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Abstract: Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive neuromodulatory
technique that has in recent years been linked to improved volitional limb control in spinal-cord
injured individuals. Although the technique is growing in popularity there is still uncertainty
regarding the neural mechanisms underpinning sensory and motor recovery. Brain monitoring
techniques such as electroencephalography (EEG) may provide further insights to the changes in
coritcospinal excitability that have already been demonstrated using other techniques. It is unknown,
however, whether intelligible EEG can be extracted while tSCS is being applied, owing to substantial
high-amplitude artifacts associated with stimulation-based therapies. Here, for the first time, we
characterise the artifacts that manifest in EEG when recorded simultaneously with tSCS. We recorded
multi-channel EEG from 21 healthy volunteers as they took part in a resting state and movement
task across two sessions: One with tSCS delivered to the cervical region of the neck, and one
without tSCS. An offline analysis in the time and frequency domain showed that tSCS manifested as
narrow, high-amplitude peaks with a spectral density contained at the stimulation frequency. We
quantified the altered signals with descriptive statistics—kurtosis, root-mean-square, complexity, and
zero crossings—and applied artifact-suppression techniques—superposition of moving averages,
adaptive, median, and notch filtering—to explore whether the effects of tSCS could be suppressed.
We found that the superposition of moving averages filter was the most successful technique at
returning contaminated EEG to levels statistically similar to that of normal EEG. In the frequency
domain, however, notch filtering was more effective at reducing the spectral power contribution of
stimulation from frontal and central electrodes. An adaptive filter was more appropriate for channels
closer to the stimulation site. Lastly, we found that tSCS posed no detriment the binary classification
of upper-limb movements from sensorimotor rhythms, and that adaptive filtering resulted in poorer
classification performance. Overall, we showed that, depending on the analysis, EEG monitoring
during transcutaneous electrical spinal cord stimulation is feasible. This study supports future
investigations using EEG to study the activity of the sensorimotor cortex during tSCS, and potentially
paves the way to brain–computer interfaces operating in the presence of spinal stimulation.

Keywords: transcutaneous spinal cord stimulation; electroencephalography; artifact removal; brain–
computer interface; BCI; rehabilitation

1. Introduction

Transcutaneous electrical spinal cord stimulation (tSCS) is a non-invasive neuromodu-
latory technique that has shown promise in recent years in promoting the motor recovery
of spinal-cord injury patients [1–3]. The technique uses a surface electrode positioned over
the site of spinal injury to deliver high-frequency currents, and has been associated with
functional improvements in the upper limbs, the trunk [4], and the lower limbs [1], often
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when combined with physical practice. It has been postulated that tSCS elevates the motor
threshold of dorsal root motoneurons, making volitional control easier through residual
descending pathways [5]. The precise mechanisms underpinning recovery, however, are
not fully understood. Recent studies have used various techniques to measure changes in
corticospinal excitability, one even reporting changes to cortical excitability after tSCS [6].
Going forward it will be crucial to explore numerous research avenues, employing a range
of techniques, such as electroencephalography (EEG), in order to establish the precise
mechanisms of recovery.

As with other stimulation-based techniques—functional electrical stimulation [7],
transcranial direct current stimulation [8], transcranial alternating current stimulation
(tACS) [9], deep brain stimulation [10], for example—the introduction of EEG into an
experiment may present a significant challenge when it comes to interpretation, owing
to substantial stimulation artifacts in the recorded signal. Stimulation is often applied at
intensities far exceeding the amplitudes associated with EEG. A pitfall may present itself
in the frequency domain if the stimulation frequency overlaps with a frequency range
of interest, indeed cervical tSCS is often delivered at 30 Hz, within EEG’s sensorimotor
spectrum (7–40 Hz) [11]. Many tACS studies have overcome this conflict by limiting
their EEG analysis to before and after stimulation. This removes the artifact problem but
deprives the study of access to brain activity during stimulation. Recently, EEG during
continuous tACS was monitored and artifacts were removed with artifact-suppression
techniques [12], to an extent allowing the analysis of brain rhythms during stimulation.
Transcranial alternating current stimulation (tACS) has as similar periodic waveform to
tSCS. Artifact-suppression techniques developed for tACS are a good starting point for
examining tSCS and EEG.

Whether tSCS complicates the extraction of neural information has not, to the best of
our knowledge, been reported. This study aims to cast light on the way tSCS manifests
on EEG during simultaneous acquisition, to quantify its effects and determine if artifact-
suppression techniques can be used to minimise contamination. To address these questions
we gathered an EEG dataset from healthy volunteers while stimulation was delivered
transcutaneously to the cervical region on the posterior side of the neck. The location of
stimulation and stimulation parameters—carrier frequency, burst frequency, pulse width,
etc.—were chosen to reflect parameters typical of the current state-of-the-art in upper-
limb rehabilitation using tSCS [2,3]. We performed an offline analysis to illustrate how
tSCS manifested in the time and frequency domain and considered the impact of EEG
electrode location and stimulation intensity on artifact prominence. Our hypothesis was
that, like other electrical stimulation techniques, tSCS would present in EEG as narrow,
high-amplitude peaks and that artifact-suppression techniques could reduce the impact of
stimulation. Overall, our results implied that extracting physiologically meaningful EEG
during tSCS is possible, and paves the way to future research aimed at uncovering the
sensorimotor neural mechanisms behind tSCS-based therapy.

