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Abstract: Despite a decline in the prevalence of hepatitis B in China, the disease burden remains
high. Large populations unaware of infection risk often fail to meet the ideal treatment window,
resulting in poor prognosis. The purpose of this study was to develop and evaluate models identifying
high-risk populations who should be tested for hepatitis B surface antigen. Data came from a large
community-based health screening, including 97,173 individuals, with an average age of 54.94.
A total of 33 indicators were collected as model predictors, including demographic characteristics,
routine blood indicators, and liver function. Borderline-Synthetic minority oversampling technique
(SMOTE) was conducted to preprocess the data and then four predictive models, namely, the extreme
gradient boosting (XGBoost), random forest (RF), decision tree (DT), and logistic regression (LR)
algorithms, were developed. The positive rate of hepatitis B surface antigen (HBsAg) was 8.27%.
The area under the receiver operating characteristic curves for XGBoost, RF, DT, and LR models
were 0.779, 0.752, 0.619, and 0.742, respectively. The Borderline-SMOTE XGBoost combined model
outperformed the other models, which correctly predicted 13,637/19,435 cases (sensitivity 70.8%,
specificity 70.1%), and the variable importance plot of XGBoost model indicated that age was of high
importance. The prediction model can be used to accurately identify populations at high risk of
hepatitis B infection that should adopt timely appropriate medical treatment measures.

Keywords: hepatitis B virus; machine learning; prediction

1. Introduction

Hepatitis B virus (HBV) infection remains a major public health concern worldwide, with an
average prevalence of 3.61% [1]. In 2015, over 300 million patients were reported to have viral
hepatitis globally—of which, approximately 257 million people were HBV-infected. Additionally,
approximately 0.65 million deaths per year were due to HBV infection [2]. In China, the disease burden
of HBV is a serious concern. An estimated 90 million people in China—approximately 7% of the
national population—are chronically infected with the HBV, and 0.33 million people annually die from
HBV-related cancers [3]. According to China Center for Disease Control and Prevention (China CDC),
the total cost of treating HBV-related diseases was estimated at 80–120 billion RMB (i.e., Chinese Yuan,
CNY) in 2015 [4].

In 2016, the World Health Assembly published the Global Health Sector Strategy, calling for the
elimination of the threat of hepatitis in humans by 2030, reducing the number of new viral infections
by 95% and the number of hepatitis deaths by 65%. Hepatitis B is a major contributor to the epidemic
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of viral hepatitis, and the primary target for prevention and control [5]. Hepatitis B is an infectious
disease, with severe prognosis and no effective way to eliminate the virus in an infected individual.
Moreover, if HBV infection results in the development of a chronic disease, there is a risk that the
associated harm will be lifelong. Most HBV carriers are without symptoms in the early stages and are
often diagnosed during medical examinations, missing the ideal treatment period [6]. There are also
hidden hepatitis B carriers who do not know their infection status. Therefore, the early identification
of high-risk groups and timely intervention are effective ways to control HBV infection [7].

Currently, China’s government takes great steps towards ensuring enrollment and employment
rights for hepatitis B patients. Laws including the Infectious Diseases Prevention Law require that
educational institutions and employers cannot screen for HBV for admission of citizens to school
and employment. For this reason, challenges occur as a result of limited available information that
can assist in calculating the current prevalence of hepatitis B and controlling HBV transmission [8].
Additionally, general HBV screening is neither cost-effective nor practical [9]. Assessing the risk of
HBV infection is important for health care providers to identify patients appropriate for antigen testing.
Previous studies aimed to prevent and control HBV infection by identifying risk factors including
lifestyle, and corresponding vaccine and infectious history [10,11]. However, risk factors may not
be fully identified and the risk of HBV infection was not predicted. Predictive models are widely
used in the medical field to quantify population risks of certain disease [12]. If individuals at risk of
HBV infection could be identified using a prediction model, it would be possible to perform targeted
intervention efficiently. However, there remains a gap in knowledge on an early warning model for
HBV infection based on large health screening data.

