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There are a lot of bacteria in the environment, and Gram-positive bacteria are the most common ones. Some Gram-positive
bacteria are very harmful to the human body, so it is significant to predict Gram-positive bacterial protein subcellular location.
And identification of Gram-positive bacterial protein subcellular location is important for developing effective drugs. In this
paper, a new Gram-positive bacterial protein subcellular location dataset was established. The amino acid composition, the gene
ontology annotation information, the hydropathy dipeptide composition information, the amino acid dipeptide composition
information, and the autocovariance average chemical shift information were selected as characteristic parameters, then these
parameters were combined. The locations of Gram-positive bacterial proteins were predicted by the Support Vector Machine
(SVM) algorithm, and the overall accuracy (OA) reached 86.1% under the Jackknife test. The overall accuracy (OA) in our
predictive model was higher than those in existing methods. This improved method may be helpful for protein function prediction.

1. Introduction

The cell is the most basic unit of life, and it contains many
protein molecules. When a protein is in the right subcellular
position, it can perform the right function [1]. So, studying
protein subcellular location can help us better understand
the biological function of proteins at the cellular level. In
the postgenetic era, the amount of biological information
has grown rapidly and the traditional experimental method
became time-consuming and exhausting. So, the prediction
of protein subcellular location based on the machine
method has gradually become a hot research topic in bioin-
formatics [2–7].

Gram-positive bacteria are those that retain their original
blue-violet color after being stained by Gram staining. Gram-
positive bacteria exist widely in the human body, and they are
harmful to the environment and human health. So, it is
important to study the protein subcellular location of
Gram-positive bacteria. There are a few researches on the
protein subcellular location of Gram-positive bacteria. In

2007, Shen and Chou [8] established a Gram-positive bacte-
ria dataset of five categories. They used the GO-PseAA
discrete model and the Fusion OET-KNN method, and the
overall success accuracy was 82.7% with the Jackknife test.
In 2009, Shen and Chou [9] rebuilt the Gram-positive bacte-
ria dataset with four categories: cell wall, cell membrane,
cytoplasm, and extracell. The feature of gene ontology infor-
mation and functional domain information were extracted,
and the total success accuracy reached 82.2% with the Jack-
knife test. In 2012, the total success accuracy was 85.9% for
the GP25 dataset constructed by Hu et al. [10]. In the 9th
international conference on electrical and computer engi-
neering, Rahman et al. [11] proposed two hybrid features,
AACPPM and PAACPPM, which combined PPM with
AAC and PseAAC, respectively. The accuracy of both
AACPPM and PAACPPM were 73.2%. In 2017, Xiao et al.
[12] took advantage of the dataset established by Shen and
Chou in 2009 and applied the new algorithm, and a better
result was obtained. In 2018, Xiao et al. [13] developed a
new bias-reducing predictor. The results showed that this
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predictor was very helpful in predicting the training dataset.
In this paper, we reconstructed the Gram-positive

bacterial protein subcellular location dataset. The amino acid
composition information [14], the amino acid dipeptide
composition information [15, 16], the gene ontology [17]
annotation information, the hydropathy dipeptide [18] com-
position information, and the autocovariance average chem-
ical shift [19] information were selected as characteristic
parameters, then these parameters were combined. Finally,
the overall accuracy in the Jackknife test was 86.1% by using
the combined parameter AAC+DC+hpDC for the Support
Vector Machine.

