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ABSTRACT Diversification can generate genomic and phenotypic strain-level diver-
sity within microbial species. This microdiversity is widely recognized in populations,
but the community-level consequences of microbial strain-level diversity are poorly
characterized. Using the cheese rind model system, we tested whether strain diver-
sity across microbiomes from distinct geographic regions impacts assembly dynam-
ics and functional outputs. We first isolated the same three bacterial species (Staphy-
lococcus equorum, Brevibacterium auranticum, and Brachybacterium alimentarium)
from nine cheeses produced in different regions of the United States and Europe to
construct nine synthetic microbial communities consisting of distinct strains of the
same three bacterial species. Comparative genomics identified distinct phylogenetic
clusters and significant variation in genome content across the nine synthetic com-
munities. When we assembled each synthetic community with initially identical com-
positions, community structure diverged over time, resulting in communities with
different dominant taxa. The taxonomically identical communities showed differing
responses to abiotic (high salt) and biotic (the fungus Penicillium) perturbations, with
some communities showing no response and others substantially shifting in compo-
sition. Functional differences were also observed across the nine communities, with
significant variation in pigment production (light yellow to orange) and in composi-
tion of volatile organic compound profiles emitted from the rinds (nutty to sulfury).

IMPORTANCE Our work demonstrated that the specific microbial strains used to
construct a microbiome could impact the species composition, perturbation re-
sponses, and functional outputs of that system. These findings suggest that 16S
rRNA gene taxonomic profiles alone may have limited potential to predict the dy-
namics of microbial communities because they usually do not capture strain-level di-
versity. Observations from our synthetic communities also suggest that strain-level
diversity has the potential to drive variability in the aesthetics and quality of surface-
ripened cheeses.

KEYWORDS cheese, genomics, microbial communities, microbiome assembly, strain
diversity

An ongoing challenge in the study of microbial community diversity is to move from
describing patterns of diversity to identifying processes that generate diversity.

Microbial ecologists have adopted a conceptual framework that considers the relative
roles of dispersal, selection, drift, and diversification in microbiome assembly (1–3).
Through both observational studies of in situ microbial communities and experimental
manipulations of field and laboratory microbiomes, many studies have focused on the
short-term ecological processes of dispersal and abiotic and biotic selection (1, 4). The
impacts of the longer-term evolutionary process of diversification on microbiome
assembly have rarely been experimentally assessed (5).

In the present work, diversification is defined as the emergence of genetic variation
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within microbial populations (1). This phenomenon of within-species genetic diversity
and associated phenotypic diversity is often called strain-level diversity or microdiver-
sity in microbiology (6–9). Experimental and observational studies have demonstrated
that microbial populations can rapidly diversify as they adapt to local selection pres-
sures through mutation and recombination. Studies using experimental evolution of
laboratory populations have demonstrated how diverse strains that vary in ecologically
important traits can rapidly evolve from genetically and phenotypically homogenous
populations (10–14). In natural populations, population-level comparative genomic
studies and strain-resolved metagenomic surveys have revealed extensive genomic and
phenotypic variation within microbial species (15–20). These studies have clearly
demonstrated the origins and extent of genomic and phenotypic diversity within
microbial taxa. The ecological significance of this strain-level diversification in a multi-
species community context is still largely unknown.

One prediction is that strain-level diversity observed in microbial monocultures
could have little impact on multispecies microbiome assembly and functioning if
pairwise interactions or functional redundancy within the community buffers genomic
and phenotypic variation. For example, the community-level impact of strain-level
variation in a specific nutrient uptake pathway observed in one species could be
swamped out by strong provisioning or resource competition of the same nutrient by
a neighboring species. Alternatively, strain-level variation may have strong impacts on
community assembly and function if variation in ecological traits is strong enough to
alter pairwise interactions or dynamics of succession within a community. For example,
strain-level diversity in nutrient uptake of an early colonizing species could impact
successional dynamics of the entire community if it substantially impacts nutrients
available for other community members. We are unaware of studies that experimentally
address either of these predictions in microbial communities. Studies in plant commu-
nities have demonstrated that intraspecific genetic and phenotypic diversity can
impact community assembly and function (21). Whether diversification of microbial
taxa has similar community-level consequences has not been experimentally tested.

Cheese rinds provide an ideal opportunity to test the ecological significance of
strain-level diversity within microbiomes. Rinds form on the surfaces of cheeses aged in
an aerobic environment and are composed of bacteria, yeasts, and filamentous fungi
(22–24). Our previous work used amplicon and shotgun metagenomics to describe the
bacterial and fungal diversity of 137 cheese rinds from the United States and Europe
(22). Three bacterial genera—Staphylococcus, Brevibacterium, and Brachybacterium—
were the most frequently detected across cheese rinds (Staphylococcus was detected in
78.5% of cheeses, Brevibacterium in 66.9%, and Brachybacterium in 68.8%). Through
variations in abiotic (salinity, pH, resource availability) and biotic (presence of bacterial
and fungal neighbors) selection pressures applied during cheese production and aging
(25), cheese microbiomes have the potential to evolve new genotypes and phenotypes
with divergent functions. Some studies have characterized the strain diversity of
individual cheese rind microbes for technological applications (26–36), but whether this
strain diversity impacts ecological interactions and community development of cheese
rind microbial communities has not been examined.