Currently, machine learning technology is an important branch of artificial intelligence and
widely used for analyzing medical data. Machine learning can automatically discover and exploit
the interactions and nonlinear relationships between variables and improve the accuracy of disease
prediction [13]. A study by Weng, et al., reported that machine learning improves the accuracy of
cardiovascular risk prediction and increases the number of patients identified who could benefit from
preventive treatment [14]. The purpose of the present study was to develop and evaluate models
for identifying people who require screening for hepatitis B surface antigen (HBsAg). We applied
machine learning methods to select high-risk groups more efficiently. We believe that the development
and application of predictive models will provide important information for law makers to distribute
limited medical resources more efficiently and effectively.

2. Material and Methods

2.1. Data Collection

In the present study, data were obtained from a community-based cross-sectional study enrolling
97,173 residents from Guangzhou city and Zhongshan city in Guangdong, China. Stratified cluster
random sampling was used to recruit residents from targeted regions between January 2014 and
December 2015. The first level of stratification sampling involved Guangzhou city and Zhongshan city.
The Yuexiu district in Guangzhou and Xiaolan district in Zhongshan were chosen, which were the
second level of stratification. The third level of stratification was the random selection of communities.
The contents of the survey included the collection of demographic information, a physical heath
examination, and collecting a blood sample. The blood sample was used to test for blood routine
and liver function. The study obtained ethics approval from the Human Ethics Committee at Sun
Yat-sen University (L2017030). All research participants signed informed consent. Among participants
that agreed to the study and provided informed consent, doctors in community health centers
(CHCs) collected venous blood aseptically to screen for HBsAg and biochemical tests, respectively,
using enzyme-linked immunosorbent assay and velocity method. The serum was separated from
the blood by centrifugation and was transported in small vials in an ice-packed box to maintain their
temperature at 0–4 ◦C to the laboratory at Da An Gene Company.
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A total of 33 indicators with the potential to be associated with HBV were included in the analysis,
including demographic information, blood routine indicators, and liver function. HBsAg served as an
indicator of HBV exposure and presented as the primary outcome (positive or negative). We randomly
selected 80% for training and the remaining 20% for testing. Four models were trained, as described in
the classification model sections.

2.2. Data Preprocessing

The total HBsAg-positive cases were 8034, accounting for 8.27% of all participants. Data such
as this are considered unbalanced (the proportion of the normal population is larger). The synthetic
minority oversampling technique (SMOTE), which is an oversampling technique proposed by Chawla
et al., is of great popularity to address class imbalance by creating synthetic minority class samples [15].
Borderline-SMOTE combines the original SMOTE and boundary information algorithm, which only
oversamples the minority examples near the borderline [16]. The borderline minority examples should
first be identified from the original dataset, and then used to generate new minority examples before
inserting back to the original one in order to achieve data balance. This study used Borderline-SMOTE
to overcome class imbalance problems, reconstruct the training set, and then use machine learning to
train the classifier.

2.3. Classification Models

We developed models for HBV prediction using four machine learning algorithms: logistic
regression (LR), decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost).

LR is a generalized linear regression model that is commonly applied to binary dependent variables
or multiple classification variables, which is chosen as a baseline comparison. It has advantages in the
interpretation of model results, and implementation with low computational cost, and can directly
derive the weight of each predictor [17]. The disadvantage is that it is sensitive to the multicollinearity
of independent variables, making it unsuitable for dealing with data imbalance (i.e., the positive rate
of 8.27% in our study), and it may provide an under-fitting prediction.

DT is a tree structure used for classification and regression. DT represents the procedure of
classifying instances based on features, which can be considered as the set of if-then rules or the
probability distribution defined between feature space and class [18]. The main merits of DT are
intuitional results and fast computation. The model is built with training data relying on the principle
of minimizing the loss function in learning procedure and applied to classifying testing data. However,
it is easy for over-fitting to occur and bias for unbalanced data.

