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Abstract: Fine-grained change detection in sensor data is very challenging for artificial intelligence
though it is critically important in practice. It is the process of identifying differences in the state of
an object or phenomenon where the differences are class-specific and are difficult to generalise. As
a result, many recent technologies that leverage big data and deep learning struggle with this task.
This review focuses on the state-of-the-art methods, applications, and challenges of representation
learning for fine-grained change detection. Our research focuses on methods of harnessing the
latent metric space of representation learning techniques as an interim output for hybrid human-
machine intelligence. We review methods for transforming and projecting embedding space such that
significant changes can be communicated more effectively and a more comprehensive interpretation
of underlying relationships in sensor data is facilitated. We conduct this research in our work towards
developing a method for aligning the axes of latent embedding space with meaningful real-world
metrics so that the reasoning behind the detection of change in relation to past observations may be
revealed and adjusted. This is an important topic in many fields concerned with producing more
meaningful and explainable outputs from deep learning and also for providing means for knowledge
injection and model calibration in order to maintain user confidence.

Keywords: change detection; representation learning; latent space visualisation

1. Introduction

Change detection (CD), the process of identifying differences in object/phenomena
over time/space, is often considered a fundamental low-level preprocessing step in many
data analysis problems, such as in sensor data analytics, computer vision and process trend
analysis. However, it can also be considered the primary task in many real-world applica-
tions such as remote sensing, surveillance, security and healthcare. The major challenge of
CD is to separate real changes from false changes caused by different sensing conditions,
e.g., sensor noise, suddenly varied lightings and camera movements in computer vision
and unexpected changes in data distributions.

Most state-of-the-art CD methods assume real changes occur on a relatively large
amount of data and are salient enough to transcend detailed changes caused by these
factors. However, there are many applications where it is not feasible to collect data of
sufficient breadth or depth for this method to be reliable, i.e., interactions between different
combinations of conditions that were not accounted for at the design stage can induce
variability that clouds and alters the characteristic features of significant changes, especially
to each scenario. Clearly, for such scenarios, it is difficult for even the most modern deep
learning techniques to generalise the features of changes of interest. This article will review
the current state-of-the-art methods and some of the challenges to reliable detection of
fine-grained change. In particular, we focus on techniques that can be applied to the
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representations learned by artificial intelligence in multi-task, multi-modal, open-set and
online learning settings with little data to aid in navigating variability and uncertainty so
that significant changes become apparent.

Representation Learning (RL) refers to the methodology of learning to represent data
in the most simple form possible that preserves the details relevant to the task(s) at hand.
RL is an integral part of many machine learning algorithms and comes in different guises
but all essentially have the common goal of defining a feature space in which we can make
observations on the relation between entities. This objective is an important one with many
practical applications, which we survey in Section 2. In Section 3, we give some context
of how RL has come to be at the forefront of the state-of-the-art in change detection with
some historical background from its statistical origins to the advent of deep learning. We
then examine the different ways in which change can be presented in RL frameworks,
followed by a comparison of the different types of architecture, including metric learning,
generative models and graph neural networks and a breakdown of the common techniques
for manipulating their latent feature space to produce change representations that offer
better interpretability and discriminatory capability, all in Section 4. Lastly, in Section 5,
we review some gaps in the research towards extending RL to change detection use cases,
including online learning, handling heterogeneous data and explaining the reasoning of
a model.

2. Applications of Change Detection

Change detection is quite a broad term that encapsulates anything from low-level pro-
cesses in algorithms such as edge detection to high-level tasks that must employ contextual
understanding to determine significant change. This section will review applications of the
latter, which include methods for detecting differences on a spatial scale, on a time scale,
on triggered objects or on some hybrid of these types.

In many of these applications, it is sometimes desirable to distinguish instances of
change by capturing slight and subtle differences. For instance, it may be desirable to
track the trend of continuous change in the recent past (e.g., to track the progression of a
disease [1]) for each instance. It is also often necessary to accommodate intra-class variation
for a CD system to be effective in its intended application, i.e., in applications such as
biomedical diagnosis and all-important buildings (e.g., dam) monitoring, it is critical to
guarantee detection sensitivity and accuracy of minute changes in each observation by
taking measures to maximise the signal-to-noise ratio by adapting our reasoning specific to
the class of object we are looking at.

This practice is known as fine-grained (FG) data analysis, which targets the study of
objects/phenomena from subordinate categories, e.g., if the base task is to detect changes
in human health, the FG task may be to detect changes specific to a specific person. FG
analysis is a long-standing and fundamental problem because small inter-class variations
in the phenomenon of interest can often be masked by large intra-class variations de to
ancillary data [2]. However, it is an important problem and has become ubiquitous in
diverse CD applications such as automatic biodiversity monitoring [3], climate change
evaluation [4], intelligent retail [5], intelligent transportation [6], and many more.

2.1. Remote Sensing

Remote sensing (RS) is the collection of images of an object/area from afar, typically
from a satellite or aircraft and usually of the Earth’s surface. CD is an important aspect of
RS as a tool to reliably quantify spectral differences in the radiation received from features
of interest, whether it be for the study of spatial differences in surveying applications
such as land use and land cover classification [7], agricultural analyses [8], environmental
monitoring [4], disaster assessment [9] and map revision [10].

Handling uncertainty is one of the main concerns in these applications as many
external factors, such as sensor gain (random error due to imperfect calibrated camera
sensor arrays), image noise and atmospheric conditions [11] influence the absolute sensor
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readings, which means that corresponding subtle differences between images, even in the
same location, in the large datasets, which are typically accrued, is not so straightforward.
Specialised CD techniques for addressing this concern include fuzzy logic, Monte Carlo
analysis and geostatistical analysis [12].

These methods employ different forms of reasoning in order to take into account un-
certainty present even in “ground truth” data. Fuzzy logic employs membership functions
to express the vagueness of labels (e.g., land cover may vary continuously in transition
zones), thus fuzzy classes are assigned in proportion for each entity and some ambiguity
is mitigated. Uncertainty due to human error during the manual labelling has also been
taken into account by explicitly incorporating label jitter (inconsistencies in labelling near
class boundaries arising from human error in the annotation process) into the model train-
ing process in the form of an activity boundary smoothing method that explicitly allows
overlapping activity labels [11]. The Monte Carlo method is a paradigm that has to do
with randomness—a random sample, drawn from the error probability distribution of each
measurement, is added to that measurement, and the net effect on the overall picture is
stored. This procedure is repeated several hundred times and the resulting collection of
maps is analysed to see how measurement uncertainty has propagated to the outcome.
If many of the maps show a large variation in a measurement at a particular location, then
we know there is a lot of uncertainty. Lastly, geostatistics can also be useful in improving
measurements in remote sensing through the use of statistical understandings of spatially
varying properties. For example, the expected range of the difference in measurements
over a region (described in what is called a variogram) is directly related to texture and/or
object size. Bayesian inference is also often applied in geostatistics to interpolate the value
of a random field (e.g., the elevation, z, of the landscape as a function of the geographic
location) at an unobserved location from observations of its value at nearby locations.

Terrestrial based mapping applications also apply such CD techniques to overcome
uncertainty arising from large sudden changes in camera pose, dynamic objects (i.e., objects
that can be removed from a scene and thereby affect its appearance) and limited field of
view. Three-dimensional sensing has become very popular for aiding in overcoming
some of these challenges as recently, sensors have become available that can provide
reliable depth information for each pixel. These sensors allow the physical geometry of
objects to be measured with relative immunity to illumination variations and perspective
distortions, which enables simple geometric comparisons of extracted 3D shapes with
simulated reference shapes to be effective for change detection [13]. Challenges in this
area include misalignment in point cloud registration and designing algorithms efficient
enough to compensate for the increasing data volume.

