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Cardiovascular diseases (CVDs) are the leading cause of deaths in the world. The
intricacies of the cellular composition and tissue microenvironment in heart and
vasculature complicate the dissection of molecular mechanisms of CVDs. Over the
past decade, the rapid development of single-cell omics technologies generated vast
quantities of information at various biological levels, which have shed light on the cellular
and molecular dynamics in cardiovascular development, homeostasis and diseases.
Here, we summarize the latest single-cell omics techniques, and show how they have
facilitated our understanding of cardiovascular biology. We also briefly discuss the
clinical value and future outlook of single-cell applications in the field.
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INTRODUCTION

The transcriptome and epigenome are important determinants of the proteome, the latter of which
confers functional specificity to individual cells within the tissue. As cellular composition dictates
tissue function, understanding cellular heterogeneity is critical to deciphering organ homeostasis
and disease progression. Traditional sequencing methods, such as bulk RNA-seq and bulk ATAC-
seq, provide only an average readout of pooled cell populations, which masks cellular heterogeneity,
and is incapable of identifying specific cell types.

In the past decade, various powerful single-cell techniques have been developed, enabling
scientists to interrogate single cells at multiple molecular levels. At present, there are single-
cell RNA-sequencing (scRNA-seq) and single-nucleus sequencing (snRNA-seq) to study gene
expression (Shapiro et al., 2013; Islam et al., 2014; Hu P. et al., 2018), single-cell assay
for transposase-accessible chromatin sequencing (scATAC-seq) to study DNA accessibility
(Buenrostro et al., 2015b) and single-cell DNA methylome sequencing to investigate DNA
methylation at single cell resolution (Luo et al., 2017). Building upon these techniques, single-cell
multi-omics, which is a combination of at least two of the above techniques applied to a single cell,
provides unprecedented resolution to investigate the interconnectedness of molecular regulatory
mechanisms, and promises more accurate identification of cell subpopulations and cell states (Guo
et al., 2017; Hu Y. et al., 2018).

Cardiovascular diseases are the leading cause of death globally. Deeper understanding of
the cellular makeup and molecular processes in the heart and the vasculature is necessary for
dissecting disease mechanisms and improving of therapeutic strategies. Single-cell techniques are
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tremendously useful for uncovering cellular diversity, revealing
cell–cell interactions, identifying potential biomarkers, and
delineating disease dynamics (Li et al., 2017; Macaulay et al.,
2017; Davie et al., 2018; Jackson et al., 2020), particularly when
different single-cell omics data are integrated. In this review,
we discuss the current single-cell technologies and platforms,
including their advantages and weaknesses. We also summarize
recently published single-cell studies in the cardiovascular field.

SINGLE-CELL TECHNOLOGIES

Single-Cell RNA Sequencing
Single-cell RNA sequencing (scRNA-seq) is by far the most widely
used single-cell technology in cardiovascular biology. It is a
powerful tool for analysis of all transcripts in a single cell. The
typical workflow of a scRNA-seq experiment includes single-cell
capture, reverse transcription, amplification, library preparation,
sequencing and data analysis (Potter, 2018). Since the publication
of the first single-cell transcriptomics study in 2009 (Tang et al.,
2009), a variety of scRNA-seq techniques, have been developed
(Svensson et al., 2018). Each variation of scRNA-seq has its
own advantages and drawbacks, thus, choosing the appropriate
method is highly dependent on tissue/cell type and experimental
design (Table 1). For example, single cell selection approaches
such as micropipetting and laser capture microdissection allow
the visualization of cells prior to selection, but are laborious
and low-throughput, and are prone to bias. By contrast, droplet-
based cell selection techniques are high-throughput, suffer from
limitations including cell size restraint [not suitable for adult
cardiomyocytes (CMs)] and “blind” selection of cells. The latter
attribute therefore requires high input cell quantity (105–106

cells per sample) and quality (>80% viability) (Gao et al., 2020).
One way to circumventing cell size restraints is the use of nuclei
instead of intact cells. Single-nucleus RNA sequencing (snRNA-
seq) thus reduces the technical challenge of isolating adult
CMs, and minimizes stress-induced aberrant gene expression
(Hu P. et al., 2018; Cui et al., 2020). It is worthwhile to note,
however, while most studies found comparable clustering of cell
populations with scRNA-seq and snRNA-seq (Bakken et al., 2018;
Slyper et al., 2020), adult CMs are different from most other cell
types in that they can contain more than one nuclei, which may
confound data interpretation (Ding et al., 2020). Microwell-based
selection approaches (e.g., ICELL8) come with the advantage of
visualizing cells and staining them for viability before capture.
In addition, the large nozzle diameter does not limit target cell
size (i.e., compatible with adult CMs). However, these methods
are considered medium-throughput, capturing approximately
2,000 cells per chip.

Different sequencing protocols utilize different strategies
to capture, amplify and sequence mRNA molecules. Some
protocols generate a strong bias toward either the 5′-end [e.g.,
Single-cell tagged reverse transcription (STRT-seq)] (Natarajan,
2019) or the 3′-end (e.g., Drop-seq), cell expression by linear
amplification and sequencing 2 (CEL-seq2) (Hashimshony et al.,
2012; Bageritz and Raddi, 2019; Natarajan, 2019). These are
commonly used for their high-throughput and relatively low
costs. However, if the goal of the experiment goes beyond

quantification of gene expression, then one may use full-length
transcript sequencing [e.g., Switching mechanism at 5′ end
of the RNA transcript sequencing (Smart-seq2) (Picelli et al.,
2013), Smart-seq3 (Hagemann-Jensen et al., 2020)] to obtain a
greater coverage of transcripts. Moreover, full-length sequencing
allows characterization of alternative splicing, single-nucleotide
variants, transcription start sites, and the detection of monoallelic
and imprinted genes (Ramsköld et al., 2012; Picelli et al., 2014;
Volden et al., 2018; Picelli, 2019).

