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Abstract: Fraxinus species belongs to the Oleaceae family, commonly known as Ash tree, and
has been utilized as a folk medicine with various medicinal properties, including anti-obesity
activity. The goal of the present study was to establish quality control parameters using microscopic
characterization, phytochemical differentiation, and anti-lipase activity evaluation of five Fraxinus
plants in Korea. Microscopic evaluation of the lower surface, petiole, and midrib of leaves, and stem
bark showed discriminative anatomical characteristics, such as the stomatal index of the lower leaf
surface; the number of sclerenchyma cells, and the diameter of parenchyma cells in the petiole and
midrib; and the cork cell size and fiber frequency in the stem bark. Phytochemical analysis using
high-performance liquid chromatography revealed the significant variation in the chemical profiles
of the 12 major secondary metabolites among the samples. The orthogonal projections to latent
structure-discrimination analysis efficiently differentiated each group belonging to each Fraxinus
plant with the anatomical and quantification data. F. rhynchophylla and ligstroside showed the most
potent anti-lipase activity among the plants and the 12 major metabolites, respectively. These findings
could serve as the scientific criteria for the appropriate identification and establishment of standards
for the use of Fraxinus species as medicinal plants.
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1. Introduction

The genus Fraxinus belongs to the Oleaceae family, members of which are commonly known as Ash
trees, which consist of 43 species, and are widely distributed throughout North America, Europe, and
eastern and western Asia [1–4]. This genus is monophyletic and distinctive in the Oleaceae family by
mostly having comparatively large imparipinnate leaves and one-seeded samaras [5]. Four species and
one variety of the Fraxinus genus can be found in Korea: Fraxinus chiisanensis Nakai (FC), F. mandshurica
Rupr. (FM), F. rhynchophylla Hance (FR), F. sieboldiana Blume (FS), and F. sieboldiana var. angustata
Blume (FSV) [6]. Fraxinus species have been used as folk medicine in various places worldwide for
their diuretic and mild laxative effects as well as for treating inflammation, constipation, arthritis pain,
itching, and cystitis, etc. [7]. A traditional oriental drug called “Qin pi” (Cortex Fraxini) is defined as
dried bark of the stem or branches of the Korean ash tree, F. rhynchophylla (Mul-pu-re-na-mu), which
is used as a diuretic, analgesic, astringent, antirheumatic, and antiphlogistic agent [8,9]. The dried
bark of FM is sold as an alternative for Cortex Fraxini and is widely used in China, South Korea, and
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Japan [10,11]. The leaf extract of FM is an immunosuppressant that has been found to act via the
inhibition of IL-2 and IgE production in mouse spleen cells and U266 cells [10].

A series of chemical constituents, including coumarins, secoiridoids, phenylethanoids, lignans,
and flavonoids have been isolated from Fraxinus species [12]. Notably, several bioactive compounds
have been identified in Fraxinus species that possess anticancer, anti-inflammatory, immunomodulatory,
antioxidant, anti-obesity, anti-microbial, neuroprotective, hepatoprotective, anti-hypertensive,
anti-aging, and anti-allergic activities [13,14].

Using only a single method, identification of plants can be challenging if the samples are from an
area of sympatry in which interspecific hybridization may occur, or because of misidentification or
mislabeling in arboreta or herbaria, or synonymy of taxa. Therefore, it is necessary to determine the
exact botanical origin to get the correct biological effect. There are several authentication methods in
order to identify the plant products for quality and safety confirmation, and all analytical methods are
complementary to each other. Microscopic observation is exceptionally valuable for the evaluation of
dried plant materials whose characteristics can be altered from that of the fresh state. Moreover, it has
the benefit of low instrumental and effective costs, and has been strictly applied in the established
Pharmacopoeia [15–18]. Chemical analysis of crushed samples or extracts through high-performance
liquid chromatography (HPLC) or thin-layer chromatography are reliable and excellent methods for
the authentication of medicinal plant species and their products, particularly when morphological
authentication is not possible. Nevertheless, it can be a difficult task to unequivocally identify all peaks
in the chromatograms using HPLC with retention times, spectra, and multiple internal standards [19].
Molecular techniques are convenient, highly specific, relatively quick, and straightforward processes,
but they are expensive and require special training or experience [20]. Although outer morphological
and phylogenetical analyses of Fraxinus spp. have been reported, there is no organized analysis of the
comparative inner morphological study and the quantification of chemical constituents, for which the
identification of the botanical origin of Fraxinus spp. has been assessed.

Meanwhile, FR and its isolated compounds were reported to possess anti-obesity characteristics
via inhibition of pancreatic lipase [21,22]. Pancreatic lipase is the major enzyme that converts ingested
triglycerides to fatty acids, and as such decreases fat absorption through pancreatic lipase inhibition
and can be useful to treat obesity [23,24]. Many countries have used medicinal plants as dietary
supplements for the controlling of body weight and, thus, natural inhibitors of pancreatic lipase could
be potential candidates to control obesity [25].

Therefore, this study was designed to use systematic microscopic observations and secondary
metabolite quantification through HPLC to establish the standard parameters for anatomical and
chemical differentiation of the four Fraxinus species and one variety that have been utilized as a folk
medicine in Korea. In addition, the goal of our study was to evaluate the anti-lipase activity of the five
Fraxinus plants.

2. Results

2.1. Anatomical Characteristics of the Leaf

Regarding the surface view of the leaf blade, the upper (adaxial) surface of leaves from all
samples showed highly similar anatomical features among the five plants. Taxonomically important
anatomical characteristics were only found on the lower surfaces of leaves. The epidermis consisted of
irregularly shaped cells with a sinuate pattern on the lower (abaxial) surface, which presented a few
number of unicellular trichomes. Nine to 11 epidermal cells were organized in a rosette around the
trichome bases (Figure 1a). Secretory glandular trichomes were observed on the lower surface of all
the samples. FSV had the highest number of glandular trichomes with the mean value of 7.0 ± 0.4 in a
500 × 500-µm2 area and the smallest diameter of glandular trichomes among the samples with the
value of 32.3 ± 1.5 µm (Table 1). Different number of epidermal cells were found among the samples.
FM and FSV displayed a greater number of epidermal cells with a mean value of 148.4 ± 12.5 and
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122.8 ± 8.2 in a 300 × 300-µm2 area, respectively, followed by those of FR, FS, and FC with values ranged
from 78.4 ± 11.3 to 98.5 ± 14.2 in the same area. The leaves of all samples were hypostomatic, and
anomocytic stomata were found only on the lower surface with varying number of stomata, stomatal
length and width, and stomatal index. FM exhibited the highest number of stomata with a mean value
of 33.9 ± 4.0 in a 300 × 300 µm2 followed by FSV, FR, FS, and FC with the values ranging from 11.7 ± 0.4
to 24.6 ± 3.0 in the same area. The largest stomata was exhibited by FC (37.5 ± 2.0 µm length and
26 ± 2.4 µm width), whereas FM had the smallest stomata (22.8 ± 0.6 µm length and 17.1 ± 0.5 µm
width). FM, FR, and FSV had a higher stomatal index than did the other two species, FC and FS
(Table 1) (Figure 1b).
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Figure 1. Photomicroscopic data of the leaf surface of five Fraxinus plants: (a) epidermal cells are
arranged in a rosette around trichome base on the lower surface (F. rhynchophylla) (×400). The black
bar means 100 µm; (b) photomicroscopic data of the lower surface of leaves from five plants (×1000).
Black bars mean 50 µm; gt, glandular trichome; st, stomata; tr, trichome; FC, Fraxinus chiisanensis; FM,
F. mandshurica; FR, F. rhynchophylla; FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.
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Table 1. Anatomical characteristics of the lower leaf surface of Fraxinus plants.