RF is an ensemble algorithm based on a decision tree classifier. The learning procedure combines
bagging and random feature selection, which add additional diversity to the decision tree model.
RF applies the majority of votes over all decision trees to output the final classification result. This can
improve the predictive accuracy without increasing the computational complexity, resulting in the
ability to predict outcomes for thousands of variables [19]. RF is also insensitive to the assumption of
multivariate linearity, providing robust results for missing or unbalanced data.

XGBoost is a distributed gradient boosting algorithm based on classification and regression trees.
XGBoost is popular in the fields of machine learning and data mining, revealing excellent judgment
and recognition. The basic principle is to weigh the results of multiple decision trees (weak classifiers)
as the final output (strong classifier) [20]. XGBoost achieves good control for model complexity by
adding regular items to the objective function, which solves the collinearity problem between variables
to a certain extent, and prevents the model from over-fitting. In the XGBoost model, the second-order
Taylor series is used for the cost function, and the first and second derivatives are used to make the
approximate optimization of the objective function closer to the actual value, thereby improving the
predictive accuracy [21].
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2.4. Tuning of Parameters

The use of XGBoost, RF, and DT for prediction requires tuning several parameters or
hyper-parameters. We tuned the parameters or hyper-parameters to maximize the mean area
under the receiver operating characteristic (ROC) curve (AUC) value computed from the 5-fold cross
validation of the training data. Each time the training data is randomly divided into five subsets of
the same size, four subsets are used to train the model and another subset is used for verification.
After finding the optimal values of the parameters, prediction models are trained using the entire
training data set. The performance is evaluated using the test data. Table 1 presents the tuning
parameters and values of the final model for predicate HBV infection.

Table 1. Summary of parameter values in each model for predicting hepatitis B virus (HBV) infection.
Decision tree (DT), random forest (RF), and extreme gradient boosting (XGBoost).

Algorithms Parameter Value Meaning

XGBoost

nrounds 120 The number of rounds for boosting.

max_depth 8 Maximum depth of a tree.

eta 0.09 Step size shrinkage used in update to prevent overfitting.

gamma 0.04 Minimum loss reduction required to make a further partition
on a leaf node of the tree.

colsample_bytree 0.8 The subsample ratio of columns when constructing each tree.

min_child_weight 18

Minimum sum of instance weight (hessian) needed in a child.
If the tree partition step results in a leaf node with the sum of
instance weight less than the value, then the building process

will give up further partitioning.

subsample 0.89 Subsample ratio of the training instances.

n_estimators 600 Number of base learners in the integrated model.

max_delta_step 9
Maximum delta step we allow each leaf output to be. If it is
set to a positive value, it can help making the update step

more conservative.

DT

minispilt 20 The minimum number of observations that must exist in a
node for a split to be attempted.

minibucket 20 The minimum number of observations in any terminal node.

maxdepth 10 The maximum depth of any node of the final tree.

xval 5 Number of cross-validations.

cp (complexity
parameter) 0.001 The minimum improvement in the model

needed at each node.

RF
mtry 6 Number of variables available for splitting at each tree node.

ntree 700 Number of trees to grow.

2.5. Evaluation Metric

In our study, we use accuracy, sensitivity, specificity, and area under the receiver operating
characteristic (ROC) curve (AUC) as metrics to evaluate the performance of the prediction models [22].
The accuracy, sensitivity, and specificity were calculated as follows:

Accuracy =
TP + TN

TP + FP + TN + FN

Sensitivity =
TP

TP + FN
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Speci f icity =
TN

FP + TN

where TP, FP, TN, and FN denote true positives, false positives, true negatives, and false
negatives, respectively.