Other Single-Cell Omics
In addition to the transcriptome, other ensembles of molecules
(e.g., genome, proteome, and metabolome) and cellular or
molecular states (e.g., chromatin accessibility and methylome)
of can also be profiled at single-cell level. Techniques such
as single-cell chromatin accessibility sequencing (scATAC-seq),
proteomics and DNA methylomics are now widely used either
alone, or to complement transcriptomic data (Table 1) (Tanay
and Regev, 2017; Efremova and Teichmann, 2020).

The aim of genomics is to study an organism’s complete set
of DNA (genome), including its structure, function, evolution,
and the impact of its changes on organisms. Single-cell whole-
genome sequencing is generally accomplished via the two major
whole genome amplification (WGA) methods, including multiple
displacement amplification (MDA) (Dean et al., 2002), multiple
annealing and looping based amplification cycles (MALBAC)
(Zong et al., 2012). As one of the pioneering WGA techniques,
PCR-based methods [e.g., degenerate oligonucleotide-primed
polymerase chain reaction (DOP-PCR)] are less susceptible
to DNA sample quality, but suffer from several limitations,
which include inadequate average product size, non-specific
amplification biases and incomplete genome coverage. MDA is an
isothermal technique that utilizes the φ29 DNA polymerase for its
exceptional fidelity (due to its 3′→5′ proofreading exonuclease
activity), strand-displacement activity and processivity (up to
70–100 kb without dissociation from template). Thus, MDA
reduces the amplification bias from 40-fold to less than 3-fold
and achieves much gearter genome coverage (∼70%) (Dean et al.,
2002). The more advanced MALBAC relies on quasilinear DNA
preamplification, which is used to reduce bias associated with
non-linear amplification, followed by exponential amplification
(regular PCR) to acquire sufficient material for sequencing.
This design yields a more even representation of the genome
(i.e., uniformity) and better reproducibility. However, both of
these two techniques have their own limitations. For MDA,
the irreproducible sequence-dependent bias and production of
chimeric products are the protential limitations; for MALBAC,
it is the high false positive rate for single-nucleotide variations
(SNVs) detection (Huang et al., 2015).

ATAC-seq uses hyperactive Tn5 transposase to tag and
fragment DNA sequences in open chromatin regions
simultaneously, thereby identifying chromatin accessibility
(Buenrostro et al., 2015a). Initially, three major strategies for
scATAC-seq were developed: combinatorial cellular indexing
(e.g., sci-ATAC-seq), microfluidics-based approach using an
integrated fluidics circuit (IFC), and droplet-based approach
(Buenrostro et al., 2015b; Cusanovich et al., 2015; Satpathy
et al., 2019). In sci-ATAC-seq, the nuclei of lysed cells are
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TABLE 1 | Main features of the single-cell technologies.

Methods Target Features References

- Full-length transcript sequencing

Smart-seq2 Transcriptome - Detect more transcripts than 10x Genomics
- Low throughput

Picelli et al., 2013

- Full-length transcript sequencing

Smart-seq3 Transcriptome - Use 5′ unique molecu_x0002_lar identifier (UMI)
- Higher sensitivity than Smart-seq2
- Low throughput

Hagemann-Jensen et al.,
2020

- High throughput: test 8 samples simultaneously, capture 500-10000 cells for each sample

- Low cost

- One-day workflow

lOx Genomics Transcriptome - “Blind” selection of cells
- Require high input cell quantity (105–106 cells per sample) and quality (> 80% viability)
- Require cell size < 30 µm
- Serious dropout problem

Gao et al., 2020

CEL-seq2 Transcriptome - Perform with Fluidigm Cl microfluidics system
- 3′-end sequencing

Hashimshony et al., 2016

- Perform either in 96/384-well plates or with Fluidigm Cl micro fluidics system

- 5 µm < cell size < 25 µm

STRT-seq Transcriptome - 5′-end sequencing
- 2 to 3-day workflow
- Require maximum 5000 cells for one test

Natarajan, 2019

- Use Smart-seq2 system

- Perform both 3′-end sequencing and full-length transcript sequencing

- Test 8 samples simultaneously

ICELL8 Transcriptome - Throughput lower than 10x Genomics, capture ∼2000 cells for each chip
- Require high input cell quality (>70% viability)
- Require ∼20000 cells for each test
- Visualization of cell selection

Goldstein et al., 2017

MDA Genome -Require 1000 pg DNA
- 70% coverage rate of genome
- Does not support CNV analysis

Dean et al., 2002

MALBAC Genome - Require 0.5 pg DNA
- ∼90% coverage rate of genome
- Low bias
- Support CNV analysis

Zong et al., 2012

sci-ATAC-seq chromatin
accessibility

- Support 1500 cells for sequencing
- With median reads of 2,500 per cell
- Collision rate: ∼11%

Cusanovich et al., 2015

IFC scATAC-seq Chromatin
accessibility

- Only perform 96 cells simultaneously
- 70,000 reads per cell

Buenrostro et al., 2015b

lOx Genomics Chromatin
accessibility

- High throughput
- Low cost
- Compatible with fresh, fixed (methanol), and cryopreserved single cell or singlenuclei suspensions
- Simple workflow

Satpathy et al., 2019

scRRBS DNA
methylation

- High sensitivity
- Epigenetic marker detected: 5mC
- Cover 1.5 million CpG sites per cell
- RRBS strategy
- Focus on the enrichment of CpG-rich regions

Guo et al., 2015

scBS-seq DNA
methylation

- Low DNA input (˜100 ng)
- Epigenetic marker detected: 5mC
- Cover 3.7 million CpG sites per cell
- PBAT strategy

Miura et al., 2012

(Continued)
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TABLE 1 | (Continued)

Methods Target Features References

- Spatial information not available

CyTOF Proteome - 42 metal isotopes available
- Cell size < 30 µm
- Require 1-3 million cells for each sample

