� IFN WR

� � ¼ CC
d
dt

VSET � VRESET

� � ð7Þ
For the differential architecture, w ¼ WS �WR. Let V train ¼ VSET � VRESET,

the training voltage calculated by the training algorithm. In addition, IFN is
substituted from Eq. 2. Let CC=CT ¼ CR , the input coupling ratio:

dw
dt

¼ � IFN WS

� �� IFN WR

� �� �
CT

þ CR
d
dt

V train

� � ð8Þ

dw
dt

¼
� k1

k2

� �
W2

R exp � k2
WR

� �
þ k1

k2

� �
W2

S exp � k2
WS

� �
WR �WS

wþ CR
d
dt

V train

� � ð9Þ

Discretizing the update for a small time-interval Δt

wnþ1 ¼ wn þ
� k1

k2

� �
W2

R exp � k2
WR

� �
þ k1

k2

� �
W2

S exp � k2
WS

� �
WR �WS

wnΔt þ CRΔV train;n

ð10Þ
Let μ ¼ WR=WS

wnþ1 ¼ wn �
k1
k2

� �
WS exp � k2

WS

� � μ2exp � k2
WS

1� 1
μ

� �� �
� 1

μ� 1
wnΔt þ CRΔV train;n

ð11Þ
Assuming that the stored weight (measured in mV) is much smaller than node

potential (> 6 V) i.e., w � WR (and WR � WS) and taking the limit ðμ ! 1Þ using
L’Hôpital’s rule:

wnþ1 ¼ 1� k1
k2

� �
2WS þ k2
� �

exp � k2
WS

� �
Δt

� �
wn þ CRΔV train;n ð12Þ

WS follows the temporal dynamics given in Eq. 1,

wnþ1 ¼ 1� k1
2

log k1nΔt þ k0
� �þ 1

 !
1

k1nΔt þ k0

� � !
wnΔt þ CRΔV train;n

ð13Þ
Comparing above equation to Eq. 4, the weight decay factor for FN-DAM

system is given as:

αηn ¼ k1
2

log k1nΔt þ k0
� �þ 1

 !
1

k1nΔt þ k0

� �
! O

1
n

� �
ð14Þ

Note that the assumption w « WS/R in Eq. (10) makes the mathematical model
of the synapse more tractable but is not a requirement for the memory to function.
The caveat in relaxing the w « WS/R requirement is that the weight decay factor will
not scale as 1/n during the initial phases of training. However, as shown in Fig. 6d,
e for MNIST training, the learning process is able to compensate for this deviation.

Chip-in-the-loop linear classifier training. A hybrid hardware-software system
was implemented to carry out an online machine learning task. The physical
weights (�w ¼ ½w1;w2�) stored in two FN-DAM devices were measured and used to
classify points from a labeled test data set in software. We sought to train a linear
decision boundary of the form:

f �x; �wð Þ ¼ x2 þ w1x1 þ w0 ð15Þ
�x ¼ ½x1; x2� are the features of the training set. For each point that was mis-
classified, the error in the classification was calculated and a gradient of the loss
function with respect to the weights was calculated. Based on the gradient infor-
mation, the weights were updated in hardware by application of SET and RESET
pulses via a function generator.

The states of the SET and RESET nodes were measured every 2 s and the weight
of each memory cell, i, was calculated as:

wi ¼ 1000 ´ WR;i �WS;i

� �
ð16Þ

The factor of 1000 indicates that the weight is stored as the potential difference
between the SET and RESET nodes as measured in mV. We followed a stochastic
gradient descent method. We defined loss function as:

Ln �wð Þ ¼ ReLU 1� yn f �xn; �w
� �� � ð17Þ

The gradient of the loss function was calculated as:

Gnð�wÞ ¼
∂Ln �wð Þ
∂�w

ð18Þ
The weights needed to be updated as

wnþ1 ¼ wn � λnGn �wð Þ ð19Þ
Here λn is the learning rate as set by the learning algorithm. The gradient
information is used to update FN-DAM by applying control pulses to SET/RESET
nodes via a suitable mapping function T :

V train;n ¼ T λnGn �wð Þ� � ð20Þ
Positive weight updates were carried out by application of SET pulses and

negative updates via RESET pulses. The magnitude of the update was implemented
by modulating the number of input pulses.