Accuracy represents the proportion of correctly predicted samples to all predicted. Sensitivity
represents the proportion of correctly predicted positive samples to all actual positive ones. Specificity
represents the proportion of correctly predicted negative samples to all actual negative ones. ROC curves
are plotted to describe the variance on numbers of correctly classified abnormal cases and those of
incorrectly classified normal cases as abnormality. The AUC value is used to comprehensively evaluate
the model prediction ability [23].

2.6. Statistical Analysis

All statistical analyses were conducted using R software version 3.3.5 (R Core Team, Vienna,
Austria). Data that was normally distributed was expressed as the mean and standard deviation,
and differences between groups were compared using t test. The categorical variables are expressed in
terms of frequency (percentage), and the differences between groups are compared using Fisher’s exact
probability method. The R packages involved include XGBoost, glm, rpart, random Forest, smotefamily

3. Results

3.1. Description

A total of 97,173 participants were included in the analysis. Table 2 presents the demographic
characteristics and laboratory testing results. Overall, the positive rate of HBsAg was 8.27%, with a
mean age of 54.94. Among the study participants, the ratio of male to female was 0.49:1. In total,
47.02% of participants’ highest level of education was primary and middle school, and 69.79% were
married. Only 5.12% of participants received the hepatitis B vaccination among those with confirmed
hepatitis B vaccination (11.31%).

Table 2. Summary of participants’ characteristics.

Characteristics N/Mean Proportion (%)/SD

HBsAg
Positive 8034 8.27

Negative 89,139 91.73

Gender
Male 32,208 33.15

Female 64,965 66.85

Age 54.94 21.72

Education level
Illiteracy, and semi-illiteracy 8971 9.23

Primary school 26,024 26.78
Middle school 19,667 20.24

High and vocational school 19,417 19.98
College and above 4632 4.77

Unknown 18,462 19.00

Career
Leaders of enterprise unit 827 0.85

Technical personnel 2681 2.76
Handle affairs personnel 1844 1.90
Commercial personnel 4768 4.91

Farming, forestry, and fishery producers 7843 8.07
Transportation equipment operators 4430 4.56
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Table 2. Cont.