2.2. Video Surveillance

In simple computer vision applications, where the sources of uncertainty can be
constrained (e.g., in industrial manufacturing lines where lighting and environmental con-
ditions are well controlled), CD techniques such as edge detection in images are a powerful
tool. For example, high precision industrial vision/sensing systems for the inspection
and categorisation of objects can achieve accuracies well within the allowable tolerance of
standard measurement instruments automatically, non-invasively and without requiring
precise fixturing with the aid of high-resolution cameras, a lot of specialised knowledge in
machine vision and edge detection [14] and sub-pixel detection techniques [15].

The most common use cases of more complex applications of CD in video surveillance
to date entail abnormal changes of foreground human behaviours/activities that could pose
damage or danger to human properties and lives, e.g., fall detection [16], aggressive/violent
behaviour detection [17] and pedestrian intention estimation for advanced driver-assistance
systems (ADAS) [18]. These applications require change-detection to happen in real-
time and in unregulated environments (environments where variables such as lighting
conditions, camera pose, object pose and object characteristics are relatively ill-constrained
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compared to industrial/laboratory conditions). The challenges associated with these
requirements are discussed further in Section 5.1.

2.3. Healthcare

CD is an extremely common task in the healthcare sector since medical diagnoses are
essentially based on the difference between a patient’s state and known “healthy” condi-
tions or their previous state. Scientists are now trying to automate some of these processes
to relieve some of the burden on the medical sector arising from the demographically older
population and enable more ubiquitous and personalised remote healthcare solutions.
Some of this research investigates the use of wireless sensors for monitoring the physiolog-
ical profile of the wearer in a continuous, real-time, and non-intrusive manner for the early
detection of illness/incident [19,20]. Continuous monitoring involves the recognition of
complex patterns across a wide variety of scenarios, e.g., as patients make lifestyle changes
during recovery, and fine-grained analysis as each patient will behave differently [21]. It
is also desirable to perform CD on the edge (i.e., for the algorithms to be processed on or
close to the sensor in an Internet of Things network) to mitigate the need for raw data to be
transmitted and save bandwidth but more importantly where real-time data processing
and decision making are important for closed-loop systems that must maintain critical
physiological parameters [22]. The reduced processing and memory capability of hardware
on the edge necessitates for algorithms to be lightweight and efficient. Maintaining CD
performance in the face of problems deriving from changes in data distribution over time
is also a challenge for which distributed learning systems are a promising proposition. This
is where each edge node implements part of a common neural network and exchanges
weights with other peer nodes, and this framework can efficiently deal with covariate shift
as only the device containing the first layers of the network has to be modified.

CD algorithms also play an important role in diagnostic fields involving signal anal-
ysis such as cardiology [23] and the analysis of medical images, e.g., in retinopathy and
radiography [1,24]. CD also has applications in sensor-assisted/robot-assisted surgery in
the analysis of data from sensors for detecting changes in tissue characteristics [25].

2.4. Monitoring Man-Made Systems

Complex computer-based systems aimed to assist/automate tasks that consist of
multiple interconnected components take considerable effort to maintain. The monitoring
and alerting of changes to the procedures within these systems is of great importance to
ensure no alterations made during system maintenance interfere with critical functions.
Examples where CD has been implemented include clinical decision support systems [26],
web ontologies [24] and safety-critical software [27].

The modelling of dynamic systems can also be considered an application of CD
principles, e.g., in the detection of sensor and actuator failures [28] and the tracking of
manoeuvring vehicles/robots [29]. System dynamics endeavours to derive a mathematical
model of the non-linear behaviour of complex systems in order to understand and track
them effectively. In practice, these models not only have to reflect the behaviour of the
system but must also accommodate deficiencies in the sensing hardware used to monitor it.
For example, some models account for measurement drift by appending a second-order
term that describes the characteristic behaviour of the sensor between calibrations [30]
while others learn the interaction between the system and sensor(s) as a whole with a
neural network [28]. In addition, abrupt sensor faults can be addressed by sampling over a
longer time window when training such a neural network [28].

3. History of Change Detection

In this section, we will give a brief overview of the evolution of the tools available
in the field of CD. As these tools progressed, the size, dimensionality and complexity of
the data the algorithms were capable of processing also progressed. Methods initially
focused on univariate time series data that followed parametric assumptions and then
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began learning non-linear relationships in non-parametric sequential data with machine
learning, eventually being able to model multivariate, non-stationary data and finally were
able to process high-dimensional computer vision data with deep learning.

3.1. Statistical Methods

Early research in CD was concerned with change point detection in sequential data.
The main application area for this research was industrial statistical process control (SPC),
where the approach is to detect the changes in the mean of the time series, assuming
the baseline process to be stationary and the shift pattern to be a step function that is
sustained after the shift. The theory behind change point detection is known as sequential
analysis. Some notable methods include Seasonal Trend Decomposition using LOESS
(Locally Estimated Scatterplot Smoothing) [31] and PELT (Pruned Exact Linear Time)
algorithm [32]. STL decomposes the time series into three components: trend, season and
residual where the rate of change and smoothness of the season and trend, respectively,
can be tuned to the periodicity of the input data. PELT, a more recent algorithm, uses a cost
function to minimise the computational cost of detecting the optimal number of change
points. These algorithms have been integrated into many programming frameworks [33]
and are efficient and non-parametric but require fine-tuning to be effective, e.g., PELT
requires the penalty to be adjusted to prevent over/underfitting.

Slightly more powerful statistical CD schemes for non-parametric problems are based
on generalised likelihood ratio statistics [34], which assume that signal patterns follow
a known distribution during “normal” conditions and deviation from this distribution
is distinguishable and is an indicator that a change has occurred. These methods are
far more “automatic” in that they do not require manual oversight or tuning. A classic
example is the Conventional Cumulative Sum (CUSUM) algorithm, which monitors the
correlation of signal patterns with, for example, a Gaussian distribution with mean µ and
known standard deviation σ, and accumulates deviations from these statistics until they
reach a certain threshold. If the threshold is reached within a predefined time window
then a change has been detected [35]. Some variants of CUSUM are also able to handle
non-stationary sequences (where the “normal” distribution can shift) [36] and FG risk
adjustment (by replacing static control limits with simulation-based dynamic probability
control limits for each subject) [37].

In applications where data may be subject to a variety of sources of variation that
influence the distribution of occurrence of particular phenomena (e.g., long-term periodic
signal variation due to the day of the week/time of day, etc.), the source of deviations
may be accounted for and recognised so as not to falsely trigger real anomalies. However,
models become increasingly complex the more exclusions it has to accommodate and it is
often not possible to identify all possible sources of noise during system design. Therefore,
algorithms must be able to automatically learn to differentiate noise from natural signal
variation in a wide variety of scenarios with limited information. This class of algorithm is
known as machine learning, of which early methods used techniques such as Gaussian
Mixture Models, which represent signal relations as probability distributions and compare
them against each other [37], or kernel functions and later work, which took advantage of
the acceleration of machine learning with parallel processing, which we will cover in the
next section.

3.2. Deep Learning

Recently, there has been a big jump in our ability to recognise complex features thanks
to a development called deep learning (DL), and more specifically, the neural network
(NN) computing architecture, which emulates the theorised functioning of the human
brain. The adjective “deep” is often assumed to mean that the architecture consists of
many layers of computing cells, sometimes called “neurons”, that each perform a simple
operation. The result of each computation being an activation signal that is passed through
to the neurons in proceeding layers. Each neuron assigns a weight to each of its inputs
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and adds a bias value if necessary. By tuning these weights and biases, a model can be
trained/learned to capture “deeper” local information and features through exploiting
self-organisation and interaction between small units [38]. It is also for this reason that deep
neural networks (DNNs) are often computed using GPUs, or similar hardware suited to
matrix multiplication, and the availability of such computing resources is what has fuelled
the recent activity and great strides in the predictive capability of artificial intelligence.