Parameters FC FM FR FS FSV

Number of glandular trichome (in 500 × 500 µm2) 1.7 ± 0.2c 2.4 ± 0.4b 2.5 ± 0.4b 3.6 ± 0.9b 7.0 ± 0.4a

Diameter of glandular trichome (µm) 41.1 ± 1.9a 42.8 ± 3.7a 36.3 ± 0.8b 42.3 ± 2.8a 32.3 ± 1.5c

Number of epidermal cells (in 300 × 300 µm2) 78.4 ± 11.3c 148.4 ± 12.5a 98.5 ± 14.2c 92.3 ± 4.8c 122.8 ± 8.2b

Number of stomata (in 300 × 300 µm2) 11.7 ± 0.4e 33.9 ± 4.0a 19.3 ± 1.8c 14.7 ± 1.3d 24.6 ± 3.0b

Stomatal length (µm) 37.5 ± 2.0a 22.8 ± 0.6c 33.4 ± 0.7b 34.7 ± 2.3ab 32.5 ± 1.6b

Stomatal width (µm) 26.0 ± 2.4a 17.1 ± 0.5b 23.9 ± 1.5a 24.2 ± 2.5a 25.0 ± 1.5a

Stomatal index 13.0 ± 1.1b 18.7 ± 1.5a 16.4 ± 1.8a 13.7 ± 1.3b 16.7 ± 0.9a

Values were expressed as the mean ± SD (n ≥ 9). The different upper letters in the same line indicate significant
differences (p < 0.05) among the samples. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla; FS,
F. sieboldiana; FSV, F. sieboldiana var. angustata.

2.2. Anatomical Characteristics of the Petiole

As shown in Figure 2a, the petiole comprised several anatomical elements: a cuticle, epidermis,
ground tissues of parenchyma, collenchyma, and sclerenchyma cells, conductive tissues of xylem and
phloem, starch grains, and parenchymatous pith etc. The petiole of almost all samples was oval-shaped
with a flat adaxial side and altered by two lateral wings, defining a wide and deep ditch. On the two
lateral wings of the adaxial portion, there were conductive tissues with a very few sclerenchyma cells
at the phloem periphery (Figure 2b). The epidermis had a single line of isodiametric cells with thin
cuticles, covered with various numbers of multicellular and rarely unicellular trichomes. FC and FR
exhibited larger epidermal cells at the adaxial portion than did other species. Two to three layers
of annular-type collenchyma cells in the cortex were observed beneath the epidermis in all samples.
FC had a lower ratio of cortex than did the other plants, with the mean value of 0.23 ± 0.03 µm (Table 2).
A larger diameter of parenchyma cells in both (adaxial and abaxial) portions occurred in FC with
the mean values of 35.3 ± 2.5 and 51.6 ± 4.6 µm, respectively. Sclerenchyma cells were observed
at the periphery of the phloem region for all samples with substantial variation. FSV exhibited the
highest number of sclerenchyma cells with a mean value of 80.3 ± 3.4 in an area of 300 × 300 µm2,
followed by FR with 70 ± 4.7 in the same area. FM and FS displayed similar numbers of sclerenchyma
cells with the mean values of 51 ± 3.2 and 54.9 ± 3.0, respectively, and FC had the lowest number of
sclerenchyma cells. The stele (phloem and xylem) was made up of numerous libero-ligneous fascicles
of collateral type and provided a ring of vascular bundles. Three different types of xylem vessels,
consisting of annular, spiral, and pitted vessels, were observed in all samples (Figure 2c). A thin-walled
parenchymatous pith region was located at the center of the stele. Moreover, considerable similarity
and dissimilarity was occurred in the diameter of parenchyma cells in the pith region. The parenchyma
cells of FC had the largest diameter of 81.3 ± 2.6 µm, whereas those of FS and FSV had the smallest
diameter in the range of 28.6–40.4 µm (Figure 2b) (Table 2).

Table 2. Anatomical characteristics of the petiole of Fraxinus plants.

Parameters FC FM FR FS FSV

Size of epidermal cell of adaxial portion
(length ×width, µm)

17.4 ± 1.3a

× 17.8 ± 1a
11.2 ± 1c

× 11.8 ± 1b
19.4 ± 2.3a

× 15.6 ± 1.7ab
13.8 ± 1.3b

× 12.4 ± 2.2b
12.9 ± 1b

× 11.6 ± 0.9b

Size of epidermal cell of abaxial portion
(length ×width, µm)

13.3 ± 1.4b
×

13.6 ± 1.6b
10.2 ± 1.0c

×

11.5 ± 1b
21.1 ± 2.3a

× 18.7 ± 3.5a
17.5 ± 1.9a

× 14.9 ± 1.0ab
13.6 ± 0.9b

× 12.4 ± 0.8b

Ratio of cortex thickness to radius in abaxial portion 0.23 ± 0.03b 0.29 ± 0.01a 0.30 ± 0.04a 0.28 ± 0.02a 0.27 ± 0.01a

Diameter of parenchyma cell of cortex
in adaxial portion (µm) 35.3 ± 2.5a 24.8 ± 1.9b 24.9 ± 2.0b 24.7 ± 1.5b 20.0 ± 0.4c

Diameter of parenchyma cell
in abaxial portion (µm) 51.6 ± 4.6a 42.5 ± 1.8b 40.4 ± 2.7b 33.4 ± 2.0c 27.7 ± 1.2d

Number of sclerenchyma cell
(in 300 × 300 µm2) 40.9 ± 5.3d 51.3 ± 3.2c 70.5 ± 4.7b 54.9 ± 3.0c 80.3 ± 3.4a

Diameter of parenchyma cell
in pith (µm) 81.3 ± 2.6a 54.3 ± 3.0b 54.5 ± 10.9b 37.7 ± 2.7c 30.9 ± 2.3d

Values were expressed as the mean ± SD (n ≥ 9). The different upper letters in the same line indicate significant
differences (p < 0.05) among the samples. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla; FS,
F. sieboldiana; FSV, F. sieboldiana var. angustata.
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Figure 2. Photomicroscopic data of the petiole from five Fraxinus plants: (a) anatomical elements of
petiole in transverse section (×200); (b) transverse section of the petiole of leaves from five Fraxinus
plants (×40); (c) different vessels of petiole in vertical section (×400). Black bars mean 100 µm; col,
collenchyma cell; cu, cuticle; ep, epidermis; par, parenchyma cell; ph, phloem; pt, pith; pv, pitted vessel;
s, starch grain; scl, sclerenchyma cell; sv, spiral vessel; vg, annular vessel; FC, Fraxinus chiisanensis; FM,
F. mandshurica; FR, F. rhynchophylla; FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.