Characteristics N/Mean Proportion (%)/SD

Soldier 185 0.19
Unknown 74,595 76.77

Marital status
Single 16,851 17.34

Married 67,821 69.79
Widowed 4127 4.25
Divorced 821 0.84
Unknown 7553 7.77

Hepatitis B vaccination
No 6017 6.19
Yes 4976 5.12

Unknown 86,180 88.69

White blood cell count (WBC, 109/L) 6.45 1.75

Percent of monocytes (MON%, %) 4.44 1.87

Monocyte count (MON, 109/L) 0.28 0.14

Red cell volume distribution width-variable coefficient (RDW.CV, %) 14.57 1.38

Red cell volume distribution width-standard deviation (RDW.SD, fL) 55.40 6.91

Red blood cell count (RBC, 1012/L) 4.58 0.52

hematocrit (HCT, %) 45.92 4.98

Lymphocyte percentage (LYM%, %) 37.74 9.05

Lymphocyte count (LYM, 109/L) 2.39 0.77

Mean corpuscular volume (MCV, fL) 100.97 10.66

Mean red blood cell hemoglobin content (MCH, pg) 29.55 3.56

Mean corpuscular hemoglobin concentration (MCHC, g/L) 293.22 25.12

Mean platelet volume (MPV, fL) 9.03 0.95

Percent of basophilic granulocyte (BAS%, %) 0.58 0.31

Basophilic granulocyte count (BASO, 109/L) 0.04 0.02

Percentage of eosinophilic granulocyte (EOS%, %) 3.16 2.39

Eosinophil count (EOS, 109/L) 0.20 0.17

Hemoglobin (HGB, g/L) 134.28 14.01

Albumin (ALB, g/L) 45.65 3.27

Alanine aminotransferase (ALT, U/L) 20.68 18.35

Aspartate aminotransferase (AST, U/L) 23.56 13.04

Direct bilirubin (DBil, umol/L) 3.15 1.46

Total bilirubin (TBil, umol/L) 10.39 4.37

Platelet count (PLT, 109/L) 258.25 68.58

Plateletcrit (PCT, %) 0.23 0.06

Percent of neutrophile granulocyte (NEU%, %) 54.08 9.29

Neutrophil count (NEU, 109/L) 3.53 1.32

Total 97,173

SD, standard deviation. HBsAg, hepatitis B surface antigen.
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In total, 77,738 instances were randomly divided to the training set and 19,435 instances were
randomly divided to the testing set, resulting in a random partition of 80%/20%. Differences between the
training set and testing set by the demographic characteristics and results from laboratory measurements
are shown in Table 3. The p values of each variable between training and testing sets were greater than
0.05, indicating that the splitting process was random and balanced.

Table 3. Difference analysis between the training set and the testing set.

Characteristics Training Set n (%) Testing Set n (%) p Value

HBsAg
Positive 6419 (8.26) 1615 (8.31) 0.812

Negative 71,319 (91.74) 17,820 (91.69)

Gender
Male 25,769 (33.14) 6439 (33.13) 0.963

Female 51,969 (66.86) 12,996 (66.87)

Age(year) 54.90 ± 21.75 55.09 ± 21.64 0.282

Education level
Illiteracy, and semi-illiteracy 7199 (9.26) 1772 (9.12)

Primary school 20,855 (26.82) 5169 (26.6)
Middle school 15,663 (20.15) 4004 (20.6) 0.437

High and vocational school 15,553 (20.01) 3864 (19.88)
College and above 3666 (4.72) 966 (4.97)

Unknown 14,802 (19.04) 3660 (18.83)

Career
Leaders of enterprise unit 650 (0.84) 177 (0.91)

Technical personnel 2125 (2.73) 556 (2.86)
Handle affairs personnel 1463 (1.88) 381 (1.96)
Commercial personnel 3788 (4.87) 980 (5.04)

Farming, forestry, and fishery producers 6272 (8.07) 1571 (8.08) 0.633
Transportation equipment operators 3517 (4.53) 913 (4.7)

Soldier 149 (0.19) 36 (0.19)
Unknown 59,774 (76.89) 14,821 (76.26)

Marital status
Single 13,542 (17.42) 3309 (17.02)

Married 54,196 (69.72) 13,625 (70.11)
Widowed 3277 (4.22) 850 (4.37) 0.294
Divorced 674 (0.86) 147 (0.76)
Unknown 6049 (7.78) 1504 (7.74)

History of hepatitis B vaccination
No 4777 (6.14) 1240 (6.38)
Yes 4016 (5.17) 960 (4.94) 0.229

Unknown 68,945 (88.69) 17,235 (88.68)

WBC (109/L) 6.45 ± 1.75 6.45 ± 1.73 0.718

MON% (%) 4.44 ± 1.87 4.43 ± 1.88 0.768

MON (109/L) 0.28 ± 0.14 0.28 ± 0.14 0.969

RDW.CV (%) 14.57 ± 1.38 14.56 ± 1.35 0.664

RDW.SD (fL) 55.39 ± 6.91 55.45 ± 6.92 0.239

RBC (1012/L) 4.58 ± 0.52 4.58 ± 0.52 1.000

HCT (%) 45.91 ± 4.97 45.97 ± 4.97 0.142

LYM% (%) 37.74 ± 9.05 37.71 ± 9.08 0.616

LYM (109/L) 2.39 ± 0.77 2.39 ± 0.77 0.869

MCV (fL) 100.95 ± 10.67 101.07 ± 10.64 0.157
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Table 3. Cont.