Here, we characterized strain-level diversity across cheese rinds and determined its
consequences for community assembly and function. We isolated the same three
species of bacteria—Staphylococcus equorum (hereafter Staphylococcus), Brevibacterium
auranticum (hereafter Brevibacterium), and Brachybacterium alimentarium (hereafter
Brachybacterium)—from nine different cheeses made across the United States and
Europe (Fig. 1). The three taxa represent the most common species of the three most
abundant bacterial genera in cheese rinds (22, 25). Staphylococcus, Brevibacterium, and
Brachybacterium can enter the dairy environment from the raw milk used for cheese
production and therefore have the potential to co-occur and adapt to abiotic and biotic
conditions within local cheese production facilities (37–39). Each species has a distinct
colony morphology (Fig. 1B), making it easy to track composition in experimental
communities. By inoculating these bacterial strains onto a cheese curd agar (CCA)
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medium, we constructed synthetic cheese rind microbial communities that mimic the
microbial dynamics and functions of real surface-ripened cheese rinds. We predicted
that intraspecific variation of microbiome members across cheese rind communities
would cause differences in synthetic cheese rind microbial community structure. We
also predicted that strain-level diversity would result in differences in community
functions, including pigmentation of the cheese rind biofilm and the production of
aroma compounds.

RESULTS
Genomic diversity across nine synthetic cheese rind communities with distinct

strains of the same three species. To determine genomic variation across the nine
synthetic cheese rind communities, we constructed draft genomes of each strain
(Table S1 in the supplemental material). We used single-nucleotide polymorphisms
(SNPs) in the core genes shared across all nine communities to determine phylog-
enomic divergence of each of the communities (40). We then determined variation in

FIG 1 Isolation of nine synthetic cheese rind communities with distinct strains of the same species. (A) The same three bacterial species—Brachybacterium
alimentarium, Brevibacterium auranticum, and Staphylococcus equorum—were isolated from a set of 137 cheese rinds that were previously described using 16S
rRNA gene amplicon sequencing (22). Each column represents average relative abundance data for one cheese rind microbiome. (B) The three microbiome
species have distinct colony morphologies.
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functional gene content across the nine communities using Pan-Genome Analysis
Pipeline (PGAP) (41). For functional gene content analysis, we focused on accessory
genes that were uniquely present in only one community as these genomic traits may
help drive divergence in microbiome functions.

The 16S rRNA gene region had 100% pairwise identity within all Brachybacterium
and Staphylococcus strains and 99.9% pairwise identity across the Brevibacterium strains
(see Fig. S1 in the supplemental material). Across the nine communities, 8,069 gene
clusters were shared among all three species, making up the core metagenome of these
communities. Using SNPs identified in this core metagenome with PanSeq, phylog-
enomic divergence across the nine cheese communities was apparent (Fig. 2). C1 was
distant from the other eight rind microbiomes, driven by the highly divergent Staph-
ylococcus genome in this community (Fig. S2). The other eight rind microbiomes
clustered into two broad phylogenomic groups: one containing C6 and C2 and the
other containing the remaining six communities (Fig. 2). The total number of unique
accessory gene clusters across the nine communities was highly variable, ranging from

FIG 2 Accessory genome of the nine synthetic cheese rind communities. The heat map indicates
variations in the abundances of unique accessory gene clusters across the three individual taxa (top) and
across SEED functional categories (bottom). Phylogeny is shown with a maximum likelihood consensus
tree constructed from SNPs identified across the nine communities. Values represent bootstrap support.
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246 genes (C5) to 630 genes (C3) (Fig. 2; see also Table S2). Variability in the abundance
of accessory gene clusters was most prominent in Staphylococcus (ranging from 36 to
280 unique gene clusters across strains) and Brevibacterium (ranging from 72 to 213
unique gene clusters), suggesting that these taxa have the most dynamic accessory
gene content.

Several biological processes were significantly enriched in the rind communities
(Table S3). C3 had the most diverse enrichment of SEED categories, with overrepre-
sentation of genes in potassium metabolism, carbohydrates, and DNA metabolism.
Protein metabolism and phages/prophages/transposable elements/plasmids were
overrepresented in C4. In C2, the accessory genome was significantly enriched with
stress response genes. Carbohydrate-related genes were enriched in the C6 rind
microbiome. Some of these unique accessory genes might be functionally significant in
the cheese rind environment. For example, Brevibacterium of C3 has a unique potas-
sium transport system encoded by genes with high similarity to the kdfABCF operon
(Table S2) that is known to play a role in salt stress in bacteria (42).

Collectively, these genomic data demonstrate that our nine synthetic cheese com-
munities isolated from distinct cheeses are phylogenomically diverse and have variable
genome content. Although the presence/absence of genes does not indicate actual
functional potential of microbes, these comparative genomic data suggest that there
could be divergence in how each taxon functions within each community and how
they respond to perturbations.

Community assembly dynamics vary across synthetic cheese communities with
distinct strains of the same three species. We next determined whether strain-level
differences impacted how the cheese rind communities assemble. A typical community
succession in our lab model involves the following steps: (i) early colonization of
Staphylococcus that can tolerate the low pH (5.0 to 5.2) of the cheese curd, (ii) growth
of Brachybacterium in the middle step of succession, and (iii) dominance by Brevibac-
terium at the end of succession (22, 43). We predicted two different potential impacts
of strain-level variation on community assembly. In one scenario, distinct strains of
Staphylococcus, Brachybacterium, and Brevibacterium across the nine communities
might vary in genome content or growth rates in isolation, but these differences might
be too minor to impact the dynamics of assembly of the three-member community. In
this case, we expected nearly identical forms of community composition across the
different cheese rind microbiomes as the strains of each species behaved similarly.
Alternatively, strain-level differences might translate into differences in interactions
with other community members or rates of growth within the community succession.
In this scenario, we expected to observe reproducible changes in the composition of
the communities as they assembled and differences in functional outputs.