Cheung and Utz, 2011

- Spatial information available

- 35 metal isotopes available

IMC Proteome - Support FFPE and cryopreserved tissues
- Use laser system to ablate tissue, 1 µm image resolution
- Re-analysis not available

Giesen et al., 2014

- Spatial information available

- Detect 40+ proteins simultaneously

MIBI Proteome - Support FFPE and cryopreserved tissues
- Based on secondary ionization mass spectrometry, 250 nm image resolution
- Supprot re-analysis

Keren et al., 2018

- ELISA-based approach

SCBC Proteome - Spatial information not available
- Require only a few hundred cells

Shi et al., 2012

- Excellent tolerance for salts

MALDI Metabolome - High sensitivity and throughput
- Combined with flash-freezing sample preparation method, can reflect the natural distributionof
metabolites

Dueñas et al., 2017

- Use optical microscope, visualization for cell selection

LSCMS Metabolome - Detect 100-1000 of molecular peaks from a single living cell
- Combined with a motorized x-y stage to an automated software system, can select and pick up
desired cells automatically

Shimizu et al., 2015

labeled by unique combinations of two barcodes during
transposition and PCR amplification, respectively. This approach
allows sequencing of approximately 1,500 cells with median
reads of 2,500 and at a collision rate of ∼11%. IFC scATAC-
seq enable get more than 70,000 reads per cell (Buenrostro
et al., 2015b). In droplet-based ATAC-seq, single nuclei are
prepared using the 10X Genomics protocol, transposed, and
are loaded onto a microfluidic chip for generating barcoded
GEMs (gel bead in emulsion). The throughput of each sample
well on a microfluidic chip is up to 10,000 single nuclei. The
capture ratio of this method is more than 65%. Building
upon these three strategies, other scATAC-seq methods have
emerged, such as Perturb-ATAC (Rubin et al., 2019) and
plate-based scATAC-seq (Chen et al., 2018). Since this method
provides a genome-wide landscape of chromatin accessibility
at single-cell resolution, scientists are able to identify cell types,
define genomic features, such as cis-regulatory elements (e.g.,
promoters and enhancers) and trans-regulatory elements (e.g.,
transcription factors) and build gene regulatory networks
with it. Gene activity and accessibility to genetic variants
can also be derived using scATAC-seq data (Satpathy et al.,
2019). Furthermore, integration of single-cell transcriptome
and chromatin accessibility data may improve cell identity
annotation (Jia et al., 2018). Specifically, joint analysis of these
two types of omics data facilitates the detection of correlations
between trans- and cis-regulatory elements and the cellular
state of interest (Stuart et al., 2019). However, the noisy and

sparse nature of scATAC-seq signals remains a big challenge for
computational analysis.

DNA methylation is an important epigenetic modification
that establishes patterns of gene repression. Currently, there
are two approaches for single-cell DNA-methylome profiling.
The first method is single-cell reduced-representation bisulfite
sequencing (scRRBS) (Guo et al., 2015). This protocol integrates
the steps from MspI digestion to bisulfite conversion into one
tube of cell lysate, thus minimizing DNA loss and gathering
methylation information on approximately 1 million CpG
sites within an individual cell. The other method, single-
cell bisulfite sequencing (scBS-seq), employs a modified post-
bisulfite adapter tagging (PBAT) approach (Miura et al., 2012;
Smallwood et al., 2014). This approach allows for a lower
starting amount of DNA (∼100 ng) (Miura et al., 2012).
Compared to scRRBS, scBS-seq is capable of measuring DNA
methylation at up to 48.4% of the CpG sites and achieves
higher recovery rates simultaneously (Smallwood et al., 2014;
Schwartzman and Tanay, 2015).

Proteomics has been used for decades to study the
characteristics of all proteins in a sample in large-scale, including
protein expression level, posttranslational modification and
protein–protein interaction (Aslam et al., 2017). However, it is
not until recent years that single-cell protein and proteomic
techniques were developed, offering opportunities to analyze the
functional states of individual cells. Mass cytometry, also known
as CyTOF (cytometry by time-of flight) permits cytometric
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measurement of up to 42 proteins per cell by using time-of-
flight mass spectrometry and heavy-metal tagged antibodies, and
theoretically can detect up to 100 isotopes (Cheung and Utz,
2011). It is a potentially powerful tool for immune-monitoring
and clinical diagnosis. Many studies have demonstrated its
applicability in clinical prognosis and diagnosis (Amir et al.,
2013; Behbehani et al., 2015; Ferrell et al., 2016; Fisher et al.,
2017). Imaging mass cytometry (IMC) and multiplexed ion beam
imaging (MIBI) are two techniques related to CyTOF. IMC is
in essence a combination of immunohisto(cyto)chemistry and
mass cytometry, made possible through the integration of a laser
ablation device (Giesen et al., 2014). Stained tissue sections and
cells are almost ablated by a pulsed laser pixel by pixel, where
associated metal isotopes are measured and indexed. Currently,
IMC offers 1 µm-image resolution and requires almost 50 copies
of an epitope per pixel for minimal detection. Different from
laser-based IMC, MIBI is based on secondary ionization mass
spectrometry, only a few hundred nanometers of tissue are lost
during a MIBI scan, which means that the stained tissue can
be re-analyzed multiple times with this technique (Keren et al.,
2018). When combined with TOF detection system, MIBI-TOF
can measure a large scale of atomic masses (Keren et al., 2018,
2019). This instrument has an image resolution of 250 nm and a
rate reaching 10,000 pixels per second. The major advantage of
IMC and MIBI is that they can monitor protein modifications,
such as histone acetylation and kinase phosphorylation, with
spatial information. Single-cell barcode chip (SCBC) is an ELISA-
based approach, it allows detection of more than 40 proteins per
cell and provides data with deep depths (Shi et al., 2012). Only
a few hundred cells are required for each assay. The advantage
of this technique is that single cells can be cultured in the
microchambers on the chip, and is therefore suitable for the study
of secreted protein and paracrine (Xue et al., 2015).