2.3. Anatomical Characteristics of the Midrib

In the transverse section, the midrib was prominent on the abaxial side and the flat ditch was
noticeable on the adaxial side for all samples (Figure 3). The mesophyll was dorsiventral and consisted
of single or double-layered elongated palisade parenchyma on the upper side and multilayer of
lacunose (spongy) tissue on the lower side. The single-layered palisade parenchyma was exhibited
by the FC, FS, and FSV, whereas FM and FR had a double layer of that parenchyma. Unicellular,
multicellular, and rarely secretory trichomes were observed on the surface of the midrib in all samples.
The epidermis of the midrib was formed by a solo line of rectangular to squarish cells. FS and FSV had
smaller epidermal cell than did the others (Table 3). The number of sclerenchyma cells displayed a
substantial variation in the periphery of the phloem region for all samples. The highest number of
sclerenchyma cells was observed in FSV with a mean value of 114.8 ± 18.7 in 300 × 300 µm2, followed
by FS and FR with 75.5 ± 17.1 and 70.1 ± 6.5 in 300 × 300 µm2, respectively. FC had the lowest number
with a mean value of 38.6 ± 3.0 in 300 × 300 µm2. Large variation among the samples was found for
the diameter of parenchyma cells in the abaxial portion and pith region also. FC exhibited the largest
diameter of parenchyma cells in the abaxial portion and in the pith region with the mean values of
53.4 ± 2.5 µm and 75.7 ± 3.7 µm, respectively. The small diameters of parenchyma cells were found in
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the abaxial portion of FSV and FS, as well as in the pith region also. No significant differences were
found among the samples for the size of palisade cells and the palisade ratio (Figure 3) (Table 3).
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Figure 3. Transverse section of the midrib of leaves from four Fraxinus species and one variety (×40).
Black bars mean 100 µm; mes, mesophyll; md, midrib; tr, trichome; FC, Fraxinus chiisanensis; FM,
F. mandshurica; FR, F. rhynchophylla; FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.

Table 3. Anatomical characteristics of the midrib of Fraxinus plants.

Parameters FC FM FR FS FSV

Size of epidermal cell of adaxial portion
(length ×width, µm)

21.8 ± 1.5a

× 19.1 ± 1.6a
17.0 ± 2.5b

× 14.9 ± 0.3b
21.8 ± 4.0ab

× 16.6 ± 2.1ab
15.0 ± 1.1b

× 13.5 ± 1.6b
13.1 ± 0.4c

× 11.9 ± 0.9b

Size of epidermal cell of abaxial portion
(length ×width, µm)

13.6 ± 1.1ab

× 14.3 ± 1.0b
11.3 ± 1.8b

× 13.6 ± 1.4b
16.3 ± 2.0a

× 18.8 ± 2.4a
13.1 ± 1.0b

× 15.1 ± 2.2ab
12.4 ± 0.6b

× 13.2 ± 0.5b

Number of sclerenchyma cell (in 300 × 300 µm2) 38.6 ± 3.0c 52.7 ± 9.2b 70.1 ± 6.5b 75.5 ± 17.1b 114.8 ± 18.7a

Diameter of parenchyma cell in adaxial portion (µm) 28.4 ± 1.9a 23.8 ± 1.4ab 29.9 ± 5.4a 20.7 ± 2.3b 18.1 ± 0.8b

Diameter of parenchyma cell in abaxial portion (µm) 53.4 ± 2.5a 43.8 ± 1.2b 45.2 ± 2.4b 35.0 ± 2.7c 29.2 ± 0.7d

Diameter of parenchyma cell in pith (µm) 75.7 ± 3.7a 61.4 ± 4.4b 49.2 ± 4.1c 28.4 ± 4.0d 22.2 ± 3.5d

Size of palisade cell
(length ×width, µm)

48.6 ± 4.6a

× 17.4 ± 4.7a
44.3 ± 4.5ab

× 12.5 ± 0.4a
44.4 ± 6.4ab

× 14.2 ± 0.7a
46.2 ± 3.0a

× 14.4 ± 1.5a
40.8 ± 1.8b

× 12.5 ± 0.5a

Palisade ratio 1.7 ± 0.1b 2.0 ± 0.2a 1.9 ± 0.2ab 2.1 ± 0.2a 2.2 ± 0.2a

Values were expressed as the mean ± SD (n ≥ 9). The different upper letters in the same line indicate significant
differences (p < 0.05) among the samples. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla; FS,
F. sieboldiana; FSV, F. sieboldiana var. angustata.

2.4. Anatomical Characteristics of the Stem Bark

In the cross-section of stem bark, suberized cork layers occurred under the epidermis. Cork cells
were differed in size among the studied plants. The larger cork cells were observed in the FC, FM, and
FSV and the smallest cells were in the FR (Table 4). A number of parenchyma cells were observed in
the cortex zone as well as the periderm zone. Phloem fibers appeared in a single or grouped form
(Figure 4a). Considerable differences were observed in the number of phloem fibers. The highest
number of phloem fibers was exhibited by the FS with a mean value of 138.4 ± 3.5 in 500 × 500 µm2,
followed by FR with 123.0 ± 16.5 and FSV with 122.7 ± 4.2, respectively. FC and FM had the lowest
number of phloem fibers (Table 4). A clustered continuous line of sclereids was formed in the stem bark
of FM, FS, and FSV after the development of the parenchymatous cortex (Figure 4a). Brachysclereids
(stone cells) were exhibited by all samples, except FC (Figure 4b). They occurred singly or in groups or
patches in the cortex zone. Idioblastic sclereids appeared only in FM (Figure 4c). It was very difficult
to differentiate between axial parenchyma and ray parenchyma cells in phloem zone because the
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arrangement of cells was extremely disordered. Secondary phloem rays were uniseriate to multiseriate.
Uniseriate rays consisted of upright cells, whereas multiseriate rays had procumbent and square cells,
as well as upright cells forming one to three marginal rows (Figure 4a). FSV and FM had a higher
number of phloem rays, 4.8 ± 0.2 and 4.5 ± 0.5, respectively, than did the others. Although there were
no significant differences in the size of phloem rays, FC displayed the largest phloem rays among the
samples (Table 4).