2. Materials and Methods

2.1. Dataset. In order to collect as much desired information
as possible while ensuring a high quality for the dataset, the
protein sequences were collected from the Swiss-Prot [20]
database at http://www.uniprot.org/. The dataset was estab-
lished in strict accordance with the following criteria: (1)
We conducted a search for all protein sequences with “acti-
nobacteria” and “firmicutes” in the OC firmicutes from the
UniProtKB/Swiss-Prot database. (2) Different locations of
the protein in the “Subcellular Location” annotation were
selected, and the ambiguous or uncertain terms, such as
“By similarity” and “Probably” were removed. (3) The pro-
tein sequence of 50 aa-3000 aa in the “Sequence” information
were selected. (4) Sequences annotated by two or more loca-
tions were not included. (5) Sequences annotated with “frag-
ment,” “B,” “X,” and “Z” were excluded. (6) To avoid any
homology bias, the software CD-HIT [21] was used to win-
now those sequences which have ≥25% sequence identity to
any other sequence in the same subcellular location.

After completing the above steps, we obtained 700 Gram-
positive proteins, and the specific distribution is shown in
Table 1.

2.2. Amino Acid Composition (AAC). The sequence informa-
tion of proteins is the most basic feature information of all
characteristic parameters [22]. The protein sequence consists
of 20 amino acids (A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,
T, V, W, and Y). The feature of the occurrence frequency of
the 20 amino acids in the protein is important. So, the occur-
rence frequency of the 20 amino acids in the protein
sequence can be selected as one of the characteristic parame-
ters. The amino acid composition can be expressed as a 20-
dimensional feature vector:

AAC = f1, f2, f3,⋯f20½ �T , ð1Þ

where f i = ðni/LÞði = 1, 2,⋯, 20Þ, ni is the occurrence
number of the 20 native amino acids of the protein, L is the
length of the protein, and T is the transpose operator.

2.3. Dipeptide Composition (DC).One of the main drawbacks
of the amino acid composition is that it only emphasizes on
overall sequence information but ignores the sequence order
information. In order to make full use of the sequence infor-
mation of amino acids, we proposed using the amino acid

dipeptide composition information. The amino acid dipep-
tide information is an improvement based on the AAC
parameter, and it denotes the frequency of two adjacent
amino acids in a 400-dimensional vector [23–25]. The dipep-
tide composition can be formulated as follows:

DC = d1 ⋯ di ⋯ d400½ �T , ð2Þ

where diði = 1, 2⋯ 400Þ is the absolute occurrence fre-
quencies of the 400 dipeptides and calculated by

di = ni/L − 1ð Þ, ð3Þ

where ni is the occurrence number of the 400 dipeptides of
the protein and L is the length of the protein.

2.4. Gene Ontology (GO). Gene ontology is a directed acyclic
graph ontology widely used in bioinformatics, and gene
ontology consists of three parts: biological process (P),
molecular function (F), and cellular component (C). In the
gene ontology database, we found that each AC number
has a corresponding GO identification number: XXXXXXX.
In this paper, since cellular component (C) contains the loca-
tion information of a protein, in order to ensure the accuracy
of the prediction, only biological process (P) and molecular
function (F) were extracted.

The specific steps are as follows:

Step 1. The “Text” documents of all protein sequences were
downloaded in Swiss-Port, and the annotation information
of all biological processes (P) and molecular functions (F)
was extracted.

Step 2. BLAST [26] was used to find homologous sequences
of biological process (P) and molecular function (F) without
annotation information. The homology threshold was set to
60%, and the E value was set to 0.001.

Step 3. The frequency of occurrence of each GO term was cal-
culated:

f = Ni
x

Nx
, ð4Þ

where Ni
x denotes the frequency of the ith GO terms at the x

position of Gram-positive bacteria and Nx is the total

Table 1: Dataset of Gram-positive bacteria subcellular location
proteins.

Subcellular location Number of proteins

Cell wall 22

Extracell 214

Cytoplasm 252

Cell membrane 212

Total 700
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number of amino acid sequences at the x position of Gram-
positive bacteria. A threshold valueTwas set; when f > T ,
the corresponding GO terms were retained.

Step 4. The GO terms of all target sequences were integrated
and repeated, then 2573 GO terms were acquired. Finally, the
2573 GO terms were integrated into one vector, PGO:

PGO = ψ1, ψ2,⋯ψn,⋯ψ2573f g, ð5Þ

where ψn is 0 or 1, and the GO number with the correspond-
ing location information of the proteins was set to 1; other-
wise, it was 0.