The term metabolomics was first proposed in 2001, and
is defined as the comprehensive and quantitative analysis of
all metabolites (small molecules, typically less than 1 kDa,
including nucleosides, lipids, amino acids and carbohydrates) of
the biological system (Fiehn, 2001). The metabolite heterogeneity
of individual cells from tissue or organ reflects stochastic
biochemical processes, cell cycle stages, environmental stress,
and diseased states. However, analyzing the metabolomes of
single cells is technically extremely challenging owing to the
chemical diversity and instability of metabolites, as well as
the low amount input material because metabolites cannot
be amplified. Thus, both the resolution and the sensitivity of
the analytical method are important points to consider. At
present, mass spectrometry (MS)-based techniques are by far
the most popular methods to analyze single-cell metabolomes.
Typically, the contents of isolated single cells are processed
via a separation- or non-separation-based approach, before
subjecting them to MS analysis. Currently, a variety of ionization
techniques have been applied to single-cell metabolomics,
including time-of-flight secondary ion mass spectrometry (TOF-
SIMS) (Kleinfeld et al., 2004), matrix-assisted laser desorption-
ionization (MALDI) (Dueñas et al., 2017), nanostructure-
initiator MS imaging (NIMS) (O’Brien et al., 2013), live single-cell
mass spectrometry (LSCMS) (Shimizu et al., 2015), and laser-
ablation electrospray ionization mass spectrometry (LAESI-MS)

(Taylor et al., 2021). Among them, MALDI and LSCMS are
the most frequently used methods. In MALDI, cells are co-
crystallized with matrix (a solution that supplies protons) on
a metal plate and are irradiated and ionized by a UV laser
beam. The ions are then analyzed depending on mass-to-charge
rations (m/z). The sensitivity of this method is good enough to
be used in single-cell analytical studies. However, the crystalized
condition of cells and the vacuum environment on the metal
plate is not sufficiently physiologically relevant, hence, doubts
were raised whether MALDI causes metabolite distortion or
exhaustion of molecules. In addition, lipids dominate MALDI
ionization, which consequently impacts the detection of other
metabolites. Compared with MALDI, LSCMS enables direct and
real-time analysis of molecules at single-cell resolution. Living
cells are monitored on a video microscope, allowing behavior-
and morphology-based cell selection. Cells are kept in a suitable
medium until ionization, a protocol that maximally preserves the
natural cellular environment.

Despite the rapid development of single-cell omics, the
studies depend on a certain single omics technique are unable
to draw a complete picture of the regulatory networks in a
cell. Therefore, single-cell multi-omics techniques, which are
combinations of simultaneous measurements of the genome,
transcriptome, proteome, or epigenome from individual cells,
has gained momentum for its capability to directly study
the correlations between genetic and phenotypic changes. At
present, single-cell multi-omics technologies can be generally
divided into four classes: (1) transcriptome and genome, for
investigating the relationship between gene expression and
genomic alterations, includes DR-seq (Huo et al., 2016), G&T-
seq (Macaulay et al., 2015), SIDR (Han et al., 2018), TARGET-
seq (Chaligne et al., 2019), and scTrio-seq (Hou et al., 2016);
(2) transcriptome and DNA methylation, for exploring the
relationship between gene expression and DNA methylation,
includes scM&T-seq (Angermueller et al., 2016), scMT-seq
(Hu et al., 2016), scTrio-seq (Hou et al., 2016), and scNMT-
seq (Clark et al., 2018); (3) transcriptome and chromatin
accessibility, for studying relationship between gene expression
and chromatin accessibility, includes sci-CAR (Cao et al., 2018),
SNARE-seq (Chen et al., 2019), scNMT-seq (Clark et al.,
2018); (4) transcriptome and proteome, for discovering the
relationship between gene expression and protein expression,
includes PEA/STA (Genshaft et al., 2016), PLAYR (Frei et al.,
2016), CITE-seq (Stoeckius et al., 2017), REAP-seq (Peterson
et al., 2017), RAID (Gerlach et al., 2019), and ECCITE-seq
(Mimitou et al., 2019).

APPLICATION OF SINGLE-CELL
TECHNOLOGIES IN CHARACTERIZING
CELLULAR HETEROGENEITY IN THE
HEART

Cellular Heterogeneity of the Developing
Heart
On a temporal axis, the heart undergoes significant changes
in cellular composition and function during development and
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disease progression (Harris and Black, 2010; Espinoza-Lewis
and Wang, 2012; Buijtendijk et al., 2020). During development,
the cardiac cellular composition undergoes drastic changes
as multipotent cells make multiple step-wise decisions to
differentiate into various states (DeLaughter et al., 2016; Li et al.,
2016; Scialdone et al., 2016). Homeobox genes Nkx2.5 and Isl1,
expressed by cardiac progenitor cells (CPCs), play critical roles in
heart formation and development during early embryonic stages
(Moretti et al., 2006; Wu et al., 2006). By integrating scRNA-
seq and scATAC-seq to map the developmental trajectories of
Nkx2.5+ and Isl1 + CPCs in early (E7.5, E8.5, and E9.5) mouse
embryonic hearts (Jia et al., 2018), Jia et al. (2018) revealed that
Isl1 + CPCs pass through an attractor state before separating
into different developmental branches, while extended expression
of Nkx2.5 commits CPCs into a unidirectional cardiomyocyte
(CM) fate. Interestingly, cells within the same cluster defined
by transcriptomic sequencing possessed different chromatin
accessibility. CPC fate transitions were associated with distinct
chromatin states, which is critically dependent on Isl1 and
Nkx2.5 (Jia et al., 2018). Notably, scATAC-seq exhibited higher
sensitivity toward delineating cellular heterogeneity than scRNA-
seq, because it detected five subpopulations of Isl1+CPCs at E8.5
and E9.5, while the latter only detected three (Jia et al., 2018).
Therefore, integration of different types of data may improve the
resolution with which we define cellular states and events.