Table 4. Anatomical characteristics of the stem bark of Fraxinus plants.

Parameters FC FM FR FS FSV

Size of cork cell (length ×width, µm) 21.2 ± 3.4ab

× 53.6 ± 4.9a
20.1 ± 4.8ab

× 40.0 ± 3.6b
13.6 ± 1.3b

× 33.1 ± 2.3c
16.2 ± 0.9b

× 36.8 ± 1.8bc
22.1 ± 1.1a

× 36.2 ± 1.6bc

Diameter of parenchyma cell
(in cortex length ×width, µm)

28.1 ± 2.0a

× 55.3 ± 2.2a
24.8 ± 1.4ab

× 44.5 ± 1.9b
24.5 ± 2.7ab

× 51.6 ± 1.5a
23.0 ± 1.2b

× 42.9 ± 2.5b
22.8 ± 0.7b

× 40.6 ± 1.7b

Number of phloem fiber (in 500 × 500 µm2) 83.7 ± 4.6c 85.4 ± 3.2c 123.0 ± 16.5ab 138.4 ± 3.5a 122.7 ± 4.2b

Number of phloem ray (in 500 × 500 µm2) 3.4 ± 0.3b 4.5 ± 0.5ab 3.3 ± 0.2b 3.6 ± 0.5b 4.8 ± 0.2a

Size of phloem ray (length ×width, µm) 40.5 ± 0.3a

× 21.1 ± 2.0a
34.8 ± 0.8b

× 15.0 ± 1.5b
34.5 ± 4.3ab

× 20.9 ± 1.2a
32.1 ± 4.5b

× 15.5 ± 2.1b
28.3 ± 0.4b

× 14.7 ± 0.4b

Values were expressed as the mean ± SD (n ≥ 9). The different upper letters in the same line indicate significant
differences (p < 0.05) among the samples. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla; FS,
F. sieboldiana; FSV, F. sieboldiana var. angustata.Plants 2020, 9, x FOR PEER REVIEW 8 of 19 
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Figure 4. Photomicroscopic data of the stem bark of Fraxinus plants: (a) transverse section of the
stem bark of four Fraxinus species and one variety (×40). Black bars mean 100 µm; (b) idioblastic; (c)
brachysclereids sclereids of F. mandshurica (×400). Black bars mean 100 µm; ck, cork; c, cortex; mr,
medullary ray; sp, secondary phloem; FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla;
FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.
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2.5. HPLC-DAD Profiles of Five Fraxinus Plants

The HPLC method was employed to quantify and compare the major chemical constituents
among the 100% methanol extracts of the stem bark of the four Fraxinus spp. and one variety collected
during summer and autumn seasons. Twelve major peaks (1–12) were detected gradually at the
retention times of 10.1, 13.4, 15.4, 15.9, 17.9, 21.1, 27.6, 28.6, 29.6, 30.8, 34.7, and 39.0 min (min) on HPLC
chromatograms (Figure 5a,b).Plants 2020, 9, x FOR PEER REVIEW 9 of 19 
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Figure 5. LC chromatograms of the extracts from the stem bark of five Fraxinus plants collected at
summer (a) and autumn (b) seasons. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla;
FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.

The chemical constituents consistent to major peaks were determined to be six coumarins of esculin
(1), isofraxidin-7-O-β-D-glucopyranoside (3), fraxin (4), mandshurin (5), fraxetin (6) and fraxinol (10);
three phenylethanoids of tyrosol (2), calceolarioside A (7), and calceolarioside B (8); two secoiridoids of
oleuropein (11) and ligstroside (12); and a lignan, pinoresinol-4′-O-β-D- glucopyranoside (9) (Figure 6)
(Figures S2–S37). These compounds have been isolated from the stem bark of F. mandshurica by our
previously reported methods and used for the quantification as external standards [26].

Different quantities of these constituents were determined among all sample extracts from five
Fraxinus plants collected during summer and autumn (Figure 5 and Table 5). Compounds 7 and 12
were detected in all extracts except that of FR from the autumn season, whereas compounds 1, 8, and
11 were detected in all extracts except FC from both seasons. In particular, FR, FS, and FSV exhibited
more than 10 times as much as contents of compound 1 than did FM. Higher contents of compound
4 in the range of 21.8 to 65.6 mg/g·dry weight (DW) occurred in FS and FSV for both seasons than
those of the others, ranging from 0 to 17.0 mg/g·DW. Among the 12 secondary metabolites, only two
compounds 7 and 12 were determined in FC. The content of compound 12 was the highest in FC
for both seasons, followed by that of FM. Compounds 2, 5, and 10 were detected only in FM with
the mean values from 0.03 to 0.67 mg/g·DW. The content of compound 9 was prominently high in
FM. Compound 3 was only found in FM with 2.39 ± 0.41 and 1.66 ± 0.14 mg/g·DW and in FR with
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0.23 ± 0.04 and 0.22 ± 0.01 mg/g·DW, respectively, for the summer and autumn seasons. In general, the
summer season stem bark showed the higher contents of individual compounds individually than did
those of the autumn season.
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Table 5. Contents of twelve compounds (1–12) in the stem bark of Fraxinus plants.

Compounds Season FC FM FR FS FSV

Esculin (1) Summer ND* 0.31 ± 0.04c 32.5 ± 2.4b 31.6 ± 2.5b 38.7 ± 3.1a

Autumn ND 0.24 ± 0.09c 24.8 ± 0.8a 28.8 ± 4.8a 20.8 ± 2.5b

Tyrosol (2) Summer ND 0.56 ± 0.11a ND ND ND
Autumn ND 0.48 ± 0.09a ND ND ND

Isofraxidin-7-O-β-D-
glucopyranoside (3)

Summer ND 2.39 ± 0.41a 0.23 ± 0.04b ND ND
Autumn ND 1.66 ± 0.14a 0.22 ± 0.01b ND ND

Fraxin (4) Summer ND 14.8 ± 2.2b 10.8 ± 1.4c 58.1 ± 3.9a 61.7 ± 3.9a

Autumn ND 8.32 ± 1.61c ND 37.0 ± 2.4a 24.8 ± 3.0b

Mandshurin (5) Summer ND 20.6 ± 0.7a ND ND ND
Autumn ND 10.2 ± 0.5a ND ND ND

Fraxetin (6) Summer ND 0.27 ± 0.03b 0.08 ± 0.00c 1.39 ± 0.12a 1.53 ± 0.15a

Autumn ND 0.26 ± 0.01a ND ND ND

Calceolarioside A (7) Summer 10.9 ± 1.0b 4.26 ± 1.50c 2.23 ± 0.42d 13.5 ± 1.2a 10.7 ± 0.4b