The power of DL comes at the cost of the need for large amounts of data to learn
from. In terms of whether this data requires manual labels, most deep learning approaches
can be grouped into supervised and unsupervised methods. Supervised methods can
generalise better but only where large annotated datasets are available, which for less
popular applications such as CD and FG recognition is not that common. However, there
are many methods for training DL models in such circumstances, in both supervised and
unsupervised settings [10], including one-shot learning, generative-adversarial learning
and structure/theory-based methods, which will be expanded upon in this review.

4. Representation Learning for Fine-Grained Change Detection

The main function of RL is to encode higher-order statistics of convolutional acti-
vations/features learnt by a DNN to enhance the mid-level learning capability, i.e., the
focus is on enhancing the intermediate feature descriptor learned by a DL model to output
a “good” representation of the input data. This field has become an important research
track in the area of machine learning, intending to provide more informative numerical
representations of the observed data. Naturally, progress in this field is applicable in FG
CD applications also, as good representations provide a means of discrimination based
on intrinsic data properties while also determining the relation between entities. In this
section, we will discuss training regimes, ways of representing change and ways of com-
municating/interacting with change representations concerning the applications discussed
in Section 2.

4.1. Change Representation

The motivation for the task of learning to represent change lies in the fact that in
some cases, humans can distinguish and approximate subtle differences from one instance
to the next quite easily regardless of the domain with very little training. This begs the
question, how does the brain detect change? Researchers found that the longer participants
are exposed to the initial texture, the faster their reaction time and ability to identify the
changes [39]. This implies that our ability to detect change relies on our becoming familiar
with a baseline pattern and compartmentalising that familiarity, allowing the raw data
pertaining to the normal state to be processed in the background, and more effort may be
allocated to noticing deviations from normal conditions.

Most change representations (CR) contain two elements. The first element is some
description of the discriminative visual features between normal and changed samples and
the second is some means of classifying/quantifying the change between samples. For the
first element, many vision-based applications, particularly in RS, just produce a visual
output, called a change map, of which pixels have changed between the corresponding
images of two datasets [10]. Additional information concerning the second element of CR
can be encoded as binary, triple (i.e., positive, negative or no-change) or type indicators
of change for each pixel in these change maps [13]. Most non-visual applications (and
applications that do not just have visual information) work with a propositional feature
vector representation of data. This means that each instance is represented as a vector
and the components of the vector are either binary, nominal or numerical indicators of
what features are present in the input data. Both first and second elements of CR are
contained within this feature vector because (a) the distinguishing features are learnt using
machine learning and (b) the vectors are structured such that some means of measuring
the similarity between vectors may be used to classify the type and degree of change. This
notion of similarity may be a distance measure, a graph encoding or the result of any vector
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or graph operator between feature vectors. We will examine the frameworks for encoding
these relationships between representations in the subsequent subsections.

In a supervised setting, each CR requires labelling. The number of labelled training
samples required to train a model with sufficient generalisability is dependent on the nu-
merosity, complexity and consistency of the various interactions between the components
of the projected feature vector. It is also necessary for this training dataset to be balanced,
i.e., the dataset must contain IID (independent and identically distributed) samples of
data and their associated labels so that probabilistic models do not favour classes with the
largest proportion of observations. These dataset management requirements are especially
difficult to manage in online learning, domain transfer and open-set classification problems
where new objects must be recognised without impairing performance on previous old
objects [40].

4.1.1. One-Shot Learning

One way around the issues of dataset management and online model retraining
is to be able to learn from fewer data so that when new objects/classes are observed,
they may be recognised the next time they are observed. This is a challenging machine
learning problem and is often referred to as zero/one/few-shot learning where objects
must be distinguished as belonging to distinct classes based on zero/one/few previous
observations, respectively. In this setting, learning is based on similarity rather than label
assignment, and the training set X considers pairs/triplets of samples at a time, splitting
them according to their similarity into the sets

S = {(xi, xj) ∈ X ×X : xi and xj are similar},
D = {(xi, xj) ∈ X ×X : xi and xj are dissimilar},
R = {(xi, xj, xl) ∈ X ×X ×X : xi is more similar to xj than to xl}.

The way in which the pairs/triplets (most methods sample triplets and therefore we
will hereafter refer to the samples as triplets) are split is dependant on the end task, i.e., on
whether we want to do classification, ranking or regression. In a classification setting,
similar pairs in S belong to the same class and dissimilar pairs in D do not. In ordinal
classification/ranking, the degree of similarity can be considered based on the ordering of
the classes in R. In metric regression, similarity or dissimilarity (in the sets S and D) may
be based on proximity to a target value within a certain margin.

This concept of having a set of datasets rather than there being one large dataset
is central to the implementation of one-shot learning. Each set can contain relatively
few annotated examples per class, which alleviates requirements for a large balanced
dataset. Machine learning architectures that can learn from this data include meta-learning,
manifold learning and metric learning. These architectures will be described further in
Section 4.2, but in overview, these methods ensure more a reasonable speed of convergence
compared to conventional deep learning by utilising some way of enforcing consistency
between the outputs of training batches. This consistency may be gained by mapping
the feature vector outputs to a latent space/manifold where the relative distance between
feature vectors is regularised in metric/manifold learning or by using techniques such as
episodic memory replay in meta-learning.

4.1.2. Graph Embedding

Of course, it is not always possible for propositional features to encode all the knowl-
edge available in the original data. However, knowledge graph embedding is an effective
yet efficient way of converting feature vector representations into a low dimensional space
in which the graph structural information and graph properties are maximally preserved.
This can be hugely advantageous as embedding a graph G = (V , E) with node data points
va ∈ V and edge similarities E ∈ V × V , that reflect auxiliary information and relation-
ships between entities can reveal interesting properties that cannot be seen otherwise [41].
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Graphs can be directed or undirected (i.e., edge relationships act in one direction only
or both directions), sparse or dense (i.e., the number of edges is close to the minimal or
the maximal number of edges) and connected or disconnected (i.e., there is a path from
any point to any other point in the graph or there is not). Furthermore, relations can be
represented as operations in the vector space, e.g., vectors, matrices, tensors, multivariate
Gaussian distributions or even mixtures of Gaussians. The embedding process involves
a scoring function to measure the plausibility of each relation on which optimisation is
performed to maximise the total plausibility of the graph and mitigate data sparsity [42].

4.1.3. Unsupervised Learning

In unsupervised representation learning, the gist is to learn an underlying low-
dimensional subspace in which the geometric distances between the majority of the ob-
served data are preserved.

Self-supervised learning is an unsupervised learning approach that involves changing
or holding back certain aspects of the data in some way and training a model to predict or
generate aspects of the missing information. A common workflow is to train a model on
one or multiple pretext tasks (usually to reproduce an input image in a different context,
the context being provided by a separate reference image) and then feed the mid-level
latent representations of this model to fine-tune a simple model for the downstream task
(e.g., change detection). For example, the authors of [43] have demonstrated this workflow
in a CD application by enrolling a generative temporal prediction model to predict what
a scene would look like at a given time-step and then compare the result with the actual
image when that time comes about at runtime. Any deviation from the generated image
is taken to be an indicator of a deviation from the natural expected sequence of events
and a change detection is triggered. Most generative models have the goal of creating
diverse and realistic images, but they can also be used as a specialisation of self-supervised
representation learning were the goal is producing good features generally helpful for many
tasks. Self-supervised learning offers an appealing alternative to supervised learning in
that they are trained to model the full data distribution without requiring any modification
of the original data. This field can be quite powerful in change detection without any prior
knowledge and with few data samples because generative augmentation techniques can
be used to learn representations that are invariant to augmentation signatures [44].

4.2. Types of Representation Learning Architectures

Here we discuss the base feature extractors that may be used to learn change repre-
sentations. The choice of the format of change representation (discussed in Section 4.1)
determines what architecture is most appropriate for learning to generate representations.