2.5. Autocovariance Average Chemical Shifts (acACS). The
most important issue is how to extract features from primary
sequences of a protein in a predictor. Hence, the acACS [27,
28] algorithm that uses simple secondary structure informa-
tion to represent the sample of a protein was proposed. The
average chemical shift of a protein is closely related to the
protein’s secondary structure [29] and the function of this
protein. The secondary structure of the protein sequence
(C, H, and E) was obtained by submitting the protein
sequence to the PSIPRED (http://bioinf.cs.ucl.ac.uk/
psipred/) online tool, and then the secondary structure was
submitted to Fan et al.’s [30] average chemical shift service
website acACS (http://wlxy.imu.edu.cn/college/biostation/
fuwu/acACS/index.asp) to obtain the results of the chemical
shifts. For a protein P

P = j1, j2 ⋯ ji ⋯ jL½ �, ð6Þ

where L means the length of the protein sequence P and j is
the 20 amino acid residues; thus, P can be expressed as
follows:

Pi
acACS = ψi 0ð Þ, ψi 1ð Þ, ψi 2ð Þ,⋯,ψi λð Þ� �

,  i = 15N, 13Cα,
1Hα,

1HN ,  0 < λ < L
� �

,

ð7Þ

where ψiðλÞ represents the correlation factor of the average
chemical shift for jl with the average chemical shift for jl+λ
along the protein sequence. The factor λð0 < λ < LÞ means
the rank of correlation. The factor i can be represented in a
different composition of 15N, 13Cα,

1Hα, and
1HN . In order

to obtain the best accuracy, an appropriate number factor λ
and the best combination mode i were selected to predict
the results.

2.6. Hydropathy Dipeptide Composition (hpDC). Hydropathy
dipeptide composition is based on the improvement of
hydrophilic and hydrophobic proteins. Firstly, 20 kinds of
amino acids were divided into 6 categories [31] according
to the hydrophilic and hydrophobic standards, namely,
strong hydrophilic amino acids (H), strong hydrophobic
amino acids (L), weak hydrophilic amino acids or weak
hydrophobic amino acids (W), and three types of proline
(P), glycine (G), and cysteine (C) with special chemical struc-
tures. Hydrophilic and hydrophobic dipeptide composition

is a discrete method that uses protein sequence representa-
tion, and it can be represented as a 36-dimensional vector:

PhpDC = q1 ⋯ qi ⋯ q36½ �T , ð8Þ

where qi = ðni/L − 1Þ ði = 1, 2⋯ 36Þ represents the occur-
rence frequencies of the 36 hydropathy dipeptides, while
ni denotes the occurrence number of the 36 hydropathy
dipeptides of the protein and L is the length of the
protein.

2.7. Support Vector Machine (SVM). The Support Vector
Machine is a machine learning method to solve classification
and regression problems based on statistical principles. The
SVM model is a representation of the examples as points in
space, mapped by a kernel function so that the examples
are divided by a clear gap that is wide enough. The new
examples are mapped into the same space and predicted
according to which side of the gap they fall on. The radial
basis kernel function (RBF) was used to obtain the best clas-
sification hyperplane. The regularization parameter C and
the kernel width parameter γ were tuned via the grid search
method. So far, the risk minimization of the SVM algorithm
has become the latest research hotspot and it has been suc-
cessfully applied to various fields [32–38], especially in the
field of biological computing, such as in the prediction of
protein sequence structure and in the classification of protein
structure [28, 39–46]. In this paper, the LIBSVM algorithm
has been used to predict various feature information, which
can be downloaded from http://www.csie.ntu.edu.tw/cjlin/
libsvm/.