Autumn 7.44 ± 1.23a 1.96 ± 0.27c ND 7.69 ± 1.42a 2.72 ± 0.53b

Calceolarioside B (8) Summer ND 30.4 ± 2.9a 10.3 ± 0.7b 10.6 ± 1.0b 9.11 ± 1.32b

Autumn ND 9.94 ± 1.45a 4.04 ± 0.27b 8.90 ± 1.74a 7.91 ± 1.13a

Pinoresinol-4′-O-β-D-
glucopyranoside (9)

Summer ND 12.1 ± 0.4a 0.62 ± 0.17d 1.74 ± 0.06b 0.82 ± 0.05c

Autumn ND 9.74 ± 0.56a 0.61 ± 0.06c 0.77 ± 0.04b 0.24 ± 0.00d

Fraxinol (10) Summer ND 0.53 ± 0.05a ND ND ND
Autumn ND 0.47 ± 0.02a ND ND ND

Oleuropein (11) Summer ND 16.9 ± 0.4a 10.2 ± 2.0b 5.34 ± 0.99d 6.77 ± 0.25c

Autumn ND 6.98 ± 0.32a 5.10 ± 0.97b 2.97 ± 0.59c 6.26 ± 0.95ab

Ligstroside (12) Summer 27.9 ± 1.8a 15.5 ± 0.9b 2.11 ± 0.41c 2.74 ± 0.47c 1.97 ± 0.22cd

Autumn 23.9 ± 0.8a 14.7 ± 0.7b ND 2.51 ± 0.50c 1.80 ± 0.31c

Total coumarins
Summer ND 38.9 ± 3.4c 43.6 ± 3.8c 91.1 ± 6.5b 101.9 ± 7.2a

Autumn ND 21.2 ± 2.3d 25.5 ± 0.8c 65.8 ± 7.2a 45.5 ± 5.5b

Total phenylethanoids Summer 10.9 ± 1.0d 35.3 ± 4.5a 12.5 ± 1.1d 24.1 ± 2.2b 19.8 ± 1.7c

Autumn 7.44 ± 1.23c 12.4 ± 1.7b 4.04 ± 0.27d 16.6 ± 3.2a 10.6 ± 1.7bc

Total secoiridoids
Summer 27.9 ± 1.8b 32.4 ± 1.3a 12.3 ± 2.4c 8.08 ± 1.46d 8.74 ± 0.47d

Autumn 23.9 ± 0.8a 21.7 ± 1.0b 5.08 ± 0.97d 5.48 ± 1.09d 8.06 ± 1.26c

Total
Summer 38.8 ± 2.8c 118.6 ± 9.6a 69.1 ± 7.5b 125.0 ± 10.2a 131.3 ± 9.4a

Autumn 31.3 ± 2.0c 65.0 ± 5.7b 34.8 ± 2.1c 88.6 ± 11.5a 64.5 ± 8.4b

Data were expressed as mean ± SD (mg/g dry weight) (n = 4). Different upper letters in the same line indicate
significant differences (p < 0.05) among samples. FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla;
FS, F. sieboldiana; FSV, F. sieboldiana var. angustata. *ND, not detected.
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2.6. Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) Multivariate
Statistical Analysis

A multivariate analytical approach was chosen to evaluate and characterize anatomical and
phytochemical differences and similarities among the four Fraxinus species and one variety. OPLS-DA
multivariate statistical analysis was applied to the anatomical data of leaves and stem bark, and to
HPLC quantification data of the 12 major peaks (Figure 7). The anatomical data for leaves in the
OPLS-DA scores plot showed that the five separated groups were clustered but FR and FS were nearly
overlapped. Scores for FM and FC were clustered at a distance from other plant groups for factors, such
as the number, length, and width of the stomata of leaf lower surface, and the number of sclerenchyma
cells of midrib and petiole (Figure 7a). The OPLS-DA scores plot with the anatomical data of stem bark
decreased the distance of the FM group from the scores of other plant groups (Figure 7b). Application
of the OPLS-DA on the combined anatomical data from leaves and the stem bark showed a clearer
separation of each species and variety. No overlap was observed among the species and variety
(Figure 7c). Moreover, the multivariate statistical analysis efficiently discriminated and classified
into each group of Fraxinus species or variety when it combined HPLC quantification data with all
anatomical data from leaves and stem bark (Figure 7d). FM and FC were significantly separated from
the other three plants. FR, FS, and FSV appeared closer than the separated group in all cases. FR was
near to FS, and FS was near to FSV.
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Figure 7. Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA) multivariate
statistical analysis of four Fraxinus species and variety: (a) anatomical data of leaves; (b) anatomical
data of stem bark; (c) anatomical data of the leaves combined with anatomical data of stem bark;
(d) anatomical data of leaf and bark combined with HPLC quantification data. FC, Fraxinus chiisanensis;
FM, F. mandshurica; FR, F. rhynchophylla; FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.

2.7. Anti-lipase Activity

The pancreatic lipase inhibitory activity of the five Fraxinus plant extracts, fractions, and 12
compounds from the FM bark was determined. Porcine pancreatic lipase enzyme was used with
orlistat as a positive control and p-NPB as the substrate.
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FR exhibited the most potent anti-lipase activity among the five Fraxinus plants with a percent
inhibition of 46.7 ± 2.6%, followed by FM with 37.8 ± 1.3% inhibition at a concentration of 100 µg/mL
(Figure 8a). Among the fractions of FM, the EtOAc fr. exhibited the highest lipase inhibitory activity
with 44.2 ± 2.3% (Figure 8b).
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Figure 8. The anti-lipase activity of five Fraxinus plants and the fractions of FM: (a) percent lipase
inhibition of five Fraxinus plants collected at summer season at 100 µg/mL; (b) percent lipase inhibition
of total extract and five fractions from F. mandshurica bark at 100 µg/mL. Orlistat was used as a positive
control. Different letters indicate significant differences based on one-way ANOVA followed by Tukey’s
multiple comparison test (p < 0.05). FC, Fraxinus chiisanensis; FM, F. mandshurica; FR, F. rhynchophylla;
FS, F. sieboldiana; FSV, F. sieboldiana var. angustata.