Recently, Cui et al. (2019) systematically revealed the
transcriptional landscape of human fetal heart during
development at single-cell resolution. They identified four
main cell types in human embryonic heart, including CMs,
fibroblast-like cells, endothelial cells and valvar cell, as well
as some other cell types, such as smooth muscle cells and
immune cells (e.g., macrophages, T cell, B cells). During
development, the proportion of CMs in the atrium and ventricle
dramatically declined, whereas the proportion of NCMs, such
as fibroblast-like cells and macrophages, increased gradually,
accompanied by a set of up-regulated ECM related genes,
including DCN, COL1A1, and LUM, indicating a critical role
of NCMs in heart development. In addition, in the developing
heart, CMs experiences a transition from loose trabecular CMs
to a more mature and compact CMs. This study identified the
gene expression changes between these two states. The authors
compared the transcriptional changes in different cardiac
chambers, and discovered that the difference arose as early as
5 weeks. New knowledge provided by this work deepens our
understanding of human heart development and may provide
us some inspiration on the differentiation of mature functional
cardiac cells in vitro from stem cells.

An even more precise spatiotemporal map of the developing
human heart was accomplished by the integration of single-
cell transcriptomics, spatial transcriptomics (ST) and in situ
sequencing (ISS) of four human developmental hearts across
three time points (Asp et al., 2019). At first, with ST, the authors
investigated unique gene expression patterns in each anatomical
region, classified cells of human developing heart into 10 clusters
and depicted global spatiotemporal information at the three
time points. Then, through scRNA-seq, the authors characterized
cellular heterogeneity of human fetal heart and classified cells

into 15 clusters, which was incorporated the result from ISS. The
result of ISS was not only consistent with ST and scRNA-seq data,
but also complemented other methods. For example, analysis of
the spatial position and functional heterogeneity of epicardium
and epicardium-derived cells (EPDCs), four fibroblasts clusters
and two endothelial cells clusters, could not be accomplished by
scRNA-seq. Finally, the sections of ST and the sections of ISS
were aligned to construct two types of 3D models of human
fetal hearts. Compared with cellular spatial distribution predicted
via ST, ISS provided spatial information at a finer structural
resolution. This work exemplifies how incorporation of various
RNA sequencing approaches can facilitate our comprehension of
heart development in different dimensions, a strategy that could
be extended to other organs to decipher the global process of
human development.

Cellular Heterogeneity of the Adult Heart
Hu P. et al. (2018) investigated the transcriptional landscape of
postnatal maturing mouse hearts in both healthy states and in a
pediatric mitochondrial cardiomyopathy model by snRNA-seq.
Based on gene expression signatures, they classified CMs into
developing and mature CMs, each of which encompass several
subpopulations. Gata4 and Myocd are critical transcription
factors for CM development (Huang et al., 2012; Borok et al.,
2016). The authors found that Gata4 and Myocd were highly
expressed in developing CMs, but not in mature CMs or
non-myocyte cells, indicating that the function of these two
transcription factors were confined to a specific CM population.
In addition, they discovered a small population of presumably
proliferating CMs, which express cell cycle genes, including
Mki67, Cenp, and Kif15. Compared with P6 control mice, the
percentage of this population in P10 declined from 5.5 to
1.8%, whereas the percentages of other cell types remained
relatively stable. Mitochondrial cardiomyopathy is defined as
cardiomyopathy caused by mitochondrial DNA mutations
(Ozawa, 1994). In this study, dramatic cell type-specific and
subtype-specific transcriptional remodeling occurred in mice
with mitochondrial cardiomyopathy. This study provided some
of the first insights into the postnatal developing heart at
single-cell resolution, and shed light on cell type alterations
in mitochondrial cardiomyopathy. Wang L. et al. (2020)
investigated, for the first time, the heterogeneity of adult human
heart and compared the distinct cellular compositions among
healthy hearts, hearts with heart failure (HF), as well as hearts
partially recovered from HF, at single-cell resolution (Wang L.
et al., 2020). This is the first and only high-throughput sequencing
study of intact adult human CMs. The authors revealed distinct
cellular compositions and functions in different anatomic regions
of the heart. For example, atrial CMs possess secretary capability,
whereas the CMs in left ventricle (LV) were mainly responsible
for lipid metabolism. Furthermore, different LV CM clusters
express distinct sets of genes for contraction and metabolism,
indicating the functional heterogeneity of CMs in the LV.

Recently, Litviňuková et al. (2020) characterized the molecular
signatures of six anatomical regions of the heart (left and right
ventricular free walls, left and right atrium, the left ventricular
apex, and interventricular septum) from 14 adult hearts, using
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snRNA-seq for CMs and scRNA-seq for the rest of the cell
types. Cells were classified into 11 major populations comprising
atrial cardiomyocytes, ventricular cardiomyocytes, fibroblasts
and smooth muscle cells. When studying cardiomyocytes
specifically, the authors found that the percentage of ventricular
cardiomyocytes was higher in female versus male hearts, and
that the percentage of cardiomyocytes in ventricles was higher
than that in the atria. Furthermore, ventricular cardiomyocytes
expressed more sarcomeric proteins, including MYH7 and
MYL2, than their atrial counterparts. The latter was enriched
in the expression genes such as HAMP, ADLH1A2, and ROR2,
indicating significant roles of iron homeostasis (Huang et al.,
2020), retinoic acid synthesis and Wnt signaling pathway
(Mazzotta et al., 2016) in atrial function. These findings shed light
on chamber-specific cardiomyocyte molecular signatures related
to sex differences and cardiac function.