3. Results

3.1. Cross-Validation. In statistical prediction, three test
methods of prediction accuracy are used: the Jackknife test,
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Figure 1: Predictive results with respect to the correlation factor λ
of the acACS based on the Jackknife test. The best results obtained
with λ = 40.
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thek-fold cross-validation test, and the independent test [8,
47–53]. In this paper, a strict and objective method for the
Jackknife test was adopted to examine the performance of
the proposed model. The principle of the Jackknife test is to
select one from among all protein sequences as a testing set

and the other remaining sequences as a training set until all
protein sequences are recycled once.

3.2. Evaluation of the Predictive Performances. In order to
evaluate the performance of related predictive methods and
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Figure 2: The combination scheme of chemical shifts. The number 1 denotes 1Hα, 2 denotes
1HN , 3 denotes

15N, and 4 denotes13Cα.

Table 2: The predictive results based on the different information parameters in the Jackknife test.

Features
Location

OA (%)
Cell wall Extracell Cytoplasm Cell membrane

AAC

Sn (%) 13.64 74.30 70.64 85.85

74.6%
Sp (%) 99.85 84.77 88.62 89.34

MCC 0.31 0.58 0.61 0.73

ACC (%) 96.71 81.57 82.14 88.29

DC

Sn (%) 0.00 70.09 70.24 84.91

72.4%
Sp (%) 99.85 84.57 86.34 88.53

MCC -0.01 0.54 0.57 0.71

ACC (%) 96.71 80.14 80.57 88.53

GO

Sn (%) 0.00 75.23 71.03 66.98

68.9%
Sp (%) 99.71 86.63 82.14 85.45

MCC -0.01 0.61 0.53 0.52

ACC (%) 96.57 83.14 78.14 79.86

acACS

Sn (%) 0.00 66.36 70.24 73.11

67.7%
Sp (%) 99.95 83.13 80.36 88.53

MCC -0.01 0.49 0.50 0.62

ACC (%) 96.85 78.00 76.71 83.86

hpDC

Sn (%) 0.00 73.82 76.59 76.42

73.3%
Sp (%) 99.85 86.01 82.81 91.60

MCC 0.07 0.59 0.59 0.69

ACC (%) 96.71 82.3 80.57 87.00
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the reliability of the algorithm, the sensitivity (Sn), specificity
(Sp), accuracy (ACC), Matthew’s correlation coefficient
(MCC), and overall accuracy (OA) [54–59] were used and
defined by

Sn =
TP

TP + FNð Þ ,

Sp =
TN

TN + FPð Þ ,

ACC =
TP + TNð Þ

TP + TN + FP + FNð Þ ,

MCC =
TP × TNð Þ − FP × FNð Þ

TP + FNð Þ × TN + FNð Þ × TP + FPð Þ × TN + FPð Þ ,

OA = 〠
4

i=1

TPi
N

,

ð9Þ

whereN is the total number of protein sequences in the data-
set, TP represents the numbers of the correctly recognized
positives, FN is the numbers of the positives recognized as
negatives, FP means the numbers of the negatives recognized
as positives, while TN is the numbers of correctly recognized
negatives.

3.3. The Prediction of Gram-Positive Bacteria. In this paper,
in order to investigate the effectiveness of our approaches,
we have used five feature extraction strategies and the SVM
is used as classification algorithm.

The autocovariance average chemical shift (acACS) vec-
tors were formed based on protein sequence, and in order
to obtain the best prediction results, we need to find the best
chemically shifted atom combination and the best parameter
λ. Figure 1 shows that the predicted results for λ ranges from
0 to 56, and the best λ is 40. Figure 2 shows that the predic-
tion result was the best when the combination mode of
chemically shifted atoms was 1Hα + 15N + 13Cα. For gene
ontology information, the first 2573-dimensional vector

Table 3: The predictive results based on the hybrid information in the Jackknife test.