To determine how strain-level differences across communities impact assembly
dynamics, we used in vitro community assembly assays to measure total CFU and
community composition (relative abundance of each species) (Fig. 3A). Communities
were quantified at 3 and 10 days after inoculation of equal amounts of each of the three
bacterial species on the surface of cheese curd agar. Our previous work demonstrated
that this assay mimics in situ community dynamics (22, 43). We acknowledge that real
cheese rind communities would develop over much longer time scales (weeks to
months). In the context of this work, we used the community assembly assay in a
standardized environment to demonstrate the potential for divergence in community
assembly.

At both 3 and 10 days of community assembly, there were nearly no differences in
total community abundance as measured by combined CFU counts of all three species
(Fig. 3B) (day 3 analysis of variance [ANOVA] F8,81 � 2.07, P � 0.05; day 10 ANOVA
F8,79 � 0.46, P � 0.88). However, there were substantial differences in community com-
position across the nine cheese rind communities (day 3 permutational multivariate
analysis of variance [PERMANOVA] F � 4.005, P � 0.001; day 10 PERMANOVA F � 5.57,
P � 0.001). Many communities (C1, C2, C6, and C7) were dominated by Brevibacterium
at the end of succession (Fig. 3C). Some communities (C3, C5, C8, and C9) had a
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FIG 3 Divergent community assembly across nine synthetic cheese rind communities with identical species compositions. (A) Experimental
setup. Each set of three species from each microbiome was inoculated into wells of 96-well plates. Communities were harvested 3 and 10 days

(Continued on next page)
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relatively even mix of all three species. Community C4 had a highly dissimilar structure
with a high abundance of Brachybacterium at the end of succession and a low
abundance of Brevibacterium.

A simple explanation for differences in community composition across the nine
cheese rind communities is that individual bacterial strains have different growth
abilities alone and in the community. Those taxa and strains that grow best alone and
with the community present should be the most abundant members of the commu-
nity. To test this, we determined total growth of each of the 27 strains on cheese curd
agar and compared growth alone after 10 days to growth in the community. All
Staphylococcus species grew well alone and had limited responses to growth in the
community (Fig. 3D). Two strains were slightly stimulated by growth in the community
(C5 and C7), and one was slightly inhibited (C6). In contrast to the relatively even
growth levels of the Staphylococcus, the Brevibacterium strains had variable growth
levels alone across the nine cheese rind communities. Four of the Brevibacterium strains
(C2, C5, C8, and C9) grew poorly alone on cheese curd agar and were strongly
stimulated by growth in the community. One Brevibacterium strain (C4) was inhibited
by growth in the community. All Brachybacterium strains grew well on cheese curd by
themselves and were generally inhibited when grown in the community.

For all three taxa, mean growth alone was a very poor predictor of mean relative
abundance in the community (Staphylococcus r2 � 0.166, P � 0.276; Brevibacterium
r2 � 0.001, P � 0.923; Brachybacterium r2 � 0.020, P � 0.716). A somewhat better pre-
dictor of mean relative abundance was how growth of each strain was impacted by the
community (Staphylococcus r2 � 0.672, P � 0.01; Brevibacterium r2 � 0.013, P � 0.773;
Brachybacterium r2 � 0.319, P � 0.113). This suggests that interactions between each of
the strains and their communities may contribute to differences in community com-
position across the nine synthetic communities. For example, the inhibition of Brevibac-
terium and lack of inhibition of Brachybacterium in C4 may partly explain why this
community was the only one to be dominated by Brachybacterium.

Strain-level diversity affects cheese rind community responses to abiotic and
biotic perturbations. Cheese rind microbiomes may experience abiotic or biotic
perturbations that could alter community assembly and function. We predicted that if
strains have evolved different responses to stress or if the communities have coevolved
stress-response mechanisms, taxonomically identical experimental communities might
have divergent responses to perturbations. Two major perturbations in cheese rind
microbiomes are those involving salt and interactions with fungi (22, 25, 44). Salt
concentrations are initially high on the surface of fresh cheese because salt is applied
to the cheese surface alone or in a brine (45). The salt diffuses into the cheese and
eventually equilibrates to a level of around 3% in the rind environment of many
cheeses. Cheese rind microbiomes also experience interactions with fungi, ranging
from yeasts (e.g., Debaryomyces and Galactomyces species) to molds (Fusarium, Scopu-
lariopsis, and Penicillium species) (22, 25, 46). Penicillium species are widespread in
cheese rinds and can strongly inhibit diverse cheese rind bacteria (22, 43, 47), poten-
tially through the production of secondary metabolites or other mechanisms.

To determine how the nine synthetic cheese rind communities would respond to
salt and fungal perturbations, we used the community assembly assay described above
with the addition of two treatments: a 6% NaCl treatment and a treatment with added
Penicillium (�Penicillium). We used a strain of Penicillium that was isolated from a