APPLICATION OF SINGLE-CELL
TECHNOLOGIES IN STUDYING
CARDIAC CELL–CELL INTERACTIONS

Cell–cell communication has been shown to be central to
many biological processes, including embryonic development
and diseases. Ligand-receptor pairs, as a common way of cell–
cell communication, have been found to play crucial roles in
the heart. For instance, endothelial EphB4 and its ligand ephrin-
B2 are important regulators of vascular morphogenesis and
arteriovenous differentiation during development (Pitulescu and
Adams, 2010); activin type II receptor and its ligands (e.g.,
activin A, GDF8 and GDF11) have been shown to participate
in regulating cardiomyocyte function and HF progression (Roh
et al., 2019). However, conventional experiments are limited
in scale and throughput, examining only a targeted set of
upstream and downstream molecules of a certain pathway.
By contrast, with single-cell techniques, we can construct
cell-cell interaction networks, discover putative ligand-receptor
pairs and signaling pathways. When characterizing the adult
human heart in healthy individuals and HF patients, Wang L.
et al. (2020) discovered that non-cardiomyocytes (NCMs)
played a central role in influencing cardiomyocyte biology and
shaping cardiac function through ligand-receptor interactions.
In particular, a fibroblast subpopulation enriched for functions
related to extracellular matrix organization displayed the highest
frequency of putative interactions with other cell types in the
left atrium (LA), whereas an endothelial cell (EC) subcluster
(ACKR1+) involved in cytokine production and chemokine
secretion, showed the greatest influence in the left ventricle
(LV). While most ligand-receptor pairs did not distinguish
between chambers, some were specific, and were indicative of the
distinct functions of the atrium and the ventricle. Furthermore,
NCMs, especially the ACKR1 + -EC population was implicated
in regulating cardiac function. The most abundant ligands
secreted by this EC cluster were associated with maintenance
of heart contraction. Importantly, injection of ACKR1 + ECs
into the infarcted region of mouse hearts significantly retarded
the decline in cardiac function. These observations highlight

the regulatory role of NCMs in cardiac homeostasis, and their
translational value.

Likewise, single-cell gene expression profiling of NCMs in
adult mouse heart revealed a dense network of intercellular
communication that is critical for heart homeostasis (Skelly et al.,
2018). Fibroblasts (FBs) were identified as the most trophic
cell population with dense connections to other cell types. For
example, factors expressed and secreted by FBs, including Csf1
(Braza et al., 2018) and Vegfa (Han et al., 2019), indicate that they
support both cardiac macrophage and EC growth. Furthermore,
this study also revealed multiple cell populations participating
in the nervous innervation of the heart. Ngf and Ntf3 are
both key factors for axonal development (Usui et al., 2012;
Crerar et al., 2019; Li et al., 2020). Their expression by cardiac
pericytes and fibroblasts suggests the potential role of pericytes
and fibroblasts in the development of the autonomic nervous
system in heart. Investigating cardiac cell crosstalk networks at
single-cell resolution underscores the contributions of different
non-myocyte cell types and subtypes in cardiac homeostasis, and
suggests potential nodes of regulation that could be exploited for
therapeutic purposes.

APPLICATION OF SINGLE-CELL
TECHNOLOGIES IN HEART DISEASE

At present, single-cell technologies have been widely used in heart
disease studies, especially single-cell RNA-seq and single-cell
ATAC-seq. Recently, Alexanian et al. (2021) utilized scRNA-seq
and scATAC-seq to analyze bromodomain and extra-terminal
domain (BET) inhibitor JQ1- and vehicle-treated mouse hearts
that underwent transverse aortic constriction (TAC). They
discovered that the inhibitor of BET, through inhibiting the
transition of fibroblasts into myofibroblast, attenuates heart
fibrosis. They showed that the transition of fibroblasts was
activated by transcription factor Meox1 and that the enhancer of
Meox1 was regulated by BET. These findings suggest that Meox1
may be a new therapeutic target for HF and cardiac fibrosis.

Recently, using scRNA-seq and scATAC-seq, Wang et al.
compared the gene expression and chromatin accessibility in
regenerative and non-regenerative hearts with or without ligation
of left anterior descending (LAD) artery (Wang Z. et al.,
2020). They uncovered gene regulatory networks responsible
for the regenerative responses to injury in the neonatal heart.
They found that: (1) after myocardial infarction (MI), the
accessibility of cis-regulatory elements was significantly different
between regenerative and non-regenerative hearts, especially in
fibroblasts, the most injury-sensitive cell type; (2) the epicardium
contributed in the regenerative response to injury, indicating
its special function in the neonatal heart; (3) the epicardium
may stimulate angiogenesis during neonatal heart regeneration
through binding of its specialized ligand RSPO1 with endothelial
cell (EC) receptors LRP6 and LGR4, consequently activating
the Wnt/beta-catenin signaling pathway; (4) the proportion of
macrophages and monocytes was elevated after injury. They
secrete cardiotrophin like cytokine factor 1 (CLCF1) that
participates in the regenerative process. This study provides
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a comprehensive transcriptomic and epigenomic database for
neonatal mouse heart regeneration after injury, and offers clues
for therapeutic targets of cardiac injury.

Aside from adult cardiac diseases, scRNA-seq has also been
applied to study congenital disorders. In investigating the
cellular basis for cardiac malformation, de Soysa utilized scRNA-
seq coupled with a Boolean network-based lineage-specifier
prediction method, and predicted Irx4 and Plag1 as specifiers
of right ventricle (RV) cells, while Hand2, Tead2, and Arid3b
were crucial for outflow tract (OFT) cell-fate determination.
Transcriptional dysregulation caused by loss of Hand2 preceded
any morphologic defect. In the absence of Hand2, OFT-fated cells
were unable to specify, whereas properly specified RV-fated-cells
failed to differentiate, leading to severe cardiac defects. This work
demonstrates the power and suitability of single-cell techniques
in revealing the molecular basis in early cardiogenesis.