2. Materials and Methods
2.1. Participants

Twenty-one healthy volunteers (7 females, 14 males; 28 ± 5 years old) participated in
this study. Exclusion criteria included previous neurological symptoms of the nervous or
musculoskeletal systems, metal or electronic implants, medications influencing neural
excitability (antiepileptic, antipsychotics, or antidepressants), allergy to the electrode
material, epilepsy, and pregnancy.

Sessions were conducted at the same time of day to minimise baseline EEG variances
and subjects were allowed to take breaks in between experiment runs to prevent fatigue.
Written informed consent was obtained from all participants. This study was approved by
the Human Subjects Ethics Sub-committee of the Hong Kong Polytechnic University, and
conducted according to the principles and guidelines of the Declaration of Helsinki.
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2.2. Experimental Protocol

Participants underwent two EEG recording sessions on different days, based on a two-
day crossover design. EEG and forearm EMG were measured as participants performed a
movement task. Session A was performed with tSCS applied to the cervical region of the
neck and Session B was performed without tSCS, on different days in order to minimise
the potential of stimulation-induced brain activity changes. The order of sessions were
randomised for each participant.

Participants undertook two activities during each session: A resting state task, and a
movement execution task. During the former task participants were instructed to sit still
for 90 s while their EEG was recorded. This was repeated twice: with eyes opened and
eyes closed.

To assess the effect of tSCS on event-related desynchronisation of sensorimotor
rhythms during movement, participants were instructed to perform rhythmic right-hand
or bimanual finger flexion when cued by a computer screen. A rightwards arrow cued
right-hand movement and a double arrow pointing both left and rightwards cued bimanual
movements. Each movement was performed for four seconds and repeated 30 times, with
a randomised 1.5 to 2.5 s inter-trial interval. EMG was recorded from the forearm muscles
simultaneously to measure movement onset.

2.3. EEG/EMG Data Collection

EEG was recorded at 1200 Hz with a g.USBamp biosignal amplifier (g.tec, Schiedlberg,
Austria). Nineteen passive electrodes were used: Fz, FC3, FC1, FCz, FC2, FC4, C3, C1,
Cz, C2, C4, CP3, CP1, CPz, CP2, CP4, Pz, POz, and Oz, according to the international
10-20 system. The ground and reference electrodes were placed at AFz and right earlobe,
respectively. EEG was internally filtered with a band-pass filter at 0.01–100 Hz, and notch
filter at 50 Hz to attenuate powerline noise. Special attention was given to ensuring
that electrode impedance was below 5 kΩ throughout the recording session, and that
participants minimised their body movements. This was important as conventional data-
cleaning techniques were made challenging by the presence tSCS. For consistency, typical
rejection thresholds on peak-to-peak amplitudes were not used when processing either
tSCS-off or tSCS-on data. EEG was pre-processed by applying a 3rd order Butterworth
band-pass filter with a cutoff frequencies of 3 and 50 Hz.

Surface electromyography (EMG) was recorded from the left and right forearms
to determine the beginning of movement onset and was used only in the movement
classification analysis. Two electrodes (Ag/AgCl; F-301, Skintact, Innsbruck, Austria)
were positioned on the belly of each extensor carpi radialis (ERC) muscle, with a 20 mm
inter-electrode distance. Ground electrodes were attached to the lateral epicondyles. EMG
was recorded simultaneously with EEG using a g.USBamp biosignal amplifier (g.tec,
Schiedlberg, Austria) (Bandpass filter: 5–1200 Hz; notch filter: 50 Hz). Offline, a 20–500 Hz
band-pass filter, and a 10 Hz low-pass filter were applied. Movement onset was defined
as the moment the EMG signal exceeded the mean of the resting phase plus two times
its standard deviation for at least 100 ms. EEG was epoched from −2 to 6 s relative to
movement onset.

2.4. Transcutaneous Spinal Cord Stimulation (tSCS)

Stimulation was delivered in trains of ten 100 µs long biphasic rectangular pulses
at a frequency of 30 Hz with a DS8R Biphasic Constant Current Stimulator (Digitimer,
Hertfordshire, UK). The cathode electrode (3.2 cm diameter; Axelgaard Manufacturing Co,
Fallbrook, CA, USA) was positioned between the C5-C6 intervertebral space. Hypoaller-
genic tape fastened the cathode to the skin to ensure snug contact throughout the session.
Inter-connected anode electrodes (8.9 × 5.0 cm; Axelgaard Manufacturing Co, Fallbrook,
CA, USA) were placed symmetrically on the shoulders, above the acromion. The current
was determined as the highest intensity tolerable to the participant (40 ± 10 mA).
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2.5. Artifact Suppression

To remove noise generated by tSCS we explored a number of artifact suppression
techniques that could be implemented in real-time applications.

2.5.1. Superposition of Moving Averages (SMA)

First developed to attenuate the effects of transcranial alternating current stimulation
in EEG the SMA filter creates a template approximating the stimulation artifact and sub-
tracts it from the contaminated EEG [12]. With each channel split into N non-overlapping
windows of a length equal to the stimulation frequency the SMA filter averages M win-
dows and subtracts the result from the current window, n. Hence, if x(n) is a single channel
split into N segments,

X(n) = x(n)− 1
M + 1

n+ M
2

∑
n− M

2

x(n), (1)

where X(n) represents the cleaned, or ‘reconstructed’, channel. The artifact template is
updated as it slides across the time series, adapting to changes in artifact shape.