FIG 3 Legend (Continued)
after inoculation. (B) Total community abundance as measured by CFU of each of the nine microbiomes. n � 5 across two experimental
replicates. For the day 0 inputs, only two points are shown to represent the inputs for each of the two experimental replicates. (C) Relative
abundance of each of the three bacterial species across each of the nine microbiomes. Each column represents a replicate. I1 and I2 indicate
the input compositions for the two independent experimental replicates. In the day 3 and day 10 data sets, the first five columns are from one
experimental replicate and the second five are from a second experimental replicate. Blank columns represent replicates that were lost due to
contamination. (D) Growth of each of the community members alone (open circles) and in the presence of the community (closed black
squares). Each point represents the mean CFU of the taxa, and the error bars represent 1 standard deviation of the mean. Asterisks indicate
significant differences between growth alone and growth in the community (n � 5, t test, P � 0.05).
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natural rind cheese and was previously demonstrated to inhibit cheese rind bacterial
growth (22). Across isolates of all three taxa, both the 6% NaCl and �Penicillium
treatments caused a general decrease in total growth across all nine microbiomes, with
�Penicillium causing stronger growth inhibition (Fig. 4A). Rind microbiomes had vari-
able responses to the two perturbations. The Penicillium perturbation caused the most
significant shifts in community composition, with six of the nine communities showing
significant changes in community composition (Fig. 4B and C). In some communities
(C2 and C3), the presence of Penicillium caused a major increase in Brachybacterium
relative abundance. In others (C1, C8, and C9), the presence of Penicillium caused an
increase in the relative abundance of Staphylococcus. The 6% salt treatment caused
fewer shifts in community composition, with only two communities (C5 and C6)
responding to the higher-salt environment. In both cases, Brevibacterium increased in
relative abundance.

Strain-level diversity in synthetic cheese rind communities drives divergence
in pigment and aroma production. Our experiments described above demonstrated
that strain-level diversity of cheese rind taxa drove divergence in community compo-
sition across the nine microbiomes. Does this divergence lead to the production of
cheeses with different properties that could be perceived by consumers? Differences in
community composition may not necessarily translate into differences in functional
outputs. Many studies of the microbiome have suggested that communities with
different compositions may have similar functions due to functional redundancy across
community members (48–50). While our comparative genomic analysis described
above suggested potential functional differences across the cheese communities, many
of the core community functions were conserved, and variation in accessory genes may
have little impact on community functions. To determine whether divergence in
composition of the synthetic cheese rind communities also translated into differences
in functional outputs, we measured two important traits of cheese rind microbiomes:
rind color and volatile organic compound (VOC) production.

Cheese rind bacteria define how the cheese appears to customers through the
production of cellular pigments such as carotenoids or the secretion of pigmented
extracellular metabolites into the curd (27, 51–54). The three bacteria in our model
community produced distinct pigments (Fig. 1B), and shifts in their relative abundance
were found to be able to translate into changes in rind color. Intraspecific differences
in pigment production was also found to drive differences in rind community pigmen-
tation. Using a colorimeter, we measured the rind color after 10 days. The communities
showed significantly different color development results (ANOVA F9,39 � 524.9,
P � 0.0001), with C3, C4, C6, C7, and C9 having significantly greater a* values (where a*
represents one of two chromatic coordinates) than the control, indicating more red
pigmentation (Fig. 5A). All communities had significantly greater b* values than the
control (ANOVA F9,39 � 139.6, P � 0.0001), with C3 and C4 having the highest values
and appearing the most orange (Fig. 5A).

As the rind biofilm decomposes fats, proteins, and other components of the cheese
substrate, a diversity of VOCs are produced that are aromatic (55–57). Using headspace
sorptive extraction (HSSE) followed by gas chromatography-mass spectrometry (GC-
MS) analysis (58, 59), we quantified VOCs produced by each community after 10 days
of synthetic community development. Across all nine communities, 248 unique VOCs
were detected with significant differences in the mean VOCs per community (Fig. 5B)
(ANOVA F8,35 � 28.9, P � 0.0001). The compositions of VOCs across the nine cheese
communities were significantly different (Fig. 5C) (PERMANOVA F � 62.38, P � 0.001)
(Table S4). As determined using a SIMPER analysis, the following nine compounds
contributed more than 1% to the average overall Bray-Curtis dissimilarity: benzyl
methyl ketone (27% contribution; odor � floral/fruity), tetramethylpyrazine (19%;
odor � nutty/musty/chocolate/coffee), 2,5-dimethylpyrazine (13%; odor � nutty/
musty/chocolate/coffee), trimethylpyrazine (12%; odor � nutty/musty/chocolate/cof-
fee), dimethyl disulfide (9%; odor � sulfurous/cabbage/onion), dimethyl trisulfide (2%;
odor � sulfurous/cabbage/onion), 2,6-diethylpyrazine (2%; odor � nutty/musty/choco-
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FIG 4 Response of the nine synthetic cheese rind communities to abiotic and biotic perturbations. (A)
Responses of each taxon to abiotic (6% salt) and biotic (Penicillium) disturbance. Each point represents

(Continued on next page)
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late/coffee), unknown compound 520 (1%; odor � unknown), and 3-hydroxy-2-
butanone (1%; odor � sweet/buttery/creamy). These VOCs have been detected in other
surface-ripened cheeses and result from microbial degradation of fats, proteins, and
other components of the cheese substrate (60–65). C5 had the most distinct VOC profile
of all communities, with large amounts of tetramethylpyrazine, trimethylpyrazine, and
3-hydroxy-2-butanone and small amounts of the major sulfur compounds, suggesting
a nuttier and butterier aroma profile.

The functional differences observed across the nine synthetic cheese rind commu-
nities might have resulted from divergent community compositions driven by strain-

FIG 4 Legend (Continued)
the mean CFU of the taxa in that community at day 10 (n � 5), and the error bars represent 1 standard
deviation of the mean. Asterisks indicate significant difference in growth compared to control based on
the Kruskal-Wallis test (P � 0.05). (B) Mean community composition in the three treatments. An asterisk
indicates significant difference in community composition compared to control based on PERMANOVA.
(C) Principal-coordinate analysis (PCoA) of replicate communities in the three treatments. PCoA data are
based on Bray-Curtis dissimilarity of absolute abundances of each community member.