Among the isolated compounds, ligstroside (12) had the most potent anti-lipase activity of
61.1 ± 1.7%, followed by calceolarioside B (8) (56.6 ± 0.9%) and calceolarioside A (7) (55.6 ± 2.3%)
at the concentration of 100 µM (Figure 9a). Mandshurin (5) and esculin (1) showed 40% to 50% of
inhibitory activity, while isofraxidin-7-O-β-D-glc (3), pinoresinol-4′-O-β-D-glc (9), tyrosol (2), fraxetin
(6), and fraxinol (10) exhibited 30 to 40% inhibition (Figure 9a). Fraxin (4) and oleuropein (11)
demonstrated weak inhibitory activity against the porcine lipase enzyme, which was less than 30% at
the same concentration. Calceolarioside A (7), calceolarioside B (8), and ligstroside (12) also showed a
dose-dependent pancreatic lipase inhibition at 25, 50, and 100 µM (Figure 9b).
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Figure 9. The anti-lipase activity of twelve compounds isolated from F. mandshurica: (a) percent lipase
inhibition of the isolated compounds from F. mandshurica bark at the concentration of 100 µM. Orlistat
was used as a positive control; (b) percent lipase inhibition of calceolarioside A and B, and ligstroside
at three concentrations of 25, 50 and 100 µM. Different letters indicate significant differences based on
one-way ANOVA followed by Tukey’s multiple comparison test (p < 0.05).



Plants 2020, 9, 534 12 of 18

3. Discussion

Authentication of plant resources, especially for medicinal plants, is an important issue when the
plant material is to be directly used for medical treatment. Several authentication methods have been
tried to identify the plant products for quality and safety [27]. They can help avoid mishaps because
of the misidentification of materials anywhere during the production process from the collection
of the raw material to the finished product. Therefore, in this study a systematically comparative
method was built for four Fraxinus species and one variety from Korea by microscopic observation and
HPLC profiling.

The results demonstrated similar and dissimilar anatomical characteristics of the leaves and
stem barks by the comparative microscopic observations. All studied samples were dorsiventral and
hypostomatic with an anomocytic type of stomata, but the number of stomata, stomatal size, and
stomatal index were different for each Fraxinus species and the variety. The lower surface of leaves
exhibited some useful parameters for distinguishing the studied samples. Although FC had the lowest
frequency of glandular scales, epidermis cells, and stomata on the lower surface of leaves, FM exhibited
the highest frequency of epidermis cells and stomata. FSV displayed the highest frequency of glandular
trichomes on the lower leaf surface and the highest number of sclerenchyma cells in the petiole and
midrib among the samples. Although single-layered palisade parenchyma cells of the midrib were
found in FC, FS, and FSV, double-layered palisade parenchyma cells were found in the FM and FR.
The number of phloem fiber in the stem bark of FR, FS, and FSV was much higher than in the stem
bark of FC and FM.

Secondary metabolite profiling revealed considerable differences in the content of 12 major
chemical constituents among the samples. While only two metabolites of calceolarioside A (7) and
ligstroside (12) were determined in FC, tyrosol (2), mandshurin (5), and fraxinol (10) were detected in
FM only. The contents of compounds 5 and compound 9 were prominent in FM. FC is an endemic tree
species, only found in southwestern Korea and this species was categorized by the IUCN (International
Union Conservation of Nature) red list as an endangered tree species [28–30]. In general, because
the outer morphology of FC and FM trees is quite similar, it is often misidentified in the local area.
However, they exhibited a much larger difference in their phytochemical profiles each other with
characteristic inner morphological aspects in this study. The content of a coumarin compound, esculin
(1) was much higher in FR, FS, and FSV than that of FM. A higher amount of another coumarin,
fraxin (4) was shown by the FSV and FS in both seasons, which could be used as a valuable marker to
distinguish them from the other three species. The total coumarin content was higher in FR, FS, and
FSV, while the total secoiridoid content was higher in FC and FM. The existence of hydroxycoumarins
and oleoside-type secoiridoids has been considered a typical feature of Fraxinus species [12]. The six
coumarins were not detected in FC from both seasons but the content of a secoiridoid ligstroside in FC
was the highest among the five Fraxinus plants. FS and FSV showed the highest total content of the 12
secondary metabolites, and followed by FM, FR, and FC in order. The content of secondary metabolites
with biological activity is important for the use of medicinal plants, and the content varies according to
seasons. The contents in plant bark is generally known to be higher in the bark collected in summer
than in autumn. The distribution of FS and FSV scores located near each other in the OPLS-DA plot
and created their groups, whereas scores of FS clustered between the FR and FSV. The scores for FM
were clustered at a significant distance from other plants in all plots, and FC was consistently in the
specific zone between the two plots in a separated group of OPLS-DA multivariate statistical analysis.
Finally, our OPLS-DA multivariate statistical analysis successfully differentiated and classified each
group of Fraxinus species and variety with the combination of HPLC quantification data and all the
anatomical data for leaves and stem bark (Figure 6).

Because the occurrence of obesity remains high, the demand for effective and safe anti-obesity
drugs as well as natural products are increasing. Despite several medications that have been used for
the management of obesity over the years, most were withdrawn from the market due to serious adverse
effects [31–33]. The presence of secondary metabolites, such as secoiridoids, polyphenols, flavonoids,
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lignans, and saponins contributes to the inhibition of the pancreatic lipase enzyme [21–23,25,34]. Several
secoiridoids have been isolated from FR, which include bioactive hydroxyframoside B, ligstroside,
oleuropein, and 2′′-hydroxyoleuropein that possess anti-lipase activity in vitro [21]. A secoiridoid,
oleuropein and a phenylethanoid, tyrosol also exhibited the anti-obesity effects for HFD-induced-fed
mice [35,36]. Therefore, the anti-lipase activity of the stem bark of the five Fraxinus plants was employed
to evaluate the anti-obesity effect in vitro. The results revealed that the studied Fraxinus plants exhibited
the mild to moderate inhibitory effects against porcine pancreatic lipase. The EtOAc fraction of the stem
bark of FM exhibited the highest anti-lipase activity among the fractions. All 12 isolates from FM bark
showed the inhibitory potential against the lipase enzyme to some extent. Although the anti-lipase
activity of compounds 2, 9, 11, and 12 was previously reported, this is the first report on that of the
other isolated compounds [21,22,37]. A secoiridoid, ligstroside (12) showed the most potent anti-lipase
capacity among the 12 secondary metabolites, followed by two phenylethanoids of calceolarioside
A (7) and B (8). Meanwhile, another secoiridoid, oleuropein (11) with a catechol moiety, showed a
very weak inhibitory activity. Two phenylethanoid glucosides of compounds 7 and 8, both with one
caffeoyl moiety on an additional glucose group, showed more potent inhibitory activity than a simple
phenylethanoid, tyrosol (3). Compounds 7 and 8 showed no significant difference in the inhibitory
activity each other. The results suggest that a caffeoyl or a glucose moiety could play a role in the
inhibitory activity of the compounds, and the position of the caffeoyl moiety on the glucose would not
affect the activity. Phenylethanoid glycosides from Cistanche phelypaea displayed a certain inhibition
activity on monoacylglycerol lipase [38]. Among the six coumarins, mandshurin (5) with a glucose
moiety at the position 6 showed the most potent inhibitory activity, whereas fraxin (4) with the moiety
at the position 8 displayed weaker inhibitory activity than fraxetin (6) without glycosylation. A lignan,
pinoresinol-4′-O-β-D-glucopyranoside (9), also showed mild inhibitory activity.