4.2.1. Meta-Learning

Meta-Learning or “learning to learn” refers to the power to adapt previous learning
experience to new, unseen, small data. Most of the techniques reviewed in this article
could be classified as some form of meta-learning; however, the label is generally used for
gradient-based approaches. The most representative of such techniques is MAML, where
the focus is to meta-learn the best initialisation of parameters for a task learner. In this
way, the perspective is switched from learning how to perform on data to learning to
perform tasks. The learnt model assumes a task structure that incorporates exploitable
meta-knowledge, i.e., a model that meta-learns would learn to bind data representations to
their appropriate labels regardless of the actual content of the data representation or label,
and would employ a general scheme to map these bound representations to appropriate
classes or function values for prediction [45].

Some of these techniques can be prone to catastrophic forgetting, i.e., if we were to
retrain the model again on the new data we want to accommodate in our task, we can
indeed, for example, learn to recognise the features of the new object; however, the tuning
done to the weights and biases has no regard for the other tasks we have trained the model
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to do already and so interferes with previously learned knowledge. This problem has been
approached with many techniques, including regularisation (which imposes constraints on
the update of the neural weights), dynamic architectures (e.g., collections of sub-networks
and denoising autoencoders) and complementary learning systems and memory replay
(which emulate the interplay of episodic memory and semantic memory in the human
brain with networks that take both as input) [46].

4.2.2. Metric Learning

As change detection is essentially the detection of differences observed in objects/
phenomena, it is natural that distance/similarity-based machine learning solutions be
suited to this task. Distance metric learning (DML) is a similarity-based machine learning
method where data slices are passed pairwise through a siamese/triplet/quadruplet
network, which is optimised to produce projections to a latent space with some notion
of distance, such that similar samples are placed close together and dissimilar ones far
apart. The notion of distance between the feature vectors projections (also referred to as
embeddings) arises from the use of some distance metric (e.g., Euclidean distance) in the
loss function implemented during training (as illustrated in Figure 1).

There are many types of loss function, the simplest being contrastive loss

`contrast(i, j) := yijD2
ij + (1− yij)

[
α− Dij

]2
+

.

where yij serves as a binary indicator of pair similarity, if a set of inputs belong to the set
S (i.e., are positive pair), yij = 1, and the loss function minimises the distance between
their associated feature vectors (Dij) and when input pairs belong to the set D (i.e., are
dissimilar/negative), the loss function maximises Dij until they are at least a margin α apart.
Iterations of loss functions to proceed contrastive loss (triplet loss, angular loss, margin loss,
N-Pairs loss, also known as, InfoNCE, multi-similarity loss, tuplet margin loss and circle
loss) introduce additional features such as placing fewer restrictions on the embedding
space and allowing the model to account for variance in interclass dissimilarities [47].
For example, triplet loss:

`triplet(a, p, n) :=
[

D2
ap − D2

an + α
]
+

.

merely tries to keep the distance to positives p smaller than the distance to negatives
n for every anchor a, which means a constant margin α does not need to be selected
(just a minimum one). It also has the consequence that the embedding space can be
arbitrarily distorted, i.e., that visually diverse classes are embedded over a wider space
than similar ones.

The advantages of metric learning algorithms include: (1) they are very simple and
easy to implement; (2) they are usually efficient in space and time complexity; (3) they
are often theoretically guaranteed [48]. The primary advantage comes from the high
recognition capacity of the deep base model. DML is essentially a way of deploying DNN
in an instance-based fashion, enabling remarkable FG recognition performance. However,
the high dimensionality of the intermediate features can make it impractical for realistic
applications, especially for the large-scale ones [2]. A critical element of metric learning
is the selection of triplets during training (sometimes referred to as triplet mining, see
Figure 1 for position in network). Triplets need to be selected such that consecutive batches
vary in a gradual way so that the network can actually learn between batches but also such
that all the important variations within the dataset get encountered with enough frequency
during training so that the model can captures that variability. Different mechanisms for
triplet mining exist. For example, hard triplet mining selects the most difficult triplets for
each anchor. The difficulty of triplets is determined by running the most recent model at
each training iteration to get the distance of all positive and negative embeddings for a
set of anchors. Hard triplet mining selects the most distant embedding in S and the least
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distant embedding in D for each anchor. Since it is computationally infeasible to aggregate
loss over all O(n3) triplets and hard triplets can cause models to collapse, heuristics are
used to speed up convergence. A well-known miner is semi-hard negative mining, which
samples anchors and positives in batches from X and S, and finds the closest negatives
within the batch further away than D(a, p) [49].

Figure 1. A triplet-based metric learning architecture. Each of the three samples is passed through the
same embedding network, and the loss function determines how to space them apart in latent space.

4.2.3. Deep Generative Models

Deep generative models have a type of architecture where the output is some transfor-
mation of the input with the same dimensionality. Needing only a desired image output
as a target to generate, this architecture can leverage smart training techniques to learn
from a huge amount of data that are not extensively annotated. This is one of the main
reasons why generative models have made large strides in our ability to successfully model
complex, high-dimensional data in applications such as image generation [50], video gener-
ation [51] and point cloud completion [52] and why they have been implemented in many
applications related to CD, including one-shot learning [53] and image interpolation [54].

The training technique may be direct (i.e., comparing the true and the generated prob-
ability distributions) or indirect (i.e., adversarial training where a discriminator network
downstream from the generator network has the task of discriminating between ground
truth and generated data and it is the generator’s job to fool the discriminator) [55].

The most well-known of the former direct comparison techniques is the variational
auto encoder (VAE), a technique that can model high-dimensional data flexibly to produce
low-dimensional embeddings. The “variational” in VAE comes from a concept called
variational inference, which refers to a technique for approximating probability densities
through machine learning. “Auto” refers to the automatic regularisation of encoder embed-
dings during training and “encoder” refers to a type of neural network that produces a new
feature representation from a set of input features. Similar to the generator-discriminator
principle described in the last paragraph, the VAE adopts an encoder–decoder architecture
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(see Figure 2), where the encoder produces some distribution over the latent space and the
decoder reverses the process on a sample of the encoding to produce something close to
the input/target as closely as possible using an iterative optimisation process that can be
trained by gradient descent to minimise the reconstruction/generation error. In applica-
tions where the encodings that reside in the mid-level latent space between encoder and
decoder are taken as the output, VAEs can be considered to be a form of representation
learning in that the same transformations and theory in geometric/information calculus
may be applied to the latent space but gradient descent and deep learning is harnessed dif-
ferently through the probabilistic nature of latent space distributions and the regularisation
of these distributions using Kullback–Leibler divergence [56]. VAEs are considered to be
more flexible than metric learning but less interpretable although there are techniques for
interpreting representations coming to the fore [57]. For example, transformer networks
utilise the mechanism of attention to indicate where in an input image salient activation
occurs [58,59].

Figure 2. The autoencoder architecture can be considered a form of representation learning where
the mid-level encoded data are interpreted as output. Reproduced with permission [60].

The latter form (indirect generative models) are known as generative adversarial
networks and have many advantages, including being able to learn spatial relations and
temporal correlations from target data and the ability to synthesise more training sam-
ples [61]. Generative techniques feature in many recent RL methods for this reason and can
be very interesting in FG change detection applications where pattern discovery is essential
to every new case. For instance, they have been integrated into the training procedure of a
one-shot learning framework by [62] and have been used to generate augmentations for
unsupervised anomaly detection [44].
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As we have mentioned, generative models operate on the principle that distributions
can be learned from data. However, it is often hard to understand and interpret the
resulting embeddings and guide the representations with some downstream task in mind,
i.e., to create data from noise. To this end, the recent state-of-the-art propose techniques
such as bipartite attention between the transformer features and a selection of latent
variables [58] and inconsistency loss for measuring the degree to which the model violates
the assumptions on an adversarially-generated set of examples [63].