Characteristics Training Set n (%) Testing Set n (%) p Value

MCH (pg) 29.54 ± 3.66 29.56 ± 3.13 0.548

MCHC (g/L) 293.26 ± 26.46 293.06 ± 18.85 0.304

MPV (fL) 9.03 ± 0.95 9.03 ± 0.95 0.765

BAS% (%) 0.58 ± 0.31 0.58 ± 0.31 0.146

BASO (109/L) 0.04 ± 0.02 0.04 ± 0.02 0.213

EOS% (%) 3.16 ± 2.39 3.17 ± 2.42 0.736

EOS (109/L) 0.20 ± 0.17 0.20 ± 0.18 0.560

HGB (g/L) 134.26 ± 14.02 134.37 ± 13.98 0.332

ALB (g/L) 45.65 ± 3.28 45.66 ± 3.28 0.731

ALT (U/L) 20.69 ± 19.02 20.62 ± 15.38 0.640

AST (U/L) 23.57 ± 13.50 23.53 ± 11.00 0.696

DBil (umol/L) 3.15 ± 1.47 3.15 ± 1.39 0.632

TBil (umol/L) 10.40 ± 4.39 10.37 ± 4.29 0.448

PLT (109/L) 258.25 ± 68.67 258.27 ± 68.21 0.969

PCT (%) 0.23 ± 0.06 0.23 ± 0.06 0.779

NEU% (%) 54.08 ± 9.28 54.12 ± 9.31 0.610

NEU (109/L) 3.53 ± 1.31 3.54 ± 1.32 0.600

Total 77,738 19,435

3.2. Predictive Accuracy

The performance of the models predicting HBV infection risk is presented in Table 4, and the
ROC curve of each model based on the testing set is shown in Figure 1. The AUCs of the LR, DT, RF,
and XGBoost were 0.742 (95% confidence interval (95% CI: 0.729, 0.754), 0.619 (95% CI: 0.603, 0.634),
0.752 (95% CI: 0.740, 0.764), and 0.779 (95% CI: 0.768, 0.791). Two machine learning algorithms achieved
improvements in discrimination (1.0% for RF, 3.7% for XGBoost) when compared to the LR model.
The predictive performance of the combined models after the Borderline-SMOTE sample resampling
was further improved compared to the model used alone. The Borderline-SMOTE XGBoost combined
model had the best prediction results, with an AUC value of 0.782.

Table 4. Predictive performance of each model for predicting HBV infection risk.

Algorithms AUC Standard Error 95% CI AUC Compared with LR

LR 0.742 0.006 (0.729, 0.754) -
DT 0.619 0.008 (0.603, 0.634) −0.123
RF 0.752 0.006 (0.740, 0.764) +0.010

XGBoost 0.779 0.006 (0.768, 0.791) +0.037
Borderline-SMOTE DT 0.715 0.007 (0.702, 0.729) −0.027
Borderline-SMOTE RF 0.759 0.006 (0.747, 0.771) +0.017

Borderline-SMOTE XGBoost 0.782 0.006 (0.771, 0.793) +0.040

LR: logistic regression; SMOTE: synthetic minority oversampling technique; AUC: the area under the receiver
operating characteristic curve; CI: confidence interval.
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Figure 1. Receiver operating characteristic (ROC) curves of the four models for predicting HBV
infection. (XGBoost: extreme gradient boosting; RF: random forest; DT: decision tree; LR: logistic
regression; SMOTE: synthetic minority oversampling technique).

In terms of other measures, the LR model predicted 12,975 cases correctly from 19,435 total cases,
with a sensitivity of 68.7% and specificity of 66.7%. Although the accuracy of the DT was higher than
that of XGBoost, it can be seen through the confusion matrix that DT had a bias in the classification
of minority class. The Borderline-SMOTE XGBoost combined model improved the identification of
minority class, with the sensitivity of 70.8% and the specificity of 70.1%. Full details on the classification
analysis can be found in Table 5. Using the variables exhibiting the highest coefficients of permutation
importance for HBV infection in XGBoost model, the variable importance plot suggested that age was
the most important predictor of HBV infection followed by ALT, PLT, AST, ALB, and PCT (Figure 2).
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Table 5. Summary of evaluation metrics values of each model for predicting HBV infection risk.