FIG 5 Functional diversity across nine synthetic cheese rind communities. (A) Color profiles of experimental rind communities after 10 days of rind
development. Each dot represents a replicate cheese rind community (n � 5). Boxes in the legend show representative photos of the synthetic rind community
surface from each community. (B) Total volatile organic compound (VOC) diversity across the nine cheese communities. Each point represents the mean number
of VOCs detected in each community, and the error bars represent 1 standard deviation of the mean (n � 5). Communities that share the same letter are not
significantly different from one another based on the Kruskal-Wallis test (P � 0.05). (C) Nonmetric multidimensional scaling of total VOC profiles. Each dot
represents a replicate cheese rind community (n � 5). (D) Relative abundances of VOCs that contributed the most to the Bray-Curtis dissimilarity across
communities (as determined by SIMPER analysis). Because total concentrations of VOCs are highly variable across different compounds, visualization was
simplified by relativizing the relative peak area from GC-MS chromatograms within each VOC to the highest concentration detected for that VOC. Data are
clustered together by total VOC profiles using a UPGMA tree. Asterisks indicate clusters with �70% bootstrap support. For a full overview of all compounds
detected, see Table S4.
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level variations. For example, communities that had final compositions with more
Brevibacterium would potentially have higher red and yellow pigmentation due to
orange carotenoid production by Brevibacterium. We do not believe that this explains
pigmentation differences across the communities because the two communities with
the highest Brevibacterium abundances (C1 and C8; Fig. 3C) did not have the highest
levels of red or yellow pigmentation (Fig. 5A).

The community-level differences in functions might also have been a result of high
intraspecific variation in functional traits (pigment or VOC production) in just one
species in the communities, irrespective of the final abundance of that species in the
community. For example, when Brevibacterium strains differed considerably in their
levels of carotenoid production across the nine communities, total community pigment
production levels might have varied across the nine communities based solely on trait
variation in this one species. Preliminary observations suggest that this may partly
explain functional differences of the communities. We noticed that when each of the
strains of Brevibacterium, Brachybacterium, and Staphylococcus was grown alone on
plate count agar with milk and salt (PCAMS) in the dark (representing the conditions
under which the cheese communities were incubated), the results showed considerable
variation in pigment production in Brevibacterium strains, some pigment variation in
Staphylococcus strains, and no observable pigment variation in Brachybacterium strains
(Fig. S3A). Interestingly, the two communities with the highest levels of red and yellow
pigmentation (C3 and C4) were also the communities with Brevibacterium strains that
showed high levels of orange pigmentation (Fig. S3A). Genomes of all the Brevibacte-
rium strains harbored predicted genes corresponding to the carotenoid biosynthesis
operon previously characterized in Brevibacterium species (32, 66, 67), suggesting that
regulation of carotenoid genes and not variation in gene content across the strains
might explain the variable levels of pigment production. One Staphylococcus strain
(908_10 from C7) was noticeably yellow in color on CCA (Fig. S3A) and corresponded
to one S. equorum strain that contained the operon for the carotenoid staphyloxanthin
in its genome (Table S4). Further characterization of pigmentation of Brevibacterium
and Staphylococcus on CCA suggests that trait variation of individual species could
potentially drive community pigmentation differences. Brevibacterium from C3 re-
mained highly pigmented on CCA, while the pigmentation of Brevibacterium from C4
observed on PCAMS did not translate to the CCA for unknown reasons (Fig. S3B and C).
The Staphylococcus strain from C7 remained highly pigmented on CCA relative to the
other Staphylococcus strains (Fig. S3B and D), which might explain the elevated yellow
pigmentation in C7 (Fig. 5A). These preliminary observations suggest that intraspecific
variation of individual species across communities could potentially drive differences in
community functions.

DISCUSSION

Using synthetic communities with identical three-member communities isolated
from nine distinct cheeses, our work demonstrated the significance of strain-level
variation for microbiome assembly and function. Studies of plant and animal commu-
nities have demonstrated that intraspecific genetic and phenotypic diversity can
impact community assembly and function (68–70). Here, we demonstrate that intras-
pecific diversity can impact the relative abundance of microbial community members
as well as functional outputs of the communities. Many communities did converge on
similar compositions despite having substantial variation in accessory gene content.
But several communities had substantially different structures and functions even
though the initial inocula were identical. Some communities showed relatively even
levels of coexistence of the three community members (C2, C3, C5, C7, and C9), while
others were dominated by either Brevibacterium or Brachybacterium (C1, C4, C6, and
C8). The divergence was not due to stochastic community assembly across replicates,
as we observed highly reproducible community structures across replicate experi-
ments.

The goal of this work was to determine whether strain-level diversity can impact
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community dynamics and functions. The limitations imposed by the use of only nine
communities made it difficult to pinpoint specific ecological or genetic mechanisms
that might underlie the observed differences across the communities. One simple
explanation for the dominance of different taxa across the nine rind communities is
differences in growth of individual strains. Our experiments comparing growth of
individual strains alone versus in the community demonstrated differing growth rates
and interactions with the community for each of the three taxa. However, the results do
not fully explain the community structures. For example, in C4, where Brachybacterium
dominated, the levels of growth of a Brachybacterium strain alone and in interactions
with community members were similar to those seen with other communities where
Brevibacterium dominated (e.g., C5 and C6). Future work exploring the roles of inhib-
itory and cooperative interactions will pinpoint specific mechanisms explaining the
variable community assembly dynamics of cheese rind microbiomes.