Features
Location

OA (%)
Cell wall Extracell Cytoplasm Cell membrane

AAC+GO

Sn (%) 9.09 87.85 76.59 86.79

81.0%
Sp (%) 99.56 89.10 92.86 90.78

MCC 0.18 0.75 0.71 0.76

ACC (%) 96.71 88.71 87.00 89.57

AAC+hpDC

Sn (%) 40.91 83.18 83.33 89.60

83.9%
Sp (%) 99.26 90.74 91.96 94.50

MCC 0.50 0.74 0.78 0.74

ACC (%) 97.14 87.26 88.94 89.24

AAC+GO+acACS

Sn (%) 22.73 85.51 81.35 86.79

82.4%
Sp (%) 99.56 90.74 91.74 92.21

MCC 0.37 0.75 0.74 0.78

ACC (%) 97.14 89.14 88.00 90.57

AAC+DC+hpDC

Sn (%) 40.91 86.92 87.30 88.68

86.1%
Sp (%) 99.71 91.15 92.86 93.65

MCC 0.49 0.77 0.77 0.82

ACC (%) 97.57 89.96 89.57 92.14

AAC+GO+acACS+hpDC

Sn (%) 22.73 83.65 86.51 85.85

83.4%
Sp (%) 99.56 90.71 90.63 94.67

MCC 0.37 0.73 0.77 0.81

ACC (%) 97.14 88.57 89.14 92.00

AAC+DC+GO+hpDC

Sn (%) 36.36 83.18 82.54 91.98

84.1%
Sp (%) 99.41 88.86 92.86 93.24

MCC 0.48 0.74 0.76 0.84

ACC (%) 97.43 88.86 89.14 92.86

AAC+DC+GO+acACS+hpDC

Sn (%) 22.27 84.11 84.13 90.09

84.1%
Sp (%) 99.71 90.95 92.86 93.24

MCC 0.44 0.74 0.78 0.82

ACC (%) 97.43 88.86 89.71 92.29
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was obtained. Since the redundancy of data has a detrimental
effect on the prediction results, we used the method of
principal component analysis to reduce the vector to 854
dimensions. First of all, the 2573 GO terms were integrated
into one vector, then the frequency of each GO term was
counted. According to the sum of frequencies, the first 854
data was selected.

The predicted results by the Jackknife test for the differ-
ent information parameters are recorded in Table 2, and
the predicted results based on the combined parameter infor-
mation with the Jackknife test are shown in Table 3. The
results showed that the combined parameters were better
than a single characteristic parameter. And the combined
parameter AAC+DC+hpDC obtained the best accuracy
which was 86.1%. The results indicated that the combined
parameter was helpful to predict the protein subcellular loca-
tion of Gram-positive bacteria. The reason that the accura-
cies of AAC+GO+acACS+hpDC, AAC+DC+GO+hpDC,
and AAC+DC+GO+acACS+hpDC were lower than AAC
+DC+hpDC was probably due to the redundancy of data.

4. Discussion

For the purpose of comparing the predictive capability of our
method, the predicted results of Shen’s, Hu’s, and Julia Rah-
man’s method are enumerated in Table 4. It can be seen from
Table 4 that our results were superior to others. The accuracy
of our method was 3.4% higher than Shen’s first work, 3.9%
higher than Shen’s second work, 0.2% higher than Hu’s work,
and 12.9% higher than Julia Rahman’s work.

Gram-positive bacteria exist widely in nature and could
cause many diseases, so studying Gram-positive bacteria
subcellular location could solve the many problems of dis-
ease. In this paper, the dataset of protein subcellular location
of Gram-positive bacteria was reconstructed, and the subcel-
lular location of Gram-positive bacterial protein was pre-
dicted. The method in this paper had the advantages of a
simple algorithm and an automatic process. The results
showed that the combined parameter can improve the pre-
diction accuracy of protein subcellular location of Gram-
positive bacteria.

The protein data used to support the findings of this study
are included within the supplementary information file.
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