4.2.4. Geometric Deep Learning

Graphs are used extensively in applied science as a way of organising data that
prioritises certain patterns so that relationships between interacting features can be effi-
ciently computed, stored and accessed. Recent years have seen a surge in approaches that
automatically learn to encode graph structure into low-dimensional embeddings, using
techniques based on deep learning and non-linear dimensionality reduction to leverage this
information within graphs. This emerging domain is known as geometric deep learning
(GDL) [64]. The authors of [65] provide a conceptual review of key advancements in the
area of learning graph representations, which include matrix factorisation-based methods,
random-walk based algorithms, and graph neural networks (GNNs). Of these techniques,
GNNs are attracting the most interest as natural generalisations of convolutional networks
to non-Euclidean graphs. i.e., graph convolutions are similar to the vanilla convolutions of
CNNs except instead of operating on a grid, they operate on neighbouring nodes. This
difference means that the numbers of nodes connections vary, and the nodes are unordered.
There are two types of graph convolutions: spectral and spatial. Spectral convolutions
consider graph representations as signals and operations such as the Fourier transform
and other signal processing techniques to aggregate node information. Spatial methods
represent graphs using pseudo-coordinates and use operations such as message passing to
aggregate information between nodes. The former resembles vanilla convolutions mathe-
matically and the latter conceptually. They both require some method of characterising
the neighbourhood of each node with the use of eigendecomposition (the factorisation of a
matrix into its eigenvalues and eigenvectors) or other related operations.

The simplest of these operations is adjacency learning, which is useful in applications
where the input set is believed to have some geometric structure, but the metric for
measuring the geometry is not known a priori. For example, the GNN shown in Figure 3
generalises to learn edge features Ã(k) before every convolutional layer:

Ã(k)
i,j = ϕθ̃(x

(k)
i , x(k)j ) , (1)

where ϕ is a symmetric function parametrised with, e.g., a neural network or decoder-
encoder architecture, which learns a non-linear combination of the absolute difference
between the individual features of each pair of nodes. GNNs contain relatively few layers
(only two adjacency-convolutional layers are used in Figure 3) compared to CNN as the
graph structure means fewer convolutions are required to share information between all
nodes/regions of the input data.

Another important operator is the Laplacian operator ∆, which measures how a
function changes “on average” as you move away from a given point. As will be discussed
in later sections of this article, this divergence-based operator plays a key role in the analysis
of manifolds and, in the context of GDL, Laplacian eigenfunctions generalise the classical
Fourier bases, allowing spectral analysis to be performed on graphs [64]. For simple
undirected graphs G = (V , E), the graph Laplacian

LG = ∑
(i,j)∈E

(
ei − ej

)(
ei − ej

)> (2)

which can be denoted
LG = D− A (3)
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where A is the adjacency matrix and D is the degree matrix, a diagonal matrix that contains
information about the degree of each vertex—that is, the number of edges attached to each
vertex. For other types of graphs, there exist generalisations of LG , such as the random-walk
graph Laplacian for large graphs [65] and the Laplace Beltrami operator for manifolds [66].
Thus, it is commonly used in many fields where a link needs to be drawn between discrete
representations, such as graphs, and continuous representations, such as vector spaces
and manifolds.

Figure 3. graph neural network for representation learning. Note: dotted lines indicate learnt edge
features and node colour changes indicate the aggregation of information by convolutional layers.
Reproduced with permission [67].

An important property of graph operators is that they are symmetric, i.e., their output
given in arguments is the same regardless of the order of the arguments, and positive
semidefinite, i.e., that their eigenvalues are non-negative, which is important for facilitating
efficient optimisation of complex higher rank matrices. Using local operators of graphs
offers a powerful balance between expressivity and complexity of representations while
also exploiting stationarity, connectivity and compositionality in the same way CNNs
do [64].

GDL is being deployed in more and more applications by applying a graph structure
to data, e.g., the state-of-the-art in change representation from electronic health records
with missing values was achieved by creating nodes for medical concepts and implying
connections among thousands of these concepts with a hybrid of VAE and GNN architec-
tures that harnesses the qualities of graph representation and variational inference [68].
In the context of change detection, GNNs have also been used for change-point detection
in multivariate time series with changeable correlation structure [69], in the unsupervised
analysis satellite image time series [70], in contagion dynamics [71] and for predictive
maintenance [72].

4.3. Understanding the Latent Space of Representations

The latent space in which learnt representations reside can serve as feature spaces
for downstream machine learning applications, including classifiers and other supervised
predictors, for example, k nearest neighbours, softmax and fully convolutional layers.
The analytics and inferences that can be made do not stop here, however, as there is
a wealth of untapped potential that has yet to be exploited in many applications from
domains such as geometry, information science and hybrid–human intelligence. This
section will explore techniques that have been introduced in some of these domains.

4.3.1. Latent Space Visualisation

The interpretation of latent space often requires subtle and implicit domain knowledge,
for which human judgment is essential. However, dimensionality reduction techniques are
often essential for visualising multi-dimensional latent spaces as humans have difficulty
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in reasoning about space beyond three dimensions. Common projection methods include
t-distributed stochastic neighbour embedding (t-SNE) and principal component analysis
(PCA). T-SNE is a non-linear technique that aims to match neighbours in the original
space to those in the lower dimensional embedding. It is popular for exploring very
high-dimensional data and with data with many embedding groups if the perplexity of
the output projection is interpreted appropriately [73]. Uniform manifold approximation
and projection (UMAP) is another non-linear technique that better preserves inter-cluster
relationships. These non-linear algorithms highlight cluster structures but can obscure
linear relationships among points. PCA is a linear transformation and so preserves linear
relationships [74], which might be beneficial if further inferences can be drawn from the
relative distances between embeddings.

Recently, interactive tools for visualising latent space have been developed, initially
focusing on a specific domain and a narrow set of tasks, and even more recently, such inter-
active elements have been compiled into integrated tools. Latent space cartography [74]
seeks to guide users through a comprehensive workflow that supports tasks common
to latent spaces across various input data types and RL algorithms. These tasks include
changing the desired type and complexity of projection algorithms, querying, filtering and
highlighting groups of embeddings and visualising the similarity of these groupings with
attribute vector arithmetic [74] (shown in Figure 4a).

Transformed space, colourisation, textured plot overlays, contour maps (equidistant
lines) and interpolation paths can help make sense of the measure and progression of
change in relation to meaningful metrics [75] (as shown in Figure 4b) and can also be useful
in navigation tasks [76] (as shown in Figure 4d).

Figure 4. Latent space visualisation tools: (a) latent space cartography. Reproduced with permission [74]. (b) Generalised
metric-inspired measures and measure-based transformations for generative models. Reproduced with permission [75].
(c) PHATE. Reproduced with permission [77]. (d) Manifold analysis for navigation tasks, where a navigating agent learns
to predict the upcoming sensory observation, and the dynamical and geometrical properties are captured in a neural
representation manifold. Reproduced with permission [76].
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4.3.2. Multi-Task/Multi-Metric Correlation

Multi-task approaches jointly train a single network to perform multiple tasks, thereby
sharing useful information among the tasks, which significantly improves their performances.

Even when tasks are assumed to be independent, similarities in the adjacent re-
gion/data surrounding objects/events can still induce knowledge sharing (inductive bias
transfer) [78]. Even early statistical methods took advantage of this. Multivariate surveil-
lance methods based on likelihood ratio tests in the presence of spatial correlations are
effective in taking advantage of spatial correlations to provide faster and more accurate
detection in bio and healthcare surveillance [78] and industrial process control [79]. Multi-
task learning (MTL) makes use of a complementary loss function, i.e., the loss function
sums the result of several sub-functions, each responsible for one or more tasks. The sheer
existence of multiple tasks means that the loss function will not approach zero until all
sub-functions are optimised, which causes the model to prefer the hypothesis that can
solve all tasks simultaneously [80]. One challenge with this approach is weighting the
sub-functions of the complementary loss function so that each sub-function’s contribution
to the overall loss is balanced [81].