Algorithms TP FN TN FP Accuracy Sensitivity Specificity Cutoff Point

LR 1109 506 11866 5934 0.668 0.687 0.667 0.010
DT 752 863 13214 4606 0.719 0.466 0.742 0.086
RF 1203 412 11131 6689 0.634 0.745 0.625 0.091

XGBoost 1134 481 12695 5125 0.711 0.702 0.712 0.082
Borderline-SMOTE DT 1094 521 11731 6089 0.660 0.658 0.677 0.135
Borderline-SMOTE RF 1124 491 12121 5699 0.681 0.696 0.680 0.116

Borderline-SMOTE
XGBoost 1144 471 12493 5327 0.702 0.708 0.701 0.088

TP: true positives; FN: false negatives; TN: true negatives; FP: false positives.

4. Discussion

We developed HBV infection risk assessment models based on health examination data of 97,173
community residents using a machine learning method with the goal of determining the optimal model
and improving the detection rate of positive HBsAg. Our findings revealed that the Borderline-SMOTE
XGBoost combined model outperformed the other models with desirable performance and may help
identify individuals in need of HBsAg testing. The combined model of preprocessing samples with
Borderline-SMOTE can solve the problem of data imbalance and improve the overall prediction
performance of the model. A large proportion of people unaware of HBV infection missed the ideal
treatment time, resulting in treatment difficulties and poor prognosis. There is a lack of assessment of
patients at risk of HBV risk in clinical settings. Thus, it is necessary to improve the detection probability
of HBV infected patient [24]. Therefore, the XGBoost model can be applied to assess the prevalence of
HBV in the general population, promote early diagnosis and timely treatment of high-risk groups,
and improve the utilization of medical resources, particularly in low resource countries [25].

The use of machine learning algorithms to predict disease risk has gained attention in the
biomedical field [26]. In this study, we took advantage of large-scale datasets to identify individuals at
high-risk of HBV infection by applying machine learning methods. Our findings yielded important
implications for participants, such as that early identification helps to take effective interventions
targeting high-risk groups. Additionally, early treatment in the disease process often means better
efficacy. Negative results of the predictive model can eliminate the need for HBsAg testing in most of
the general population [27]. Our predictive model can be used to improve the positive detection rate
of HBV in areas with limited budget and resources.

Secondly, the predictive performance of the prediction models using machine learning methods
was significantly different than that of commonly used traditional classification methods. The more
commonly used ensemble model RF and the latest boosting method XGBoost were applied in this study,
with controls of traditional machine learning model DT and traditional model LR. The top-performing
algorithm, Borderline-SMOTE XGBoost, achieved an AUC of 0.782 (95% CI: 0.771,0.793), and overall
accuracy of 70.2%, nearly a four percent higher AUC than that of the traditional LR model. Our findings
are consistent with results from a previous study [28]. XGBoost can solve the classification bias problem
of traditional models in a few categories, and show strong classification prediction performance on
unbalanced data.

The variable importance plot of the XGBoost model showed that age was of high importance to
predict HBV infection, which was consistent with a previous study [29]. In China, the majority of HBV
infection cases are caused by perinatal vertical transmission and childhood infection. We could infer that
older patients with hepatitis B who might have a longer infection time had more serious liver damage
and greater susceptibility to adverse outcomes. In order to detect and treat hepatitis B patients early,
it is important to carry out long-term follow-up and regular examinations. This study also suggests
that variables (alanine aminotransferase (ALT), platelet count (PLT), Aspartate aminotransferase (AST),
albumin (ALB), and plateletcrit (PCT)) were important predictors for HBV infection [30]. Our results
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are consistent with findings from other studies. For instance, the levels of PCT and PLT not only reflect
the number of platelets, but also indirectly reveal the functional status of the liver [31,32]. Serum AST
and ALT levels are important indicators for examining HBV infection, where content increases are
closely related to liver disease [33]. Serum ALB levels can reflect liver reserve, especially synthetic
function, which is parallel to the severity of liver disease. The above variables can provide clues and
reference for further studies exploring the potential factors of HBV infection prediction.