In this study, M was set to 5, which was heuristically found to maximise the classifi-
cation accuracy as explained later. This analysis was performed with code from an open
source repository [13].

2.5.2. Adaptive Filter

We also explored an adaptive filtering technique. Unlike conventional filters with
fixed coefficients the adaptive filter adjusts its filtering parameters over time to satisfy an
optimization algorithm. Many adaptive filters rely on two inputs, the corrupted signal
and a signal reflecting known noise, often the output of the stimulator itself. We, however,
implemented a version of the adaptive filter that relies only on the corrupted signal. A
similar technique was used to remove functional electrical stimulation (FES) artifacts
from EMG [14,15]. The method divides the incoming signal x(n) into M non-overlapping
windows of N samples and makes a prediction of the stimulation artifact by using a linear
combination of the M previous frames, weighted by filter coefficients b. It is assumed that
if the filter can remove true EEG then the energy of the resulting signal will have a minimal
value. Coefficient b, therefore, is determined by a least-squares algorithm which minimises
the energy of the current frame with respect to this coefficient. A detailed explanation of
this procedure was described by Sennels et al. [14]. Next, the predicted artifact is subtracted
from the current frame:

y(n) = x(n)−
M

∑
j=1

bjx(n − jN), (2)

where N is the ratio of the stimulation frequency to the sampling rate, ensuring that the
stimulation artifact is aligned in each window. The subtraction of the predicted artifact
from the current frame, x(n), aims to remove contributions from the stimulator, leaving
behind a cleaned version of the signal, y(n).

This study found that M of 6 was generally enough to eliminate the simulation artifact.

2.5.3. Median Filter

Neuromuscular electrical stimulation (NMES) has been delivered to peripheral mus-
culature and shown to manifest in EEG as short latency, high amplitude peaks. Insautsti-
Delago et al. applied a short sliding window to each EEG channel while taking the median
value to curtail the effects of NMES [7]. The current study applied a similar method with a
sliding window of 7 samples, or around 6 ms long.

2.5.4. Notch Filter

A 3rd order Butterworth filter was used to attenuate the stimulation frequency by
setting the low and high cut-off frequencies to 29 and 31 Hz, respectively.
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2.6. Stimulation Artifact in the Time Domain

To illustrate the effect of tSCS on EEG in the time domain we plotted the pre-processed
resting state EEG with eyes closed. In order to explore stimulation-intensity effects, we
showed the EEG of the participants who were the most and least tolerant to tSCS. Further-
more, we investigated the impact of distance on artifact prominence by presenting data
from the nearest and farthest channel to the stimulation site: Fz, and Oz, respectively. EEG
from the tSCS-off condition is also shown for a better comparison.

2.7. Stimulation Artifact in the Frequency Domain

As tSCS is delivered at a fixed location on the posterior side of the neck we expected
artifacts to manifest in EEG as a function of distance. For simplicity, we considered
only the midline electrodes as we did not expect a lateralised effect owing to the relative
homogeneity of scalp composition. To observe the effect we considered the power spectral
density (PSD) of resting state EEG with eyes closed at and around the stimulation frequency
(28–32 Hz). We expected the posterior electrodes (Oz, etc.) to have a greater 30 Hz
contribution than the frontal electrodes (Fz, etc.). PSD was estimated using the multitaper
method with a bandwidth of 0.1.

2.8. Spatial Distribution of tSCS Contamination

Using the method outlined above, we found the PSD of resting state EEG with eyes
closed at and around 30 Hz to determine the spectral pattern of stimulation on scalp
topography. The average power of each channel during tSCS was subtracted from and
divided by the power from the tSCS-off condition, revealing the percentage power increase
or decrease at the stimulation frequency. The process was repeated for the filtered EEG.
Statistical differences in 30 Hz power between the tSCS-off and tSCS-on condition, and its
filtered derivatives, were determined with a pairwise t-test where the data were found to
follow a parametric distribution and a Wilcoxon signed-rank test where data were non-
parametrically distributed. The p-values were adjusted using the Benjamini/Hochberg
false discovery rate correction method.

2.9. Time Domain: EEG Descriptive Statistics

To characterise the EEG signal quantitatively and assess the impact of tSCS and
artifact-suppression techniques we used a number of descriptive statistics. Namely, kur-
tosis, root-mean-square (RMS), Higuchi fractal dimension, and zero-crossings. This ap-
proach was motivated by a method proposed by Kohli et al. to evaluate the effectiveness
of removing transcranial alternating current stimulation artifacts from EEG [12]. Eyes
open, resting state EEG was used for this analysis. The EEG from each channel was
split into 10 s non-overlapping segments. The descriptive statistics were calculated for
each segment and averaged. An average was taken again across all participants and was
displayed graphically.

The descriptive statistics across each EEG condition and electrode position were
compared for significant differences. Firstly, the Levene and Shapiro–Wilk tests were
performed to determine the homogeneity of variance and normality of the data. Where
these tests were satisfied a two-way analysis of variance (ANOVA) was used with the
descriptive statistic as the dependent variable and EEG condition and electrode position
as the independent factors. The Scheirer-Ray-Hare test was performed where statistical
distribution assumptions were not satisfied. Post-hoc tests for multiple comparisons
included the pairwise t-test for descriptive statistics following a parametric distribution,
and the Wilcoxon signed-rank test for non-parametric statistics. The p-values were adjusted
using the Benjamini/Hochberg false discovery rate correction method.