APPLICATION OF SINGLE-CELL
TECHNOLOGIES IN VASCULAR
DISEASES

Atherosclerosis
Atherosclerosis (AS) is considered an inflammatory disease
involving complex crosstalk between immune and vascular cells
(Libby, 2012; Tabas and Lichtman, 2017; Tay et al., 2019). Prior
to the application of single-cell techniques, many studies have
tried to demonstrate the complex composition and function
of leukocytes in atherosclerosis. Macrophages were considered
the most abundant leukocytes in any type of lesion and the
most significant factor for the size of lesion (Hansson and
Libby, 2006). Among the many types of macrophages, pro-
inflammatory M1 macrophages are mainly non-foamy cells and
express inflammatory markers, such as TNF, NLRP3, ZPF36,
IL1β, CXCL2, and CCL2, and are therefore considered as the
main mediator of inflammation in lesions (Willemsen and de
Winther, 2020). Anti-inflammatory M2 macrophages can be
further divided into M2a, M2b, and M2c subtypes (Colin et al.,
2014). TREM2hi macrophages, characterized by excessive uptake
of lipids, seems to exhibit the M2 phenotype (Willemsen and
de Winther, 2020). Various types of T cells were detected in
atherosclerotic plaques. For example, T helper 1 (TH1) cells
play pro-atherogenic roles, whereas regulatory T (Treg) cells
play anti-atherogenic roles in plaques. However, Treg cells can
alter their phenotype and turn pro-atherogenic (Sawant and
Vignali, 2014). Yet the roles of other T cells, such as TH2,
TH9, TH17, TH22, follicular helper T cells, and CD8+ T cells
in atherosclerosis are still unclear. Hence, accumulating studies
are unraveling the cellular diversity in atherosclerosis, single-cell
omics are still necessary to obtain unbiased profile cell types
in AS and predict their functional implications. With CyTOF,
CITE-seq, and scRNA-seq, Fernandez et al. (2019) characterized
immune cells in carotid artery plaques and blood samples from
symptomatic (SYM) or asymptomatic (ASYM) AS patients. They
discovered that: (1) in plaques, the quantity of CD8+ T cells were
much higher than CD4+ T cells; (2) compared with blood, some
T cells clusters (MC11, MC12, and MC20) in plaques expressed

more PD-1 (programmed cell death protein 1, the marker of T
cell exhaustion), indicating that T cell exhaustion may be caused
by the inflammatory microenvironment; (3) genes expressed in
plaque T cells were associated with inflammation, differentiation,
and cell proliferation, whereas the gene expressed by T cells in the
blood were related to inhibition of T cell function; (4) dysfunction
of T cells and macrophages in plaques was a crucial driver for
cardiovascular (CV) events. This work shed light on critical role
of immune cells in clinical CV events therapy and hinted toward
new targets for AS treatment.

In addition, combined with transgenic mice, scRNA-seq
enables to further illustrate the role of certain molecular in
AS progression. SETDB2 is a histone lysine methyltransferase
and catalyzes trimethylation of H3K9 (Torrano et al., 2019).
Due to its function on inflammatory factors Ccl2 and Cxcl1,
SETDB2 is considered to play a regulatory role in monocyte
and neutrophil recruitment (Kroetz et al., 2015; Schliehe et al.,
2015). Recently, Zhang et al. (2021) utilized scRNA-seq to profile
CD45+ cells from atherosclerotic plaques of bone marrow-
transplanted mice, and found that the proportions of a monocytes
cluster and a neutrophil cluster in Setdb2-deficient leukocytes
were increased compared with WT leukocytes. Meanwhile, in
Setdb2-deficient leukocytes, the expression of proinflammatory
factors, such as Cebpb, S100a8, S100a9, Ccr1, and Trem1, and
genes related to the unfolded protein response, including Clec4e,
Clec4d, and Clec4n, were elevated in the monocyte/mocrophage
clusters. Genes upregulated in Setdb2-deficient samples were
enriched in cell apoptosis and atherosclerosis signaling, whereas
downregulated ones were associated with impaired regulation of
anti-inflammatory response. These findings strongly supported
the postulation of Zhang et al. (2021) that SETDB2 deficiency
in hematopoietic cells enable exacerbate inflammation and
aggravate atherosclerosis.

Recently, Örd et al. (2021) studied AS-relevant non-
coding genetic variation by combining single-nucleus ATAC-seq
with genome-wide association study (GWAS). They provided
the first chromatin accessibility map of human AS lesions
at single-cell resolution and classified cells into different
types, including ECs, SMCs, and monocyte/macrophages.
They discovered that ECs and SMCs possessed most CAD-
associated genetic variants, and optimized the identification
of potential causal single-nucleotide polymorphisms (SNPs)
and the identification of the target genes for over 30 CAD
loci. This work complements the view previously presented
by scRNA-seq study (Wirka et al., 2019), and provides a new
approach to discover disease-leading or disease-relevant cell
types and gene variants.

Other Vascular Diseases
While atherosclerosis remains the major vascular disease that
has been studied with single-cell technologies (Cochain et al.,
2018; Winkels et al., 2018; Lin et al., 2019; Pan et al.,
2020), multiple other vascular diseases have also received
attention (Pedroza et al., 2020; Zhang et al., 2020). Chen
et al. (2020) recently investigated the pathogenesis of aortic
aneurysm using mass cytometry, imaging mass spectroscopy
(IMC) and scRNA-seq. Aortic aneurysm is characterized by
loss of elastin fibers, medial degeneration, and low-grade
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aortic wall inflammation (Isselbacher, 2005; Guo et al., 2006).
In aortic aneurysms caused by genetic anomalies, such as
Marfan and Loeys-Dietz syndromes, activation of TGF-β
signaling in SMCs is the well-known molecular mechanism
(Lindsay and Dietz, 2014). However, for older patients suffering
from chronic vascular diseases, such as atherosclerosis and
hypertension, the pathogenesis of aortic aneurysm may be
more complicated. With the combined use of multiple single-
cell techniques, Chen et al. (2020) demonstrated the existence
of a distinct SMC-derived mesenchymal stem cell (MSC)-
like cell population caused by ablation of TGF-β signaling,
which then differentiated into several mesenchymal lineage
cell types, including adipocytes, chondrocytes, osteoblasts, and
macrophages. These transformations led to the degradation of
ECM, cartilage and bone formation, extensive lipid storage, and
serious inflammation that ultimately gave rise to aortic aneurysm.
This work demonstrated the advantage of combinational use of
single-cell methods in mapping cell fate conversions responsible
for disease onset.