Our findings also have societal benefits. Adopting risk assessment strategies can provide a greater
understanding of HBV prevalence and identify the greatest number of patients for antigen testing [34].
Additionally, the risk of transmission for HBV infection to other individuals can be reduced by early
diagnosis with subsequent lifestyle modifications. Moreover, earlier treatment in the course of the
disease is related to acceptable cost per quality-adjusted life years estimates [35]. Our results are
generalizable with other diseases such as diabetes [27] and cardiovascular risk to a certain extent [14],
which can easily build identical predictive models using the same machine learning techniques.

Though our study provides new insight on predicting HBV infection using machine learning
algorithm. Several limitations must be mentioned. First, the features we included in our model were
based on the obtained datasets. There is a chance that potentially unknown relevant features might
have been missing. However, this study included 31 variables and considered as many factors of HBV
infection as possible. Additionally, although our model was developed using a limited number of
algorithms, it also shows certain representativeness, where XGBoost represents the latest boosting
method, RF signifies the traditional integration model, and DT represents traditional machine learning
model. In our future research, other machine learning algorithms will be considered to improve the
prediction accuracy. Third, we were unable to better analyze the variable of hepatitis B vaccine and
provide more detailed information due to missing data on the history of the hepatitis B vaccine. Finally,
we note that data was from a community-based study in China and data outside the study area was not
used for external verification. However, our data volume is large and still has a certain extrapolation.

5. Conclusions

This study applied machine learning algorithms to predict the risk of HBV infection for each
participant based on health examination data, and evaluated the predictive effects for the models.
Our findings revealed that Borderline-SMOTE sample preprocessing and the XGBoost algorithm
together can be used for disease risk prediction with high classification accuracy, which could better
assist clinical decision making and treatment. This risk assessment model can be used to diminish
the need for antigen screening among low- or non-risk individuals. In addition, interventions in
high-risk groups are more cost-effective and reduce associated morbidity and mortality. Through
regular follow-up, patients with hepatitis B in the general population can be found earlier. The model
can also help to develop a medical resource allocation plan, which has important application value
and socioeconomic significance [36].
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Sarioğlu, M.; Özenirler, S.; Akkiz, H.; et al. Risk factors for hepatocellular carcinoma in Turkey. Dig. Dis. Sci.
2001, 46, 1022–1028. [CrossRef] [PubMed]

7. Shang, G.; Richardson, A.; Gahan, M.E.; Easteal, S.; Ohms, S.; Lidbury, B.A. Predicting the presence of
hepatitis B virus surface antigen in Chinese patients by pathology data mining. J. Med. Virol. 2013, 85,
1334–1339. [CrossRef]

8. Ocama, P.; Opio, C.K.; Lee, W.M. Hepatitis B virus infection: Current status. Am. J. Med. 2005, 118, 1413.
[CrossRef]

9. Chou, R.; Cottrell, E.B.; Wasson, N.; Rahman, B.; Guise, J.M. Screening for hepatitis C virus infection in
adults: A systematic review for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2013, 158, 101–108.
[CrossRef]

10. Guo, P.; Zeng, F.; Hu, X.; Zhang, D.; Zhu, S.; Deng, Y.; Hao, Y. Improved variable selection algorithm using a
LASSO-type penalty, with an application to assessing hepatitis B infection relevant factors in community
residents. PLoS ONE 2015, 10, e0134151. [CrossRef]

11. Zeng, F.; Guo, P.; Huang, Y.; Xin, W.; Du, Z.; Zhu, S.; Deng, Y.; Zhang, D.; Hao, Y. Epidemiology of hepatitis B
virus infection: Results from a community-based study of 0.15 million residents in South China. Sci. Rep.
2016, 6, 36186. [CrossRef]
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