The evolutionary processes that have generated the divergent species and
community-level responses of our cheese microbiomes are currently unknown. It is
possible that each microbiome has experienced different evolutionary histories in each
cheese production environment. As new batches of cheese are introduced to a cave
environment, communities may be repeatedly transferred to these new cheeses. This
repeated colonization of the cheese substrate could allow rind microbiomes to evolve
collectively as a community in the individual production environments (71). Each
environment may have unique abiotic selection pressures, including salt concentra-
tions, milk composition, and temperature, that could shape the evolutionary trajecto-
ries of these communities. Rind microbiomes could also experience highly divergent
biotic environments. For example, these rind communities were isolated from cheeses
with variable fungal environments, ranging from yeast to filamentous fungi (22). Future
work using experimental evolution to attempt to create divergent communities from
an ancestral rind microbiome should help us understand the origins of strain-level
diversity in cheese rinds.

Our model communities represent the widespread bacterial taxa found in cheese
rinds. We acknowledge that these communities have limitations that might impact
translation of our results to other systems. First, our communities harbored only three
bacterial species. While some widespread microbiomes have low species diversity (72,
73), many microbiomes have much higher levels of diversity. Would the strain-level
diversity of community members have similar impacts in microbiomes with higher
taxonomic diversity? With greater potential for higher-order interactions and a higher
number of potential functions with increasing species diversity, we predict that in-
creasing diversity might lead to even more highly divergent communities. Our syn-
thetic communities also used a single strain of each species that we isolated from the
original nine cheese communities. In constructing our communities, we chose to ignore
potential intraspecific variation within each of the nine communities and assumed that
the isolated taxa represented the most common genomic type of the species within
each community. Metagenomic sequencing studies have identified multiple coexisting
strains of the same microbial species (15–18, 20, 34, 74), and these strains might interact
with each other and other community members to impact community composition. It
would be fascinating to see how inclusion of higher levels of intraspecific diversity
within our experimental microbiomes might impact community assembly and function.

The differences that we observed in rind pigmentation and VOC production might
have been driven by differences in community composition across the nine commu-
nities or by high intraspecific variation of functional traits of individual species or might
have been due to unique functions that resulted from interactions between specific
strain combinations. Our preliminary observations of high variation in Brevibacterium
pigmentation across strains suggested that high intraspecific variation of functional
traits within one species might be a driver of functional divergence across communities.
Variation in levels of carotenoid production across strains of cheese Brevibacterium
species has been previously reported (27, 32). Additional work needs to be done to
understand the potential contributions of strain-specific interspecies interactions in
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driving functional differences across these experimental communities. For example,
future studies using reciprocal swapping of all strains across all communities might
identify interactions between specific strains of each species that might trigger the
production of unique pigments or VOCs.

In a previous large amplicon-sequencing study of cheese rind microbiomes (22), we
demonstrated that taxonomically identical cheese rind communities could form in very
different cheese-making regions. This was surprising given that these cheeses have
divergent sensory properties. Many of these differences might be driven by ingredients,
length of aging, or other cheese processes. Our current findings suggest that the
variability in the qualities of surface-ripened cheeses could also be driven by strain-level
differences across the cheese communities. We acknowledge that our lab cheese rinds
are not real cheeses and represent only potential patterns of cheese rind community
assembly. Our synthetic cheese communities were missing yeasts, filamentous fungi,
and other bacteria that are present in cheese rind microbiomes. It is possible that the
impacts of strain-level diversity that we observed in our artificial lab communities could
translate to larger-scale cheese production. Previous studies of fermented food mi-
crobes noted strain-level differences of individual species used in fermented foods (19,
28, 75–78), and other studies demonstrated product-specific and regional diversity in
surface-ripened cheeses (79–81). Experimental work performed under more-realistic
food production conditions is needed, but our work suggests that this strain-level
diversity may be important for understanding and managing the unique identity of
cheeses made in specific regions.

More broadly, our work in these synthetic communities may have implications for
both the design and management of microbiomes in other systems. First, our work
demonstrates that taxonomic profiling of microbiomes may not provide robust pre-
dictors of assembly dynamics and functions. Amplicon-based approaches for sequenc-
ing microbiomes, such as using 16S rRNA gene sequencing, capture only high-level
taxonomic diversity. As we have demonstrated, communities with similar initial species
compositions can have very different dynamics. Fortunately, microbiome sequencing
studies are moving toward shotgun-metagenomic approaches that could capture the
strain-level diversity that we observed across our nine communities (15–18, 20, 34, 74).
Our work also suggests that it might be hard to predict microbiome responses to
disturbances using taxonomic profiles alone. For example, across individuals that have
taxonomically similar microbiomes on their skin, responses to environmental stresses
such as the application of antibiotics may depend on the specific strains and genomic
content of the communities. Finally, our work suggests that in designing synthetic
microbiomes, the choice of the individual “parts” (strains of species) may alter desired
outcomes. This may be important for industrial microbial communities where specific
strain combinations within communities may be needed to achieve predictable com-
munity functions. Strain diversity should also be considered in the design and inter-
pretation of synthetic microbial community experiments used in basic microbiome
science. Findings from these systems may not be generalizable if the observed out-
comes are unique to the specific strains selected for experiments.