4. Materials and Methods

4.1. Chemicals and Reagents

Glycerin (Junsei Chemical Co., Ltd.), Eau de Javel solution (Sigma, MN, USA), methylene
blue (Samchun Pure Chemical Co., Ltd.), and ethanol (Daejung Chemicals & Metals Co., Ltd.,
Korea.) were used for the making of anatomical sample specimen. HPLC grade solvents (Fisher
Scientific, Korea Ltd., Korea) were used in the HPLC analysis. Porcine pancreatic lipase (Type II),
orlistat, Tris-HCl, Tris-base, morpholinepropanesulfonic acid (MOPS), p-nitrophenyl butyrate (p-NPB),
and N,N-Dimethylformamide were purchased from Sigma-Aldrich Co. (St Louis, MO, USA).
Ethylenediaminetetraacetic acid (EDTA) was purchased from Yakuri Pure Chemical Co., Ltd. (Kyoto,
Japan) for measurement of pancreatic lipase activity assay. All reagents were biochemical reagent grade.

4.2. Plant Materials

Four Fraxinus species and one variety were collected from different geographic locations (Table 6)
in Korea from June 2016 to November 2019 during the summer and autumn seasons. The samples
were identified by Professor Mi-Jeong Ahn, College of Pharmacy, Gyeongsang National University,
and the voucher specimens (PGSC No. 560.1 – PGSC No. 564.15) (Figure S1) were deposited in the
herbarium of the College of Pharmacy, Gyeongsang National University.
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Table 6. A list of Fraxinus plants collected from Korea.

Botanical Name Collection Places
(Latitude, Longitude) Collection Year Specimen No. Abbreviations

Fraxinus chiisanensis Nakai

Sancheong
(35◦27′55.9′′N, 127◦56′06.7′′E)
(35◦27′55.4′′N, 127◦56′07.9′′E)
Jiri Mt.
(35◦14′58.8′′N, 127◦42′31.2′′E)
(35◦14′58.0′′N, 127◦42′29.8′′E)
Pocheon
(37◦45′07.1′′N, 127◦09′58.7′′E)

2016–2018 PGSC-560-1~7 FC

F. mandshurica Rupr.

Sancheong
(35◦14′00.1′′N, 127◦47′53.9′′E)
Jinju
(35◦10′53.3′′N, 128◦05′42.8′′E)
(35◦13′59.9"N, 127◦47′54.1′′E)
Pocheon
(37◦44′57.2′′N, 127◦09′55.7′′E)

2016–2018 PGSC-561-1~12 FM

F. rhynchophylla Hance

Jinju
(35◦10′53.1′′N, 128◦05′42.6′′E)
Jiri Mt.
(35◦15′02.1′′N, 127◦42′30.1′′E)
Youngwol
(37◦12′18.4′′N, 128◦26′05.3′′E)
Pocheon
(37◦45′10.2′′N, 127◦09′49.6′′E)

2016–2018 PGSC-562-1~20 FR

F. sieboldiana Blume

Jiri Mt.
(35◦14′54.5′′N, 127◦42′18.3′′E)
Miryang
(35◦34′06.6′′N, 128◦59′34.4′′E)
(35◦34′04.7′′N, 128◦59′34.9′′E)
Pocheon
(37◦45′11.9′′N, 127◦09′54.9′′E)

2016–2019 PGSC-563-1~15 FS

F. sieboldiana var.
angustata Blume

Jiri Mt.
(35◦14′53.7′′N, 127◦42′30.0′′E)
Miryang
(35◦34′05.2′′N, 128◦59′34.4′′E)
(35◦34′05.7′′N, 128◦59′31.8′′E)
Sancheong
(35◦17′46.8′′N, 127◦58′29.6′′E)
Pocheon
(37◦45′11.4′′N, 127◦09′56.2′′E)

2016–2019 PGSC-564-1~15 FSV

4.3. Anatomical Analysis

Approximately the same aged, healthy, and well-acclimatized samples (lower surface, petiole,
and midrib of the leaves, and stem bark) were obtained from the four Fraxinus spp. and one variety.
More than eight pieces of the leaf lower surface, middle part of the petiole and, the lower part of the
midrib were taken for the measurement. Transverse or vertical sections were made using a hand slicer.
Eau de Javel solution was used for bleaching samples. Properly prepared material was mounted in
glycerinated water (50%) on slide glass. The images were taken using a photomicroscope, Olympus
BX53 (Olympus, Japan) connected to a camera (PixeLINK, ON, Canada) with image processing software
(IMT i-Solution Inc., BC, Canada). More than 10 regions were measured for each photomicrograph,
and the mean value was chosen as the representative for a specimen. More than three specimens were
used to provide representative data for each plant.

4.4. Sample Preparation

Dried bark or leaves of collecting plants were crushed in a mixer separately. Two grams of
each sample was extracted thrice with 75 mL of 100% methanol under sonication for 90 min, each.
The extract was filtered with a filter paper (Whatman No. 2, USA). The final volume was adjusted
to 75 mL with 100% methanol and filtered through a 0.45 µm PTFE syringe filter (Whatman, New
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York, NY, USA) before HPLC analysis. The filtrate was dried under a stream of N2 gas and then used
in pancreatic lipase assay. The air-dried bark of FM (960 g) was ground and extracted in sonication
with 100% methanol. The extract was filtered and concentrated in vacuo. The resulting crude extract
(187 g) was suspended in water and fractionated with n-hexane, dichloromethane, ethyl acetate and
n-butanol, successively to yield n-hexane fr. (6.4%, w/w), CH2Cl2 fr. (3.2%), EtOAc fr. (32.1%), n-BuOH
fr. (47.1%), and aqueous fr. (7.5%) fractions, respectively [26].