The sharing of information between tasks induced by MTL has led to it being used
just to improve the performance of the primary task [82] even when just using auxiliary
unsupervised tasks on unlabelled data [83]. Many multi-task metric learning (MTML)
approaches learn a Mahalanobis distance parametrised by a positive semidefinite (PSD)
matrix A, which facilitates the learning of a linear transformation L in feature space, since
A = LT L, to be applied so that all embeddings are mapped to one feature representation
space that properly separates different categories for several tasks simultaneously. This
methodology syncs well with the concept of sparse metric learning. If the principal compo-
nents of input feature vectors Xi are expected to be sparse, then applying the transformation
vector, X̃i, should ideally nullify columns containing noise to yield a feature vector with
fewer dimensions and make learning less time-consuming and expensive [84]. This type
of regularisation approach has also been shown to apply to generative/autoencoder net-
works [83] and GNNs [85]. The most appropriate architecture depends on the multi-task
problem. For example, GNNs can encode the topological structure of multiple properties
in a more natural way for applications such as molecular chemistry [85]. While generative
models can generally capture more salient features within the data, the ground truth feature
information is intractable at inference [83], whereas DML-based approaches can learn to
encode FG information into certain metrics in feature space.

A common application on multi-task RL is detecting the subgroups that have similar
characteristics in feature space. One method of doing this is to incorporate a clustering step
(e.g., K-means) into the regression stage so that both grouping and sub-grouping tasks can
be performed simultaneously [86]. A similar approach was taken in an FG building change
detection application, where the authors of [87] adopt an encoder–decoder architecture and
constrain the primary change detection task’s loss function with and an auxiliary semantic
segmentation task to direct the model to better include building footprint detection error.

These techniques can also be adapted for FG analyses, as demonstrated by the authors
of [88], who implement a regularised multi-task ordinal regression model with shared
representation layers that encode task relatedness in such a way that allows regression of
the progression of disease to be performed.

4.3.3. Alternate Space Representation

Transformations that can be applied to the latent space that are key to mapping repre-
sentations relative to auxiliary and expert-provided data are key to facilitating knowledge
injection a posteriori to refine the metric space specifically to the observation query. These
include geometry preservation techniques, such as using von Neumann divergence to
measure the spread of certain metrics to produce non-isotropic overlays over latent space
projections [89]. Such overlays have been well demonstrated by [75], as shown in Figure 4b
and by [74].
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Latent space can also be transformed into many alternate space representations be-
yond conventional Euclidean geometry, e.g., hyperbolic space with negative curvature,
which can embed tree-like structures [90,91]. Such space representations can reveal data
structure and patterns in a more intuitive form. For example, by fitting embeddings to
a manifold [92], the local curvature at any point can be easily calculated and hence the
divergence of embeddings with respect to each other can be known. In this way, manifold
regularisation can take advantage of labelled and unlabelled information, which can be
useful if there are missing data or in fine-grained tasks where sub-class details must be in-
ferred. Many weakly/semi-supervised approaches are based on the manifold assumption,
which means the sample points are concentrated upon a low-dimensional manifold instead
of being filled in the whole feature space. Traditional low-dimensional manifolds such as
IsoMAP, Laplacian eigenmaps, diffusion maps and local tangent space alignment (LTSA)
approximate the geometric structure of data such that the local geometry is optimally
preserved [93]. Manifold learning algorithms can be categorised as being a hybrid of metric
learning, graph embedding and unsupervised learning. Each essentially takes points in
metric space p ∈ Rr, and use a neighbourhood graph G and/or similarities between points
in order to obtain an embedding in Rs, which can have reduced dimensionality because
the inherent structure has been learned from the data unsupervised [94].

Traditional manifold learning algorithms assume that the embedded manifold is
globally or locally isometric to Euclidean space. However, by breaking that assumption,
some recent techniques have shown it to be advantageous to consider the curvature of
the embedding manifold, i.e, to use geodesic distance rather than Euclidean distance.
These techniques can achieve better stability and reduce the dimension of the general
manifold [95]. The mathematics facilitated by manifold structures has been shown to better
describe continuous change by excavating the curvature information of Riemannian sub-
manifolds as well as distance metrics to uncover the intrinsic geometric structure of local
patches in point clouds [95] and images [96]. The theory behind this is that Riemannian
manifold (M, g) is defined by a positive-definite inner product gp on the tangent space at
each point Tp M, which enforces the manifold to be smooth. The inclusion of tensor Rieman-
nian metrics in the loss function can therefore enforce several geometric relations among
neighbourhoods of embeddings, e.g., regularisation of the angle at an intersection between
any two points, optimisation of the surface integral or regularisation of the extrinsic and/or
intrinsic curvature of the manifold itself. Riemannian metrics can be incorporated into a
metric learning framework without requiring any modifications in the existing deep metric
learning architecture by Riemannian optimisation (enforcing orthonormality constraints
on parameter matrices as part of the loss function), as demonstrated by [96].

A number of techniques have been developed recently to derive structure from few
representations. The authors of [97] have addressed the problem of defining distances
between points on an unknown manifold while taking into account the intrinsic density
following Fermat’s principle, also known as the principle of least time. Hessian regularised
distance metric learning [98] is another example. The Hessian matrix or Hessian is a
mathematical technique that can be used to describe the local curvature of a function of
many variables in the form of a square matrix of second-order partial derivatives of a
scalar-valued function, or scalar field. This can be advantageous in change regression
applications where the Hessian can learn functions whose values vary linearly with respect
to geodesic distance. The approach is especially useful in fine-grained change regression
problems with few labelled pieces of information across the possible range of values, which
can be expected due to the good extrapolating power, i.e., because the outputs of the
functions contained in Hessian vary by linearity with the geodesic distance along the
underlying manifold.

4.3.4. Structured Representations

Structured data infer complex latent structure in data (it can be naturally clustered into
sub-classes or organised based on class-specific properties) but often suffers from computa-



Sensors 2021, 21, 4486 17 of 28

tional and capacity issues when dealing with large amounts of complex, high-dimensional
data, e.g., sequences, trees, and graphs. RL generally focuses on the challenge of convert-
ing structured data to a vectorial representation in the first place, such that subsequent
problems, e.g., similarity/distance estimation, become easy to solve [99]. However, some
recent research has investigated engineering structured representations.

The manipulation of FG representations is a challenging problem, as FG details
are difficult to capture. Most existing CD methods resort to discrete labels, which is
generally only effective for expressing global changes and ignores the manipulation of fine
details. One example solution to address this challenge in an FG expression manipulation
application is to utilise structured latent codes and continuous expression labels [100].

Structure can also be derived from manifold representations. For instance, PHATE,
a visualisation method that captures both local and global non-linear structure using an
information-geometric distance between data points for predicting interactions between
proteins and other biomolecules solely based on structure [77] (shown in Figure 4c). In-
formation geometry preservation in metric learning has also been implemented similarly
using Von Neuman entropy/divergence [89], and Infomax (an optimisation principle that
maximises the average mutual information (MI) between different projections of data,
where MI is the amount of information obtained about a random variable X by observing
some other random variable Y) [101–103].

Another type of structured representation lies in a method we have discussed al-
ready, GDL. A series of translation-based methods have been proposed for knowledge
graph embedding to project the nodes (also called entities) and the edges (also called
relations) of the knowledge graph onto a continuous vector space [104]. The resulting
graph embeddings are therefore structured and similar geometric transformations and
Infomax principles can and have been applied to these embeddings to improve subgroup
relatedness recognition [105]. Although the GNN-based model offers sparse representation
learning capacity, it is limited by the specification of the graph structure design and it can
be non-trivial to generalise it for latent space interpolation [106].

On that note, it is important to be aware that structured representations, whether based
on handcrafted features or incorporated into deep networks, suffer from one drawback.
They aggregate local information from the entirety of the input data, regardless of how
relevant this information is to the recognition task. In practice, however, while certain
regions contain semantic information that contribute to the target label, others naturally
do not. Incorporating information from these uninformative regions, which can appear in
many other categories, will typically yield fewer discriminative representations [107].