2.10. Frequency Domain: Effect on Individual Alpha Frequency

The alpha rhythm is a prominent EEG feature which has been attributed to many
cognitive processes [16]. To assess the feasibility of monitoring alpha rhythm expression
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during tSCS we extracted the peak frequency from the range of 8–12 Hz during the resting
state task with eyes open and eyes closed. The PSD was calculated as outlined above.
Normality and homogeneity were determined with the Shapiro–Wilk and Levene test,
respectively. Where distribution assumptions were met we performed a one-way ANOVAs
to determine if individual alpha frequency was significantly affected by EEG condition
(tSCS-off, tSCS-on, tSCS-on with filters). We carried out multiple one-way ANOVAs for
electrode location (Fz, Oz) and resting state (eyes open, eyes closed) given the strong
differences in individual alpha frequency expected from the normal EEG. Post-hoc tests for
multiple comparisons were performed as outlined above.

2.11. Classification of Sensorimotor Rhythms

To determine the feasibility of classifying movements from sensorimotor rhythms
during tSCS we used the current state-of-the-art: Band-pass and common spatial pattern
(CSP) filtering, followed by band-power feature extraction and linear discriminant analysis
(LDA) classification [17]. EEG was divided into 2 second segments, 0.5–2.5 s, relative to
movement onset. Two conditions were considered for classification: Right hand versus
bimanual rhythmic finger flexion. Thirty trials per condition were used for training and
testing the CSP-LDA classifier. The CSP approach consisted of finding spatial filters w such
that the variance of the filtered EEG signals were maximal for one class and minimal for
the other. Spatial filters w were found by extremising the following expression through a
generalised eigenvalue decomposition:

wX1XT
1 wT

wX2XT
2 wT

, (3)

where T denotes the transpose, and Xi is multi-channel, bandpass filtered EEG from
class i. Filter w contains a number of eigenvectors (spatial filters) corresponding to the
number of EEG channels. It is best practice, however, to select several eigenvectors
from each end of the eigenvalue spectrum as spatial filters to aid classification. In this
study, we used six pairs of filters. Next, the logarithmic variance of the CSP-filtered EEG
signals was used as features to train a LDA classifier. We used 10-fold cross-validation
to evaluate the performance of the trained classifier. The accuracy of the classifier was
defined as the number of correctly classified trials compared to the total number of trials.
A pairwise t-test was used to determine statistically significant differences between the
mean accuracies. The textitp-values were adjusted using the Benjamini/Hochberg false
discovery rate correction method.

3. Results
3.1. Stimulation Artifact in the Time Domain

The time domain effects of stimulation intensity and electrode position on EEG are
illustrated in Figure 1. Figure 1A,E show representative segments of eyes closed, resting
state EEG from the participant whose EEG was least affected by tSCS, owing to them
receiving only 10 mA of stimulation. The solid black line represents EEG recorded without
tSCS and the grey dashed line is with tSCS. Visually, the signals in Figure 1A have a
similar amplitude and both feature a 8–10 Hz component, typical of resting state EEG with
eyes closed. It appears that at this intensity the frontal EEG channels are spared visually
observable distortions. On the other hand, the posterior electrodes, represented by channel
Oz (Figure 1E), show a clear 30 Hz component. The peak-to-peak amplitude at Oz is 120 µV
during tSCS compared with 30 µV without tSCS, a 4-times increase.

At the other end of the intensity spectrum, Figure 1C,G show one second of resting
state EEG from the participant who received the highest current intensity, 60 mA. In both Fz
and Oz the EEG time series includes a substantial 30 Hz stimulation artifact, characterised
as narrow high-amplitude peaks. It is most clearly visible in channel Oz. At 60 mA
the stimulation condition increased the peak-to-peak amplitude 8.6-times, from 30 µV to
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260 µV. The amplitude of the stimulation artifact at Fz is less intense, at around 4-times the
size of normal EEG.
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Figure 1. Effect of tSCS on EEG in the time and frequency domain. Time domain (A,C,E,G): The
first and third column show one second of resting state, eyes closed EEG for the participants with
the lowest (10 mA) and highest (60 mA) tolerance to stimulation intensity, respectively. The EEG
channel farthest from the stimulation site (Fz) is represented in the first row while the second row
relates to the channel most proximal to the stimulation site (Oz). Frequency domain (B,D,F,H): The
second and fourth column show the power spectral density of resting state, eyes closed EEG for
the participants with the lowest (10 mA) and highest (60 mA) tolerance to stimulation intensity,
respectively. EEG with stimulation on and stimulation off are presented with grey dashed and solid
black lines, respectively.

3.2. Stimulation Artifact in the Frequency Domain

Figure 1B,F show the power spectral density (PSD) of resting state EEG for a par-
ticipant who received 10 mA of tSCS. Unlike in the time domain, where the presence of
a stimulation artifact is unclear at channel Fz, Figure 1B displays a prominent peak at
30 Hz, and is even more pronounced at channel Oz, Figure 1F. This trend is mirrored in
Figure 1D,H. The power is far greater in both channels, reflecting a much stronger current
(60 mA). Outside of the 30 Hz frequency bin, the EEG spectra appear unaffected by tSCS
compared to the PSD when tSCS is off.