Hypertension is a top risk factor for many cardiovascular
diseases (Doyle, 1991). Vascular remodeling results in increased
vascular resistance, which is a central event in hypertension,
but its molecular underpinnings are still unclear. Previous
studies primarily focused on EC dysfunction and phenotypic
switching of SMCs (Brown et al., 2018; Touyz et al., 2018;
Barman et al., 2019; Helmstädter et al., 2020). Using scRNA-
seq, Cheng et al. systematically depicted artery type-specific
gene expression changes in all major cell types (e.g., SMC,
EC, MSC) and compared cell-cell communication changes in
spontaneously hypertensive rats, which was not detected with
previous conventional approaches (Cheng et al., 2021). This
included discovering interaction of Eng with various growth
factors of TGF signaling pathway, such as Tgfb1, Tgfb3, and
Bmp2, in hypertension rats. Eng is a component of the TGF-
β superfamily of receptors. The Eng-mediated crosstalk of
TGF-β pathway regulates the function of vascular endothelial
cells and angiogenesis in vivo (Tian et al., 2012). Variations
of the Eng was found in pulmonary arterial hypertension
patients, indicating the important role of Eng in hypertension
(Uznañska-Loch et al., 2018).

CLINICAL VALUE OF SINGLE-CELL
OMICS

Single-cell technologies provide an unprecedented opportunity
to systematically uncover the cellular heterogeneity and dynamic
molecular events during tissue development and disease
progression. Clinical medicine for cardiovascular diseases may
benefit from such technological advancements in many aspects.

Firstly, the study of dynamic cellular changes during disease
onset and progression may yield promising candidates for
biomarkers of diagnosis. At present, many diseases, such as the
aortic dissection and aortic aneurysm, are still in need of specific
and sensitive diagnostic tests. Single-cell sequencing is a good way
to select and identify new biomarkers for acute aortic dissection,
which may help doctors make timely decisions in the clinic
(Suzuki et al., 2010; Suzuki and Eagle, 2018).

Flow cytometry, immunohistochemistry (IHC) and
immunofluorescence (IF) are important tools for the clinical
diagnosis of various diseases, particularly infectious diseases
and, for the assessment of immune system function (Peters
and Ansari, 2011; Yamanaka et al., 2018; Jain et al., 2019).
However, these approaches are limited by the low number of
parameters that can be analyzed simultaneously. Accordingly,
high-dimensional approaches such as CyTOF and IMC may
hold great potential for immune-monitoring and clinical
diagnosis of cardiovascular diseases in the future. For
example, CyTOF may prove useful in the subclassification
of atherosclerosis or hypertension based on particular immune
cell subtypes in peripheral blood, offering more accurate
diagnosis and therapy.

Single-cell techniques are undeniably useful at identifying
new therapeutic targets, which may be masked at conventional
resolution. For instance, with CyTOF, Taverna J.A. et al.
(2020) have proposed that combined inhibition of AXL and
JAK1 may be a new therapeutic target for lung tumor.
Currently, anti-hypertension therapies rely on suppressing
the overactivated sympathetic nervous system and renin-
angiotensin-aldosterone system. However, 10–30% hypertensive
patients still remain insensitive even to the combined use of
current anti-hypertensive medications (Cai and Calhoun, 2017).
Under these circumstances, the use of single-cell sequencing
may detect disease-specific cell subpopulations or cellular
interactions that are crucial to disease pathogenesis, and thus
may entirely circumvent therapy resistance. Alternatively, a
comparative study of responsive versus non-responsive patients
may help identify the molecular targets that confer resistance,
with which one could devise an adjuvant therapy that increases
treatment sensitivity.

CONCLUSION

In the past few years, the field of single-cell biology has
witnessed the rapid development of many single-cell omics
techniques that are aimed to dissect all possible levels of
cell biology. Their combinations have already yielded much
insight into the spatial distribution and cellular heterogeneity
of human fetal hearts at different stages, and the dynamic
changes of gene expression patterns in cardiovascular diseases.
Yet this comes with exponentially increasing challenges for data
scientists. While Seurat v3 (Welch et al., 2019) and LIGER
(Stuart et al., 2019) already perform reasonably well at integrating
multiple data modalities, newer algorithms that better cope with
single-cell multimodal data will be continuously sought after.
Successful examples include Multi-Omics Factor Analysis v2
(MOFA+) (Argelaguet et al., 2020) and BIOMEX (Taverna F.
et al., 2020), amongst others. Viewing the current trends in
single-cell technology development, it seems possible that more
advanced single-cell multi-omic techniques that capture spatial
or in situ real-time information are next in line. Such techniques
would be enormously useful at deciphering organ physiology
and pathology. From a translational perspective, as single-cell
techniques become increasingly widespread and ‘down-to-
earth,’ one can envision them integrated into the diagnosis
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of certain cardiovascular diseases that are difficult to classify
based on current knowledge. One such example could be dilated
cardiomyopathy. Currently, dilated cardiomyopathy is one of the
most complicated cardiac diseases. While clinical manifestations
are relatively clear-cut, their etiologies, as well as cellular
compositions and arrangements, can differ wildly from patient to
patient. Application of single-cell genomics and transcriptomics
may help trace down the genetic origin of the disease, while
spatially resolved protein expression may aid in the classification
of disease phenotype to facilitate implementation of precision
medicine. With these tools at hand, single-cell approaches are
expected to renew our knowledge of cardiovascular biology and
diseases, and advance precision medicine and decision-making in
the clinic in the foreseeable future.
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