Another structured representation is evident in tensor representation learning. Tensors
are generalisations of matrices to N-dimensional space. Aside from holding numeric data,
like a vector does, tensors also include descriptions of the valid linear transformations
between tensors, i.e., it is defined to change coordinates in a certain way under certain
changes of variables and therefore isolates intrinsic geometric and physical properties
from those that merely depend on coordinates. A multi-temporal hyperspectral remote
sensing image change detection approach has been proposed by the authors of [97] to
form a tensor-based information model of underlying features change, which optimises the
organisation mode and maintains the integrity of constraints between different underlying
features. The tensor model allows full use to be made of deep belief networks, support
tensor machine and 3D-DWT wavelet texture extraction technology to improve the change
detection accuracy [97].

5. Challenges, Comparisons, and Future Directions for Change Representation
Techniques

The previous section details a number of techniques that have arisen from a diverse
range of application domains to address challenges and leverage opportunities often
specific to the traits of the data available/requirements of the application. In this section,
we group some of these challenges under categories relating to requirements for adaptable
real-time response, input data inconsistencies and model interpretability. Under each
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category, we discuss some recent approaches to these problems and offer some perspectives
on trends in the uptake of some of these techniques towards addressing these problems.

5.1. Real-Time and Online Change Detection

Most CD applications require change detection to be performed in real-time, i.e., they
require data to be processed sequentially and for change-points to be detected as soon as
they occur or within a certain time window [78]. This can be considerably more challenging
as retrospective offline techniques have the advantage of access to the data before and after
the point to decide whether the data distribution has changed. This problem is known as
quickest change detection (QCD) [16] and is common in applications such as manufactur-
ing quality control and fall/incident detection in patient monitoring. Furthermore, these
applications typically require the algorithms to be deployable on edge devices, which im-
plies real-time processing with limited computation complexity. The more basic statistical
methods excel in terms of computation time and hence are still relevant if the problem is
not too complex, e.g., seasonal-trend decomposition and likelihood ratio statistics to detect
the changes [78]. The segmentation approach used in graphical methods suffers here due
to the high dimensionality of the output difference image/change map; although, real-time
detection is possible if trained properly. Representation learning approaches can be quite
favourable in comparison as good representations need to have low dimensionality by
design and the greater recognition abilities of neural networks.

Another related field of research that deals with the challenge of applying deep
learning to data on the fly is online learning, which requires new classes to be recognised
at deployment. Continual learning or lifelong learning refers to the ability to continually
learn over time by accommodating new knowledge while retaining previously learned
experiences [46,108]. The catastrophic forgetting problem, mentioned in Section 4.2.1,
is present, and with regards to FGCD, we identify the process of CD as being a key
tool for continual learning in general. It has been demonstrated by [109] that detecting
changes in dense RGB-D maps over the lifetime of a robot can aid in automatically learning
segmentations of objects.

5.2. Change Detection on Heterogeneous Data

There are many challenges associated with heterogeneous data sources, i.e., the input
data for each of the tasks might contain missing values, the scale and resolution of the
values is not consistent across tasks and the data contain non-IID instances.

A methodology that may be applied to non-visual data/a hybrid of visual and non-
visual data is to first convert the non-visual data so that it can be viewed as an image (e.g.,
activity data from wearable sensors can be visualised in the form of a density map that
uses different colours to show varying levels of activity [110,111]) and then proceed with
image-based techniques. However, the way that the data are encoded into image form can
influence the results as most convolution-based networks are not permutation invariant.

Another technique that is useful for continuous variables is kernelisation, which is
a technique for replacing input with a kernel, a function that is symmetric and positive
definite. By virtue of positive-definiteness, the kernel function allows us to transform
our input to a domain where we can solve problems more-efficiently and then use tricks
discovered in that domain in the original domain. A classic example of this is in use in
support vector machines for non-linear regression. Furthermore, kernelisation can allow
us to represent the desired output on ordinal, interval or ratio scales, which may be more
useful in some applications. A number of papers have proposed techniques for performing
regression with DML using kernelisation [84,112,113].

Sparse compositional metric learning was proposed by [114]. It learns local Maha-
lanobis metrics for multi-task/multi-class data on sparse combinations of rank-one basis
metrics. Sparse metric learning pursues dimension reduction and sparse representations
during the learning process using mixed-norm regularisation, which results in much faster
and efficient distance calculation [115]. This concept also allows learning on sparse and un-
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balanced data. Much of this type of research took place before the advent of deep learning,
and therefore, there is an opportunity for these techniques to be applied to deep networks.

5.3. Interpreting Change from Representations

Explainable artificial intelligence (XAI) refers to AI that produces details or reasons
to make its functioning clear or easy to understand. These principles can be applied to
the interpretation of latent spaces in RL to assist the evaluation of models, help explain
model performance, and more generally aid understanding of what exactly a model has
“learned” [74].

For example, some papers use discriminative clustering in latent spaces to decide
whether different classes form distinct clusters; however, if we want to explore the latent
space further to understand the underlying structures in the data, we need visualisation
tools [74]. From these analyses, one may discover useful metrics that may be exploited,
e.g., clusters in the latent space may be found to reflect that distance between the same
words from embeddings trained on different corpora signifies a change in word meaning
in certain contexts [116].

5.3.1. Trialling Different Visualisations

A key decision to be made when interpreting latent space, or indeed during any data
analysis, is whether the identified features represent true features of the underlying space
rather than artefacts of sampling. A common example of misreading projections of latent
space is with t-SNE, where conclusions are drawn without trialling different parameters
of the projection algorithm such as the perplexity that needs to be tuned in proportion to
approximately the number of close neighbours each point has in order to balance attention
between local and global aspects of the data.

Persistent homology (PH) is a method for automating this type of procedure by com-
puting the topological features of a space at different spatial resolutions. [117]. Topology
provides a set of natural tools that, amongst other things, allows the intrinsic shape of
the data to be detected using a provided distance. As well as being integral to geometric
deep learning, the field of research known as topological data analysis (TDA) has gained
popularity in recent years using these tools to quantify shape and structure in data to
answer questions from the data’s domain [118].

While homology measures the structure of a single, stagnant space, persistent homol-
ogy watches how this structure changes as the space changes. Each data point is plotted
on a persistence diagram as a pair of numbers (a,b) corresponding to its birth diameter
and death diameter (i.e., the test instances at which a feature was first seen and last seen).
More persistent features appear far away from the diagonal on a persistence diagram,
are detected over a range of spatial scales and are deemed less likely to be due to noise
or a particular choice of parameters. Persistent homology is just one form of topological
signature that can show a great deal of information about a set of data points such as
clustering without expert-chosen connectivity parameters and loops and voids that are
otherwise invisible [118]. PH has been used for the detection of changes in land cover [119],
structural changes in time-varying graphs [120] and brain morphometry [121].
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5.3.2. Explainable Change Detection

Once a change is detected and determined significant, additional analyses are required
to explain the reason change that occurred. This problem is formally known as change anal-
ysis (CA), a method of examination beyond CD to explain the nature of discrepancy [122].
This field of research has explored methods for detecting and explaining change in time
series data [123], remote sensing data [124] and diagnosis prediction. CA methods can
be classified as being parametric or non-parametric. The former is where a parametric
functional form is explicitly assumed to model the distribution.

CA falls in the category of unsupervised learning. Most existing FGCD methods
spend efforts on mining global and/or regional discriminative information from training
data themselves. For example, state-of-the-art methods learn to identify discriminative
parts from images of FG categories through the use of methods for interpreting the layers
of convolutional neural networks, e.g., Grad-CAM (gradient-weighted class activation
mapping) [125] and LIME (local interpretable model-agnostic explanations) [126]. However,
the power of these methods is limited when only few training samples are available for
each category. To break this limit, possible solutions include identifying auxiliary data that
are more useful for change detection specific to each class and also better at leveraging
these auxiliary data [127]. Recently, there has been some interesting progress in applying
Grad-CAM techniques to metric-learnt representations by [128], who generate point-to-
point activation intensity maps between query and retrieve images to show the relative
contribution of the different regions to the overall similarity. Not only can this technique
produce better activation maps, but they are also instance-specific, which we believe is
ground-breaking for FG analyses.