3.3. Aliasing Effect

The tSCS artifact is not sufficiently captured by the EEG system, resulting in a con-
stantly modulating artifact amplitude in the time domain (Figure 2A) and alternating
power in the frequency domain (Figure 2B). The aliasing effect has been reported for other
non-oscillatory, periodic stimulation techniques, for instance deep brain stimulation [10].

3.4. Spatial Distribution of tSCS Contamination

To determine how tSCS artifacts manifested in multi-channel EEG with respect to dis-
tance from the stimulation site we showed the normalized spectral power at the stimulation
frequency (30 Hz) across the midline electrodes (Figure 3C). The topographic distribution
of 30 Hz power relative to tSCS-off is also given in Figure 3A. Further, we explored whether
this artifactual component could be removed in the frequency domain to the extent that
it was statistically indistinguishable from tSCS-off. A Shapiro–Wilk test found that the
power values tended to follow a non-parametric distribution. The following pairwise
comparisons, therefore, used the Wilcoxon signed-rank test to assess statistically significant
differences between power distributions.
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Figure 2. The aliasing effect. (A) EEG showing amplitude of tSCS peaks changing over time.
(B) Power spectral density at 30 Hz over time.

It is evident from Figure 3B that the power at 30 Hz is substantially increased by
tSCS in all electrodes with a rising intensity as a function of distance to stimulation site.
Figure 3A illustrates this power increase when tSCS is present across the entire head.
Compared to when no stimulation is applied the power at 30 Hz is increased by 900% at
the posterior channels, with a gradual reduction in power moving from the occipital region
but never returning to tSCS-off levels.

Figure 3C shows the power at 30 Hz once artifact-reduction techniques were applied.
The 30 Hz power in each of the filtered signals was significantly reduced and better resem-
bled the power of the tSCS-off condition, represented by the blue line. The distribution of
30 Hz power when tSCS is off tended to decrease from channel Fz to Pz, before increasing
from Pz to Oz. Two filters were able to reproduce this distribution: the SMA (green line)
and adaptive filter (red line).

The SMA filter removed the spectral pattern seen before artifact suppression, leaving
a more evenly distributed power topography. Power at 30 Hz is diminished in all channels
with a maximum difference of −40%.

The adaptive filter (A) diminished the stimulation artifact significantly but was still
elevated compared to tSCS-on alone, the power is greatly diminished at only 58% above
the tSCS-off session. Interestingly, the adaptive filter performed better on the posterior
electrodes, which trended towards 0% modulation compared with no stimulation and with
no statistically significant difference in means (p > 0.05). This perhaps suggests the adaptive
filter is more effective where the stimulation artifact has a stronger signal-to-noise ratio.

The median filter resulted in the greatest underestimation of 30 Hz power in all
channels. The notch filter (N), on the other hand, performed the best among the filters,
suppressing the 30 Hz artifact, with statistically similar power at all midline electrodes
(p > 0.05), except for Poz (p < 0.05) and Oz (p < 0.01).
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Figure 3. Power distribution at 30 Hz (i.e., the stimulation frequency) across all participants.
(A) Topographic power differences of tSCS-on, and its filtered derivatives, relative to tSCS-off (%).
SMA: superposition of moving averages filter; A: adaptive filter; M: Median filter; N: notch filter.
(B) Normalised spectral power at 30 Hz across midline electrodes during tSCS-on and tSCS-off.
(C) Normalised spectral power at 30 Hz across midline electrodes for tSCS-off and tSCS-on after
artifact-suppression. The p-values from a Wilcoxon signed-rank test between tSCS-off and each
tSCS-on condition are indicated with a colour-coded star for each electrode (? p < 0.05, ?? p < 0.01,
? ? ? p < 0.001).

3.5. Time Domain: EEG Descriptive Statistics

To quantify the EEG signals in the time domain we used descriptive statistics, see
Figure 4. The Levene test and Shapiro–Wilk test showed that each descriptive statistic
failed to meet assumptions of homogeneity of variance (p < 0.01) and normality (p < 0.01),
respectively. The Scheirer-Ray-Hare test (similar to a two-way ANOVA but for non-
parametric data) was therefore used to determine statistically significant effects based on
condition, electrode, and condition-electrode interaction.

All descriptive statistics showed statistically significant differences based on condition
(Kurtosis: p < 0.01; RMS: p < 0.01; Higuchi fractal dimension: p < 0.01; Zero crossings:
p < 0.01) and electrode (Kurtosis: p < 0.01; RMS: p < 0.01; Higuchi fractal dimension:
p < 0.01; Zero crossings: p < 0.01) but no interaction between condition and electrode (Kur-
tosis: p < 0.31; RMS: p < 0.90; Higuchi fractal dimension: p < 0.99; Zero crossings: p < 0.98).
The results from a Wilcoxon signed-rank test for electrodes Fz and Oz are presented
in Table 1.
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Figure 4. Mean descriptive statistics—(A) kurtosis, (B) root mean square (RMS), (C) Higuchi fractal
dimension (FD), (D) zero-crossings—of eyes closed, resting state EEG from midline electrodes,
for tSCS-off, tSCS-on, and tSCS-on with filtering. SMA: superposition of moving average filter;
A: adaptive filter; M: median filter; N: notch filter. The p-values from a Wilcoxon signed-rank test
between tSCS-off and each tSCS-on condition are indicated with a colour-coded star for each electrode
(? p < 0.05, ?? p < 0.01, ? ? ? p < 0.001).