4.5. HPLC-DAD Analysis

An Agilent 1260 series HPLC system prepared with an autosampler, a column oven, a binary
pump, and a degasser (Agilent Technologies, Palo Alto, CA, USA) was used. An aliquot (10 µL) of the
standard or sample solution was directly injected on a Phenomenex Luna column (4.6 × 250 mm, 5 µm)
with a companionable guard column. The gradient elution using an acetonitrile and water mixture
was as follows: 10% acetonitrile to 15% for the first 15 min; 15% acetonitrile to 30% for the next 20 min;
30% acetonitrile to 40% for another 5 min; 40% acetonitrile to 100% for further 10 min. A conditioning
phase was then used to return the column to the initial state for 5 min. The flow rate was 1 mL/min
and column temperature was 30◦C. The eluent was detected at 210 nm with a diode array detector
(DAD). The chemstation software (Agilent Technologies) was used to operate this HPLC–DAD system.

4.6. Pancreatic Lipase Inhibition Assay

Inhibitory activity against pancreatic lipase was measured by a slightly modified method of
previous report [39]. Briefly, an enzyme buffer was prepared by the addition of a solution of porcine
pancreatic lipase, 2.5 mg/mL in buffer containing 10 mM MOPS (morpholinepropanesulfonic acid)
and 1 mM EDTA (pH 6.8) to 169 µL Tris buffer (100 mM Tris-HCl and 5 mM CaCl2, pH 7.0). Then,
either 20 µL of extract solution at the test concentration (100 µg/mL) or compound solution (100, 50
and 25 µM) or orlistat (1.0, 0.2, 0.04, 0.008, and 0.0016 µM) was mixed with 178 µL enzyme buffer and
incubated for 15 min at 37◦C with 2 µL of the substrate solution [10 mM p-NPB (p-nitrophenyl butyrate)
in dimethylformamide]. The enzymatic reactions were allowed to proceed for 20 min at 37◦C. Lipase
activity was determined by measuring the hydrolysis of p-NPB into p-nitrophenol. An increase in light
absorption at 405 nm was measured using a microplate reader (Synergy H1; BioTek Instruments, Inc.,
Winooski, VT, USA). Inhibition of lipase activity was expressed as the percentage decrease in optical
density when porcine pancreatic lipase was incubated with the test compounds. Orlistat was used as a
positive control. Lipase inhibition (%) was calculated according the following formula:

Inhibition (%) = 100 − [(B-b)/(A-a)] × 100 (1)

where A is the absorbance of incubated solution with substrate, a is the absorbance incubated solution
with substrate and lipase, B is the absorbance of incubated solution with sample, substrate and lipase,
b is the absorbance of incubated solution containing sample and substrate.

4.7. Statistical Analysis

All data were expressed as mean ± SD (standard deviation). One way ANOVA (Analysis of
variance) followed by Tukey’s multiple comparison test was used for the statistical analysis using SPSS
(Statistical Package for the Social Sciences) software (Version 16). Values of p < 0.05 were considered
statistically significant. Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA)
was accomplished for multivariate analysis with software SIMCA (Ver.13, Umetrics, Sweden).

5. Conclusions

In conclusion, there were remarkable differences in the microscopic observations and
phytochemical profiles of the four Fraxinus species and one variety. The microscopic data showed
discriminative characteristics with regard to parameters of the lower leaf surface, petiole, and midrib
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of leaves and stem bark. HPLC chemical profiling exhibited considerable differences in the chemical
contents of the 12 compounds among the samples, particularly for stem bark during the summer season,
which showed higher contents of the 12 secondary metabolites that did that of the autumn season.
This could be a vital indicator for chemotaxonomy. This systematic microscopic observation and
phytochemical analysis provide scientific criteria to ensure the identity, quality, purity, and establishment
of standard parameters for the safe use of medicinal plants. In addition, the Fraxinus plants and their
isolates could be effective against obesity by decreasing fat absorption and accumulation through
inhibition of pancreatic lipase. Further study is required to determine the exact underlying mechanism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/4/534/s1,
Figure S1: Herbarium specimens of four Fraxinus spp. and one variety, Figure S2: FAB-MS of compound 1
(m-NBA), Figure S3: 1H-NMR spectrum of compound 1 (500 MHz, DMSO-d6), Figure S4: 13C-NMR spectrum of
compound 1 (125 MHz, DMSO-d6), Figure S5: EI-MS of compound 2 (70 eV), Figure S6: 1H-NMR spectrum of
compound 2 (300 MHz, CDCl3), Figure S7: 13C-NMR spectrum of compound 2 (125 MHz, CDCl3), Figure S8:
FAB-MS of compound 3 (m-NBA), Figure S9: 1H-NMR spectrum of compound 3 (500 MHz, DMSO-d6), Figure S10:
13C-spectrum of compound 3 (125 MHz, DMSO-d6), Figure S11: FAB-MS of compound 4 (m-NBA), Figure S12:
1H-NMR spectrum of compound 4 (500 MHz, DMSO-d6), Figure S13: 13C-NMR spectrum of compound 4 (125
MHz, DMSO-d6), Figure S14: FAB-MS of compound 5 (m-NBA), Figure S15: 1H-NMR spectrum of compound 5
(500 MHz, DMSO-d6), Figure S16: 13C-spectrum of compound 5 (125 MHz, DMSO-d6), Figure S17: FAB-MS of
compound 6 (m-NBA), Figure S18: 1H-NMR spectrum of compound 6 (300 MHz, DMSO-d6), Figure S19: 13C-NMR
spectrum of compound 6 (75 MHz, DMSO-d6), Figure S20: FAB-MS of compound 7 (m-NBA), Figure S21: 1H-NMR
spectrum of compound 7 (500 MHz, CD3OD), Figure S22: 13C-NMR spectrum of compound 7 (125 MHz, CD3OD),
Figure S23: FAB-MS of compound 8 (m-NBA), Figure S24: 1H-NMR spectrum of compound 8 (500 MHz, CD3OD),
Figure S25: 13C-NMR spectrum of compound 8 (125 MHz, CD3OD), Figure S26: FAB-MS of compound 9 (m-NBA),
Figure S27:1H-NMR spectrum of compound 9 (500 MHz, CD3OD), Figure S28: 13C-NMR spectrum of compound
9 (125 MHz, CD3OD), Figure S29: EI-MS of compound 10 (70 ev), Figure S30: 1H-NMR spectrum of compound
10 (500 MHz, CDCl3), Figure S31: 13C-NMR spectrum of compound 10 (125 MHz, CDCl3), Figure S32: FAB-MS
of compound 11 (m-NBA), Figure S33: 1H-NMR spectrum of compound 11 (500 MHz, DMSO-d6), Figure S34:
13C-NMR spectrum of compound 11 (125 MHz, DMSO-d6), Figure S35: FAB-MS of compound 12 (m-NBA),
Figure S36: 1H-NMR spectrum of compound 12 (500 MHz, CD3OD), Figure S37: 13C-NMR spectrum of compound
12 (125 MHz, CD3OD).
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