MATERIALS AND METHODS
Isolation and maintenance of cheese rind bacterial strains. Frozen glycerol stocks of communities

previously characterized using metagenomic sequencing (22) were plated out on plate count agar with
milk and salt (PCAMS) with chloramphenicol (50 mg/liter) to culture bacteria. We specifically selected
cheese rind communities that had a high level of abundance of each of the three target genera
(Brachybacterium, Brevibacterium, and Staphylococcus) in the metagenomic sequence data from these
samples. We initially plated out 50 cheese rinds and isolated putative colonies of Brachybacterium,
Brevibacterium, and Staphylococcus from 19 of the samples. We collected isolates from only 19 samples
because the remaining samples did not contain colonies with morphologies similar to those of the three
target bacteria. A pure culture isolation on a fresh PCAMS plate was made from one colony from each
unique morphotype identified within each rind community. Brachybacterium alimentarium colonies have
medium growth rates, are large and flat, and are yellow-green in color. Brevibacterium auranticum
colonies are usually slow-growing, medium-sized, and orange. Staphylococcus equorum colonies are
usually fast-growing, smooth, medium-sized, flat, and either white or light golden in color. Initial
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identification of the isolates was done using the 16S rRNA region and primers 27f (82) and 1492r (83) as
previously described (54).

Comparative genomics. The genome of each bacterial strain was sequenced, assembled, and
annotated as we previously described for Staphylococcus species (43). Briefly, DNA was extracted using
MoBio PowerSoil DNA extraction kits and pure cultures grown for 1 week on PCAMS. Approximately 1 �g
of purified genomic DNA (gDNA) was sheared using a Covaris S220 ultrasonicator to approximately
450-bp lengths and was used as the input for a New England Biolabs NEBNext Ultra DNA library prep kit
for Illumina. Libraries were spread across multiple sequencing lanes with other projects and were
sequenced using 100-bp, paired-end reads on an Illumina HiSeq 2500 system. Approximately 10 million
reads were sequenced for each genome. Failed reads were removed from libraries, and reads were
trimmed to remove low-quality bases and were assembled to create draft genomes using the de novo
assembler in CLC Genomics Workbench 8.0. Assembled genomes were annotated using RAST (84).

Full 16S rRNA gene sequences were extracted from each of the genomes and used to compare 16S
gene sequences within each species. These sequences were then aligned using MUSCLE with 16S rRNA
gene sequences of closely related type specimens available in NCBI. RAxML 8.2.11 (with GTR GAMMA
nucleotide model and 100 bootstrap replicates) was used to create a 16S rRNA gene maximum likelihood
phylogeny. To identify phylogenomic relationships within each of the three species as well as between
each of the nine communities, we used PanSeq (40) to identify SNPs across the core genome for each
of the three species. We first made a maximum likelihood phylogeny for each species using the SNP file
for each individual species. We then concatenated the three species SNP files to create a community SNP
file. For both the species and community phylogenies, RAxML 8.2.11 (with GTR GAMMA nucleotide
model and 100 bootstrap replicates) was used.

To compare the presence and absence of genes across strains and species, core and accessory genes
were identified by assigning protein-coding sequences to functionally orthologous groups using the
MultiParanoid method of the Pan-Genome Analysis Pipeline (PGAP) (25). Species-to-species orthologs
were identified by pairwise strain comparison using BLAST with the following PGAP defaults: a minimum
local coverage of 25% of the longer group and a global match of no less than 50% of the longer group,
a minimum score value of 50, and a maximum E value of 1e�8. Multistrain orthologs were then found
using MultiParanoid (80). Enrichment of SEED subsystem categories in each of the nine communities was
determined using Fisher’s exact test with false-discovery-rate correction.

Community assembly assays. To measure community assembly of the distinct rind communities,
approximately 20,000 CFU of each species was inoculated on the surface of 150 �l of cheese curd agar
(3% salt) distributed into replicate wells of a 96-well plate, as previously described (22, 43). Communities
were incubated aerobically at 24°C in the dark and were harvested at 3 and 10 days after inoculation,
representing early and late community succession, respectively (22). To determine the community
composition of individual replicate communities, the community was pestled in 600 �l of 1� phosphate-
buffered saline, serially diluted, and plated onto PCAMS. PCAMS plates were incubated for a week
followed by measuring the abundance of each bacterial species. To measure growth alone, the same
density of CFU of each taxon alone was inoculated into wells. Five technical replicates of each community
were performed in each of two experimental replicates.

Salt (6%) and fungal (�Penicillium) perturbation experiments were conducted using the same
community assembly assay but with 6% salt cheese curd agar or with the addition of Penicillium.
Penicillium strain 12, isolated from a natural rind cheese in Vermont, was used in these experiments. We
used this strain because it was isolated from a cheese where Staphylococcus, Brachybacterium, and
Brevibacterium were also found and because it was used in previous experiments in our lab (43, 47). The
exact species identification of this mold is unknown, but it belongs to section Fasciculata with other
cheese Penicillium species. Penicillium was inoculated at an initial density of 2,000 CFU. Community
composition in these experiments was determined as described above except that cycloheximide was
added to the PCAMS plates used for bacterial community isolation to eliminate fungal growth.

Color and VOC analyses. To measure rind color and VOC production, we constructed larger versions
of each of the nine communities on cheese curd agar poured into petri dishes (60 mm in diameter) to
allow a larger sampling area. To construct the rind communities, 600,000 CFU of each species was
inoculated across the surface of the cheese curd agar. Synthetic communities were incubated for 10 days
in the dark at 24°C followed by color and VOC analyses. For analysis of pigment production by individual
strains of each species (see Fig. S3B in the supplemental material), approximately the same density of
total CFU used in the three-species communities was spread across the surface of the cheese curd agar.

To measure rind color, we used a CTI spectrocolorimeter (part no. 43237-2). This handheld colorim-
eter uses the CIELAB color space to quantify both lightness (L*) and two chromatic coordinates (a* and
b*). Similar colorimeters have been used to quantify cheese rind color (85). Higher values of a* (a*�)
indicate red coloring, while lower values (a*�) indicate green. Higher values of b* (b*�) indicate yellow
coloring, while lower values (b*�) indicate blue. Colorimeter readings were taken by placing a 30-mm-
diameter petri dish lid upside down on the middle of the surface of the rind and then placing the
colorimeter on the petri dish surface. This was done to protect the colorimeter from the sticky rind
surface and to avoid cross-contamination across replicates.