A Wilcoxon signed-rank test showed that kurtosis was significantly different at CPz,
Pz, POz, and Oz when tSCS was turned on. The SMA filter managed to transform the
kurtosis at these channels to ranges statistically similar to that of EEG with tSCS turned
off. The adaptive filter also performed well at POz and Oz but resulted in poorer signal
reconstruction with significantly different kurtosis values (p < 0.01) at Fz, FCz, Cz, and Pz,
compared to tSCS-off, perhaps implying the adaptive filter performs better on signals with
well-defined artifacts.

The RMS was significantly elevated in all channels but more so at the posterior
electrodes: From 5.87 to 8.37 µV at Fz (p < 0.01) and from 5.29 to 25.40 µV at Oz (p < 0.001).
There were no filters which managed to suppress the tSCS contribution at all electrodes.
The notch filter, however, performed the best at returning the RMS to levels statistically
similar to that of clean EEG in five out of the seven midline electrodes investigated.
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Table 1. Participant-wise mean of EEG descriptive statistics—kurtosis, root mean square (RMS), Higuchi fractal dimension,
zero-crossings—of resting state EEG with eyes open. The difference between each tSCS-on condition with respect to tSCS-off
is given in addition to the p-values associated with a Wilcoxon signed-rank test as these descriptive statistics were found to
be non-parametric. The p-values were adjusted using the Benjamini/Hochberg false discovery rate correction method.

Fz Oz

Kurtosis (Unitless)

Mean p-Value Difference Mean p-Value Difference

tSCS-off 2.84 - - 3.55 - -
tSCS-on 2.76 0.61 −0.08 2.11 <0.001 −1.44
tSCS-on + adaptive 3.21 <0.01 0.37 3.41 0.97 −0.15
tSCS-on + median 2.88 0.70 0.04 3.06 0.33 −0.50
tSCS-on + notch 2.90 0.47 0.07 2.66 <0.001 −0.89
tSCS-on + SMA 2.90 0.49 −0.06 3.72 0.69 0.17

RMS (µV)

Mean p-value Difference Mean p-value Difference

tSCS-off 5.87 - - 5.29 - -
tSCS-on 8.37 0.01 2.50 25.40 <0.001 20.11
tSCS-on + adaptive 5.28 0.05 −0.58 5.83 0.13 0.54
tSCS-on + median 5.15 <0.01 −0.72 4.09 <0.01 −1.20
tSCS-on + notch 6.45 0.16 0.58 9.88 <0.01 4.60
tSCS-on + SMA 7.02 <0.001 1.15 6.9 0.11 1.61

Higuchi fractal dimension

Mean p-value Difference Mean p-value Difference

tSCS-off 1.045 - - 1.054 - -
tSCS-on 1.056 <0.001 0.01 1.065 <0.01 0.01
tSCS-on + adaptive 1.050 <0.01 0.004 1.060 <0.01 0.006
tSCS-on + median 1.020 <0.001 −0.03 1.035 <0.001 −0.02
tSCS-on + notch 1.086 <0.001 0.03 1.159 <0.001 0.11
tSCS-on + SMA 1.045 0.93 −0.0002 1.058 0.30 0.004

Zero crossings (Crossings/10 s)

Mean p-value Difference Mean p-value Difference

tSCS-off 22.12 - - 26.55 - -
tSCS-on 29.0 <0.001 6.85 41.90 <0.001 15.34
tSCS-on + adaptive 26.64 <0.001 4.52 31.05 <0.01 4.50
tSCS-on + median 12.76 <0.001 −9.36 16.70 <0.001 −9.85
tSCS-on + notch 27.97 <0.01 5.85 63.60 <0.001 37.05
tSCS-on + SMA 20.84 0.077 −1.28 27.71 0.96 1.16

The Higuchi fractal dimension, a measure of signal complexity, was significantly
altered at all channels once tSCS was applied (p < 0.001). The only filter able to suppress
the tSCS-induced increase in complexity was the SMA filer which resulted in statistically
similar values (p > 0.05) in all channels. The adaptive filter also performed well on POz
and Oz. Interestingly, the notch filter increased the fractal dimension in all channels to an
extent even greater than tSCS alone.

The number of zero crossings, a statistic that partly reflects signal frequency, was also
significantly altered in all channels by tSCS. On average, the number of zero crossings per
10 s increased significantly from 22.12 to 29.0 (p < 0.001) at channel Fz and from 26.55 to
41.90 (p < 0.001) at channel Oz. Again, the SMA filter alleviated the effects of tSCS in all
channels with 20.84 crossings per 10 seconds at Fz (a non-significant difference of −1.28,
p = 0.077) and 23.60 at Oz (a non-significant difference of −1.16, p = 0.96). No other filter
returned the average zero-crossings to levels statistically similar to that of tSCS-off EEG.
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The median filter significantly underestimated(p < 0.001), and the adaptive and notch filter
significantly overestimated the number of zero crossings per 10 s (p < 0.001).