The incorporation of causal reasoning into ML research has also been gaining pop-
ularity in recent years. Traditionally, focusing on probabilities and correlation, ML and
statistics generally avoid reasoning about cause and effect. However, this teaching has
been criticised as being detrimental to the potential understanding, which can be gained
from techniques such as counterfactual explanations, a specific class of explanation that
provides a link between what could have happened had input to a model been changed
in a particular way [129]. Causal representation learning is a by-product of this research
activity, and its applications have reached explainable CD [130,131].

5.3.3. Theoretically Grounded Change Detection

Theoretical research interests related to modelling complex systems require, not only
for system dynamics to be captured and detected by a model but also for these changes to
fit with what we currently understand about the system, e.g., to comply with the equations
we have derived. Incorporating domain knowledge can be hugely advantageous as the
theoretical model provides guidance with which an effective model is supposed to follow;
it helps an optimised solution to be more stable and avoid over-fitting, it allows training
with less data, it would be more robust to unseen data, and thus it is easier to be extended
to applications with changing distributions [132]. However, this type of approach is only
applicable to problems that have been studied extensively, as explaining the origin of
change in terms of individual variables is generally a tough task unless the variables
are independent.

Applications where theoretically grounded CD has been implemented include climate
change [133] and dynamic systems [11]. These works implement techniques related to
knowledge injection discussed in Section 5.3.4. Generally, they use an architecture based
on graph networks to incorporate prior knowledge given as a form of partial differential
equations (PDEs) over time and space. These PDEs can comprise very sophisticated
mathematics, e.g., Lagrangian [134] and Hamiltonian mechanics [135].
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5.3.4. Latent Space Alignment

Latent space visualisations can seem arbitrary and not very meaningful when the
dimensions of projections of the latent space are not aligned/scaled to important metrics
specific to the application.

The performance of the RL crucially determines the type and performance of the
algorithm for delineating the separation between feature sets to a manageable number of
dimensions. However, techniques such as sparse metric learning can also be applied to
further reduce the dimensionality of the embedding representation. Methods for sparse
metric learning include mixed-norm regularisation across various learning settings to
whittle down latent dimensions that do not consistently contribute to producing distin-
guishable representations [115] and sparse compositional metric learning, which learns
local Mahalanobis metrics on sparse combinations of rank-one basis metrics [114].

Expressing representations in relation to familiar metrics can be useful in the visual
evaluation of model performance by highlighting cases where there was an underlying
pattern not explained by the primary tasks (e.g., scene change detection) of an RL approach
but due to some other ancillary variables (e.g., weather). This may be applied to RL to
reveal the interactions of background/ancillary variables by these variables to the axes
of latent space/manifold visualisations, i.e., it may be useful to be able to tell why an
object was classified to belong to a particular sub-class through observation of where
that object lies on a space projection. We propose that by using interactive latent space
cartography, which allows custom axes and colours according to selectable variables of
interest, such relationships may become easily revealed. Moreover, it will help make the
resulting visualisation of the embedding space more meaningful for the application. Such
a visualisation of the feature space that takes into account known priors (e.g., weather
conditions) has been shown to be useful in further refining the predictions at runtime [127].

If such auxiliary variables are known before inference, it may also be useful to narrow
down the CD results to instances that are more likely in light of this new knowledge. This
is known as knowledge injection and has been implemented in different ways depending
on the type of RL. Auxiliary knowledge can be encoded as sparse input to metric learning
techniques, as rules for more accurate relation extraction in generative approaches [63], or to
predict missing links in knowledge graphs [136,137]. Alternatively, a clustering algorithm,
e.g., k-means clustering, could be formulated taking as input the salient background
variables and outputting a function that maps the latent space to valid classifications, thus
maximising the inter-class variance in FG applications.

6. Overview

CD, the problem of identifying changes in data, constitutes an extensive body of
research as many applications are requiring efficient, effective algorithms for reliably
detecting variation. There are many families of CD algorithms that are suitable for different
applications. These include approaches that quantify change statistically, graphically,
and algorithmically and each offer their advantages in the face of the challenges of FGCD
reviewed in this article.

This article has focused on RL solutions, which are a family of methodologies that
exploit the effectiveness of DL in learning representations from little data. In general,
representations occupy a unified feature space to connect heterogeneous objects, thereby
achieving fusion and calculation between different types of information. The feature space
can be transformed, projected and visualised and several novel techniques have been
proposed in recent years, which have benefits to FGCD problems.

Many of these techniques, which we have surveyed in this article, can be incorporated
in an additive fashion, i.e., a representation learner can learn transformations to feature
space with multiple functionalities, including regularisation for sparse metric learning
and or multi-task learning, kernelisation for ordinal regression, geometry preservation for
maintaining intrinsic structure and information-theoretic feature selection and projection
for aligning to known prior understandings. These endeavours aim to provide deeper,
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more interpretable FG predictive capabilities so that important change-points can be
detected more reliably in applications such as patient monitoring and environmental
monitoring. We believe that this is an important pursuit as producing outputs from
artificial intelligence that we can trust involves revealing the reasoning behind predictions
in terms of metrics/relations we understand. There is a lot of activity towards producing
representations that incorporate relational information and more work to do in learning
representations that can communicate the most pertinent FG information for any given
query to be useful and trustworthy in practical change detection applications.

A gap in the research that we have touched on in this article is how the mapping
element of RL may be exploited in situations where the salient features in arbitrary CD
problems vary dependent on the intrinsic structure of data and auxiliary background
variables. If the distribution of representations per any given variable may be projected
and also observed with the use of interactive visualisation tools, then the influence of each
variable on the CD task may be better understood. This review has observed some devel-
opments in this direction, although most still use unsupervised clustering techniques and
deep learning, multi-task and fine-grained recognition concepts can be further exploited
in this field. For example, there is an opportunity for the sampling strategy of a few shot
learning methods to better exploit change metrics, and for prior information on salient
background, variables may be exploited at the inference stage of the RL approach, possibly
by taking advantage of human intuition with hybrid human–machine intelligence.

Another opportunity is for the latent space/manifold of RL to be used as a means
of calibrating deep learning models. Since many manifold learning methodologies use
the smoothness of a latent manifold as a means of regularising model response in a few-
shot learning context, the adjustment of points on the manifold may theoretically be
used to correct performance at deployment, i.e., if the model is observed to deviate from
ground truth, the point of deviation may be adjusted, and the effect of the adjustment be
propagated around the surrounding neighbourhood on the latent manifold in order to
regularise the model. The challenges still present lie in determining what weight to give
adjustments and over how wide an area of the manifold the adjustments should propagate,
taking into account unreliability introduced by human interference with the model. Some
knowledge from other domains such as calculus of variation and information geometry,
which have already been integrated into some of RL techniques in this review, may be
useful in achieving this goal.
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DNN Deep Neural Network
DWT Discrete Wavelet Transform
FG Fine-Grained
GAN Generative Adversarial Networks
GDL Geometric Deep Learning
GNN Graph Neural Network
IID Independent and Identically Distributed
QCD Quickest Change Detection
t-SNE t-Distributed Stochastic Neighbour Embedding
LTSA Local Tangent Space Alignment
MAML Memory Augmented Meta Learning
MTL Multi-Task Learning
MTML Multi-Task Metric Learning
PCA Principal Component Analysis
PELT Pruned Exact Linear Time
PH Persistent Homology
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RL Representation Learning
SPC Statistical Process Control
TDA Topological Data Analysis
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