Volatiles were collected from synthetic rind communities by headspace sorptive extraction (HSSE)
using polydimethylsiloxane (PDMS)-coated magnetic stir-bars. HSSE is an equilibrium-driven enrichment
technique in which 10-mm-long-by-0.5-mm-thick stir-bars (Twister; Gerstel) are suspended 1 cm above
the sample by placing a magnet on the top side of the collection vessel cover. Five replicates of each
culture were sampled for 4 h. After collection, the stir bar was removed and spiked with 10 ppm
ethylbenzene-d10, an internal standard (obtained from RESTEK). The internal standard was used to
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determine the relative concentration of each compound. Organics were introduced into a gas chro-
matograph/mass spectrometer (GC/MS) by thermal desorption. In addition to the use of the Twister
blanks, analysis of the cheese curd agar medium was performed to assess background interferences.
Compounds present at equal or higher relative concentrations in the media compared to the samples
were removed from the data.

Analyses were performed using an Agilent 7890A/5975C GC/MS equipped with an automated
multipurpose sampler (Gerstel). The thermal desorption unit (TDU; Gerstel) provided splitless transfer of
the sample from the stir bar into a programmable temperature vaporization inlet (CIS; Gerstel). The TDU
was heated from 40°C (0.70 min) to 275°C (3 min) at 600°C/min under 50 ml/min of helium. After 0.1 min,
the CIS, operating in solvent vent mode, was heated from –100°C to 275°C (5 min) at 12°C/s. The GC
column (HP5-MS; Agilent) (30 m by 250 �m; pore size, 0.25 �m) was heated from 40°C (1 min) to 280°C
at 5°C/min with 1.2 ml/min of constant helium flow. The MS was scanned from m/z 40 to m/z 350, with
the electron ionization (EI) source at 70 eV. A standard mixture of C7 to C30 n-alkanes (Sigma-Aldrich)
was used to calculate the retention index (RI) value for each compound in the sample.

Ion Analytics spectral deconvolution software (Gerstel) was used to analyze the GC/MS data (86, 87).
A target/nontarget data analysis approach was employed in which previously constructed databases
were used to identify target compounds in the sample based on spectral deconvolution of their irons and
abundances. Once found, each compound’s mass spectrum was subtracted from the peak’s total ion
current (TIC) signal. Each resulting peak scan was inspected to determine whether the residual ion signals
were constant (�20%) or approximated background noise. If constant, the software recorded the
retention time, mass spectrum, and 3 to 5 target ions and their relative abundances and entered the data
into the database. Finally, sample data were compared to reference compound data in the database, viz.,
RI and MS (positive identification), or in commercial libraries and literature (tentative identification). Once
the data were assigned, the database was annotated to include compound name, CAS number, and RI.
If neither positive nor tentative identification was possible (in cases in which the data represented an
unknown compound), a numerical identifier was used to identify the compound. The database was
annotated to include the GC/MS information described above. In contrast, if peak scans differed
(representing unresolved peaks), the software searched for 3 to 5 invariant scans, averaged their spectra,
and then subtracted the average spectrum value from the TIC signal. This process was repeated until the
residual signal at each scan approximated background noise. If peak signals failed to meet the
user-defined criteria described below, no additional information was obtained.

Statistical analyses. To determine differences in community composition, permutational multivar-
iate analyses of variance (PERMANOVAs) with Bray-Curtis dissimilarity were used. ANOVA of log-
transformed data was used to determine significant differences between total CFU levels across exper-
iments. In cases of unequal variances (represented by growth of individual taxa in perturbations),
Kruskal-Wallis tests were used. To determine relationships between relative abundance and growth of
individual strains, linear regressions were used. To compare total growth alone to growth in the
community, t tests were used. Differences in a* and b* values in the pigmentation assay were determined
using ANOVA. To determine differences in VOC composition across the nine communities, PERMANOVAs
of Bray-Curtis dissimilarities of relative peak areas were used. A SIMPER analysis of relative peak areas of
VOCs was used to identify the contributions of each VOC to Bray-Curtis dissimilarity.

Data availability. All genome assemblies have been deposited in NCBI under accession no.
GCA_002332225.1, GCA_002332445.1, GCA_002332365.1, GCA_003335435.1, GCA_003335365.1,
GCA_002332335.1, GCA_003335395.1, GCA_002332395.1, and GCA_002332325.1 (for Brevibacterium au-
ranticum); GCA_003335205.1, GCA_002332305.1, GCA_003335355.1, GCA_003335315.1,
GCA_003335415.1, GCA_003335305.1, GCA_002332425.1, GCA_003335265.1, and GCA_003335295.1 (for
Brachybacterium alimentarium); and GCA_001747895.1, GCA_001747965.1, GCA_001747785.1,
GCA_001747865.1, GCA_004143695.1, GCA_001747945.1, GCA_001747805.1, GCA_001747815.1, and
GCA_001747825.1 (for Staphylococcus equorum) (the accession numbers are also listed in Table S1 in the
supplemental material).

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
FIG S1, TIF file, 2.1 MB.
FIG S2, TIF file, 1.6 MB.
FIG S3, TIF file, 2 MB.
TABLE S1, XLSX file, 0.01 MB.
TABLE S2, XLSX file, 2 MB.
TABLE S3, XLSX file, 0.1 MB.
TABLE S4, XLSX file, 0.2 MB.
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