3.6. Frequency Domain: Individual Alpha Frequency

To assess how tSCS affected spectral features beyond the stimulation frequency we
considered the individual alpha frequency for each participant at channel Fz and Oz, as
illustrated in Figure 5. It is clear that the characteristic increase in peak alpha from the eyes
open to eyes closed condition is displayed whether tSCS is applied or not. The normality
and homogeneity were confirmed by the Shapiro–Wilk and Levene test, respectively. One-
way ANOVAs were performed to compare the effect of EEG condition (tSCS-off, tSCS-on,
tSCS-on with filters) on individual alpha peak frequency at during different resting states
and channels. The analysis revealed that there was no statistically significant difference
in individual alpha at Fz or Oz with eyes open or closed, see Table 2. A pairwise t-test
for multiple comparisons found that the mean individual alpha peak frequency was not
significantly different between any condition (p > 0.05), however at channel Fz the adaptive
filtered EEG during eyes open neared a significant difference (p = 0.06).

Table 2. Subject-wise average of individual alpha peak frequencies. The result of a one-way ANOVA is given for the ‘eyes
open’ and ‘eyes closed’ condition. A pairwise t-test for multiple comparisons determined if the mean of each condition
was significantly different from the tSCS-off condition. The p-values were adjusted using the Benjamini/Hochberg false
discovery rate method. The difference with the tSCS-off condition is given. Shapiro–Wilk’s and Levene’s tests were
performed to confirm normality and homogeneity before each ANOVA (p < 0.05).

Fz

Eyes open Eyes closed

F(5,102) = 3.52, p = 0.069, η2 = 0.15 F(5,102) = 0.50, p = 0.77, η2 = 0.024

Mean p-value Difference Mean p-value Difference

tSCS-off 8.13 - - 9.72 - -
tSCS-on 8.38 0.54 0.25 9.80 0.91 0.08
tSCS-on + adaptive 9.34 0.06 1.21 10.01 0.85 0.29
tSCS-on + median 8.00 0.72 −0.13 9.61 0.94 −0.11
tSCS-on + notch 8.38 0.54 0.25 9.80 0.94 0.08
tSCS-on + SMA 8.78 0.10 0.67 9.61 0.94 −0.11

Oz

Eyes open Eyes closed

F(5,102) = 3.52, p = 0.99, η2 = 0.0050 F(5,102) = 0.031, p = 0.99, η2 = 0.0015

Mean p-value Difference Mean p-value Difference

tSCS-off 9.42 - - 10.21 - -
tSCS-on 9.61 0.97 0.18 10.32 1.0 0.11
tSCS-on + adaptive 9.77 0.97 0.34 10.31 1.0 0.1
tSCS-on + median 9.53 0.97 0.11 10.30 1.0 0.08
tSCS-on + notch 9.61 0.97 0.18 10.32 1.0 0.11
tSCS-on + SMA 9.67 0.97 0.24 10.32 1.0 0.1
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Figure 5. Subject-wise peak frequency in alpha range (8–12 Hz) during resting state with eyes opened
and eyes closed. (A) Channel Fz, (B) Channel Oz.

3.7. Classification of Sensorimotor Rhythms

To determine the feasibility of classifying sensorimotor rhythms during tSCS we used
EEG from a movement execution task to form a two-class classification problem. The 10-
fold cross-validation scores are given in Table 3. The CSP-LDA method was able to predict
correctly right-hand and bimanual finger flexion on average 76.14 ± 12.42% of the time
when stimulation was off, and 75.71 ± 10.62 when stimulation was on. Both scores lie above
chance level for a two-class BCI with 30 trials per class (67%, p < 0.05 [18]). A paired t-test
reveled no statistically significant differences between these scores (p > 0.05). The p-values
were adjusted using the Benjamini/Hochberg false discovery rate correction method.

Table 3. Mean 10-fold classification accuracies across all subjects. The significance level of a paired
t-test is given with respect to the tSCS-off condition.

Accuracy (%) p-Value

tSCS-off 76.14 ± 12.42 -
tSCS-on 75.71 ± 10.62 0.84
tSCS-on + SMA 76.79 ± 9.51 0.76
tSCS-on + adaptive 53.64 ± 12.24 0.00015
tSCS-on + notch 77.29 ± 11.17 0.6
tSCS-on + median 77.14 ± 10.22 0.55

Filtered EEG performed similarly well: SMA filter, 76.79 ± 9.51%; notch filter:
77.29 ± 11.17%; median filter: 77.14 ± 10.22%. Interestingly, these scores exceed the
accuracies obtained using the tSCS-off and tSCS-on conditions, however not significantly
so (p > 0.05). The adaptive filter performed poorly with 53.64 ± 12.24% accuracy, below
chance level and therefore unsuitable for BCI applications.

4. Discussion

This study, for the first time, characterised the artifacts associated with transcutaneous
electrical spinal cord stimulation in electroencephalography recordings. We found that
tSCS produced narrow, high-amplitude peaks in the time domain at a rate equal to the
stimulation frequency at nearly an order of magnitude more powerful than normal EEG.
Through volume conduction, all electrodes were affected by tSCS to a greater or lesser
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extent. The degree of contamination was highly dependent on stimulation intensity and
electrode position. We also found, however, that it may be possible to utilise EEG during
tSCS, after applying artifact-suppression techniques. This study supports the use of a
superposition of moving averages (SMA) filter as it resulted in descriptive statistics most
resembling that of normal EEG. Kohli et al. drew similar conclusions in their report of
removing electrical artifacts from EEG, which used a similar filter-evaluation strategy [12].
Perfect EEG reconstruction was not achieved with the SMA filter, however. Even after
filtering the power at the stimulation frequency was different to normal EEG. It is a
matter of contention whether perfect reconstruction is necessary in order to conduct
legitimate analyses.