Memory retention model. In FN-DAM the parameter is stored as difference (w)
between the dynamical SET (WS) and RESET (WR) nodes as w = Ws – WR. Due to
resynchronization between the dynamical nodes, there is a finite time before
memory can be read. Moreover, the rate of resynchronization is a function of state
of the nodes (Fig. 2 in the main text), therefore, w can have a range of around of
1 V. Assuming 8-bit storage precision to be sufficient for machine learning
applications, each memory state is separated from each other by 4 mV. The
retention time corresponds to the time it takes for w to reduce from 8 to 4 mV.
This time is determined by the time-evolution of the FN-DAM voltage VðV0; tÞ
which is determined by the parameter array K ¼ ½k1; k2�, and a potential V0 that
determines the region of operation (Fig. 2 in the main text). Based on Eq. 2 in the
main text VðV0; tÞ is given by:

VðV0; tÞ ¼
k2

log k1t þ exp k2
V0

� �� � ð21Þ

The parameter array K is estimated from experiments which were carried out at
room temperature

(25 °C). Retention time Tret is calculated by solving the following equation:

V WR þ 0:008;Tret

� �� V WR;Tret

� � ¼ 0:004 ð22Þ
where WR is varied from 5.5 to 7 V, to simulate different operating regimes. These
simulation results are shown in Supplementary Information Fig. 4a. The retention
times could then be estimated at different operating temperatures by using the
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Arrhenius equation to estimate k1 as a function of temperature as

k1 Tð Þ ¼ k1 T0

� �
exp � Ea

k
1
T
� 1

T0

� �� �
ð23Þ

For instance, in our retention estimation shown in Supplementary Information
Fig. 4a, we assumed activation energy Ea ¼ 0:6eV , k is the Boltzmann’s constant
(8.617 eV/K) and T0= 25 °C. Also, Supplementary Information Fig. 4b. shows that
the retention model given by Eqs. 19 and 20 matches the measured results at
100 °C.

A larger FN-DAM array chipset was used for chip-in-the-loop neural network
training on the Fisher Iris dataset. The chipset contains 128 individually selectable
and programmable tunneling devices. By utilizing them in pairs, 64 synaptic
weights could be implemented. Of the 64 FN-DAM elements, 51 elements were
used to store the training weights of a three-layer neural network model (5 units
corresponding to 4 input features and one for the bias term in the input layer, 7
units (including 1 bias unit) in the hidden layer and 3 units in the output layer). A
five-fold cross-validation analysis was performed by splitting the Iris dataset into
sets of 30 points each. Over 5 training sessions, each of the 5 sets was used to
validate the model trained on the remaining 4 sets (120 points). The training was
conducted over 20 epochs. In each epoch, the training set was randomly shuffled,
and a batch size of 10 points was selected. During each batch update, weight
updates were calculated through backpropagation with stochastic gradient descent.
These weight updates were carried out in hardware through the application of SET/
RESET pulses to the corresponding memory cell. Retention of the trained MLP
parameters was verified using bake experiments as described in Supplementary
Information Section VIII and summarized in SI Figs. 9, 10.

FN-DAM based CNN Implementation. The performance of FN-DAM model was
compared to that of a standard network model. A 15-layer convolutional neural
network was trained on the MNIST dataset using the MATLAB Deep Learning
Toolbox. For each learnable parameter in the CNN, a software FN-DAM instance
corresponding to that parameter was created. In each iteration, the loss of the
network function and gradients were calculated. The gradients were used to update
the weights via Stochastic Gradient Descent with Momentum (SGDM) algorithm.
The updated weights were mapped onto the FN-DAM array. The weights in the
FN-DAM array were decayed according to Eq. 14. These weights were then
mapped back into the CNN. This learning process was carried on for 9 epochs. In
the 10th epoch, no gradient updates were performed. However, the weights were
allowed to decay for the last epoch (note that in the standard CNN case, the
memory was static). A special case with a 0.1% randomly assigned mismatch in the
floating gate parameters (k1 and k2) was also implemented.

Data availability
All the software and experimental data used for generating the figures have been
deposited in a public repository (https://doi.org/10.6084/m9.figshare.19295474)46.
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