Analyses that do not overlap with the stimulation frequency may not require artifact-
suppression processing at all. For instance, we showed that individual alpha frequencies
can be extracted accurately during tSCS from all EEG channels, even without filtering. If an
analysis must overlap with the stimulation frequency then a notch filter may be sufficient
to reduce tSCS contamination to levels statistically similar as normal EEG, at least in the
frontal and central electrodes. At the occipital area we showed that the adaptive filter was
most effective in attenuating tSCS artifacts. The notch filter, however, may be too much
of a blunt tool as it was unable to reconstruct the spatial distribution of spectral power
typically associated with EEG [19]. The adaptive method, however, performed better at
reconstructing the higher spectral power associated with the posterior channels, perhaps
as the stimulation artifact is better defined and was therefore easier for the algorithm
to remove.

Interestingly, the results from our movement-classification analysis found that spinal
stimulation posed no impediment to BCI performance. SMA, notch, and median filtering
actually increased the classification performance, but not significantly so, perhaps suggest-
ing a potential neuromodulatory effect of tSCS. Indeed, high-intensity functional electrical
stimulation has been shown to result in stronger event-related desynchronisation in the
beta band (14–30 Hz) when applied to peripheral musculature, with an enhanced effect as a
function of time [7,20]. The movement execution task in this study, however, involved only
30 repetitions of each movement. Future work should investigate whether this increase
in performance would trend towards significance if stimulation were applied for a longer
duration. The adaptive filter, however, should not be implemented in future analyses given
its poor performance in this study, consistently yielding scores below chance level for a
two-class BCI. As shown in the descriptive statistics analysis outlined above the adaptive
filter performed better where the stimulation artifact is particularly prominent; that is, on
EEG from the posterior electrodes. Given that most discriminatory motor signals come
from the central area and the effects of stimulation are less prominent among these channels,
the adaptive filter is likely poorly approximating the stimulation artifact and is removing
valuable sensorimotor information instead. Although this filter has demonstrated efficacy
in other work, these studies involved the reconstruction of EMG signals [14,15]. Therefore,
it is likely not suitable for preserving the low-amplitude, low-frequency sensorimotor
signals from EEG. Nevertheless, even without artifact-suppression, the tSCS-contaminated
EEG proved classifiable with standard BCI techniques. This is a somewhat surprising result
given the aliasing seen at the stimulation frequency. BCIs are often built around linear
classifiers that require quasi-stationary band-power features to predict brain states. If the
EEG power spectrum is exogenously modulated then band-power features likely carry
less discriminatory power. Perhaps aliasing was not prominent enough given our 1200 Hz
sampling rate to impact BCI performance. Future studies should bare this effect in mind,
however, as a lower sampling rate would likely result in enhanced aliasing. Future studies
should consider oversampling where practical [10].

Another practical consideration when performing an analysis on EEG recorded during
tSCS is that it makes some conventional pre-processing steps challenging. For instance,
many EEG pre-processing pipelines rely on rejection thresholds based on descriptive
statistics—for example, channel amplitude, kurtosis, root-mean-square—to automatically
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remove bad spans of data [21,22]. As we have demonstrated here, EEG descriptive statistics
are substantially altered by tSCS, meaning thresholding techniques would eliminate spans
of data that are otherwise good. This may be a reason in itself to apply artifact-suppression
techniques as a primary step in a tSCS analysis pipeline, particularly when working on
EEG from posterior locations.

A potential limitation of this study is that the average stimulation intensity applied
to the healthy volunteers (10–60 mA) was likely lower than what would be delivered in
clinical practice. Spinal-cord injured individuals tend to have impaired sensibility below
their injury level and can likely tolerate higher currents on average (40–200 mA). The results
from this study therefore may not be representative of what is feasible in practice. Future
analyses should replicate this study using a spinal-cord injured population to confirm if
EEG monitoring is feasible at higher stimulation intensities.

The results from this study should not be viewed as a definitive statement on the
effects of tSCS on EEG. Due to the variation in stimulation parameters used across tSCS
studies conclusions can only be inferred with regards to the parameters that we have used
here. For instance, we chose a one-millisecond long pulse with a 10 kHz carrier frequency
delivered at 30 Hz to the cervical region of the spine, reflecting recent studies of upper-
limb motor rehabilitation [2,3,23,24]. Other studies targeting lower limb rehabilitation or
spasticity reduction have used different parameters: 20 or 50 Hz pulse trains, 5 kHz carrier
frequencies, monophasic instead of biphasic pulses [25–27].

5. Conclusions

Owing to the relatively recent rise of tSCS there are many avenues of investigation
currently unexplored. We note that investigations of cortical modulation have already
begun and are likely to continue [6]. EEG offers invaluable access to brain dynamics,
allowing source localisation and separation at excellent temporal resolutions [28]. This
study provides an insight into the effects of cervical tSCS on EEG and our analyses showed
that signal processing techniques such as the superposition of moving averages filter can
reasonably suppress tSCS contamination. We conclude that simultaneous EEG monitoring
is feasible and reliable, and encourage subsequent research to use EEG to better understand
the activity of the sensorimotor cortex during tSCS-based rehabilitation of spinal-cord
injury patients.
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