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Na/K-ATPase in the lacrimal glands of rabbits and its changes
during induced autoimmune dacryoadenitis

Chuangqing Ding, Michael Lu, Jianyan Huang

Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA

Purpose: To test the hypothesis that expression of Nat*/K*-ATPase subunits in the lacrimal glands (LGs) of rabbits with
induced autoimmune dacryoadenitis (IAD) changes.

Methods: LGs were obtained from adult female rabbits with IAD and age-matched female control rabbits. The LGs were
processed for laser capture microdissection (LCM), real time RT-PCR, western blot, and immunofluorescence for the
detection of mRNA and proteins of the al, a2, B1, B2, and 3 subunits of Na*/K*-ATPase.

Results: In the rabbits with IAD, mRNA levels of al, B1, and B3 from whole LGs were significantly lower. In samples
of acini and epithelial cells from various duct segments, collected by LCM, mRNA levels of al, B1, B2, and B3 were
significantly lower in the rabbits with IAD, although mRNA for a2 could not be detected. However, western blots
demonstrated that all five subunits were significantly higher in the rabbits with IAD, although their distribution patterns
were similar to those of the control rabbits, as demonstrated by immunofluorescence.

Conclusions: The data presented herein demonstrated significant changes in mRNA and protein expressions of Na*/K*-
ATPase subunits in rabbits with [AD, suggesting that these changes may play a role in the pathogenesis of Sjogren’s
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syndrome and altered LG secretion, as observed in these animals.

Sjogren’s syndrome is an autoimmune disease that causes
functional deficiency of the lacrimal and salivary glands; it is
one of the most common causes of dry eye [1]. Although many
efforts have been undertaken to understand this debilitating
disease, little is known about its etiology [2].

Among many animal models that have been used to study
Sjogren’s syndrome, rabbits with induced autoimmune
dacryoadenitis (IAD) have been shown to demonstrate many
of the ocular surface symptoms and lacrimal gland (LG)
pathologies characteristic of Sjégren’s syndrome, and they
have been used extensively to study its pathophysiology
[3-5].

Like other exocrine gland secretions, LG fluid secretion
is an osmotic process mediated by many ion transporters,
channels, and aquaporins [6-13]. It is believed that LG fluid
secretion is produced in two stages: 1) secretion of primary
fluid in the acini and 2) modification into the final fluid during
its transit through the duct system. Recent investigations have
indicated that the LG ducts also play critical roles in LG fluid
production by secreting themselves and/or reabsorbing
primary LG fluid [6,7,11,13,14].

Na"/K*-ATPase, an enzyme located in the plasma
membranes of all animals, has been detected in the LGs of
rabbits [6,13,15-22] and rats [11,16,23-26], and it has been
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shown to play a significant role in LG function [6,22]. Na"/K
*-ATPase is a heterotetramer that comprises two o subunits
and two B subunits, of which two o subunit isoforms (a1 and
02) and three B subunit isoforms (B1, B2, and $3) have been
identified so far, with the B subunit being essential for its
normal function [27]. Na'/K*-ATPase uses the energy
released from ATP hydrolysis to move three Na* out of and
two K" into the cells, both against electrochemical potential
gradients. Depending on the asymmetric localizations of other
transport proteins, Na'/K*-ATPase can power either net
absorption or secretion [27].

Although some studies have investigated the role that Na
*/K*-ATPase may play in LG function, little is known about
the expression patterns of its subunits in rabbit LG and its
potential contribution to LG deficiency in Sjogren’s
syndrome. A recent study showed that Na”/K*-ATPase was
one of the main targets of immunoglobulin G (IgG)
autoantibodies that interact with the subtype 3 of muscarinic
acetylcholine receptors (M3 AChR) in the salivary glands of
patients with primary Sjogren’s syndrome, and it was
suggested that it may play a role in the pathogenesis of dry
mouth [28]. Therefore, the aim of the present study was to
investigate the expression patterns of Na'/K*-ATPase
subunits and their potential changes in rabbits with IAD.

METHODS
Animals and generation of IAD model: Two groups of adult
female New Zealand White rabbits (Irish Farms, Norco, CA)
were used. One group consisted of six rabbits with IAD, and
the other consisted of six age- and sex-matched normal
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controls. The rabbits were narcotized with a mixture of
ketamine (40 mg/ml) and xylazine (10 mg/ml) and given an
overdose of Nembutal (80 mg/kg) for euthanasia. Inferior LGs
were removed and embedded in OCT, frozen in liquid
nitrogen, and stored at —80 °C until use. This study conformed
to the standards and procedures for the proper care and use of
animals by the US Public Health Service Policy on Humane
Care and Use of Laboratory Animals.

To generate the IAD model, the epithelial cells from one
LG were first co-cultured with the same rabbit’s ex vivo-
activated lymphocytes for two days, and then the cell mixture
was injected into the same rabbit’s remaining LG. Typically,
the rabbits fully developed IAD within two weeks. The
detailed procedures have been published previously [3-5].

Laser capture microdissection (LCM): Frozen sections were
collected with PEN membrane-coated slides (Leica
Microsystems, Buffalo Grove, IL) and stained with cresyl
violet in RNase-free conditions with an LCM Staining Kit
(Applied Biosystems, Foster City, CA). Acinar cells and
epithelial cells from various duct segments were then laser
captured using a PixCell II LCM System (Arcturus
Bioscience, Mountain View, CA). Approximately 100 cells
were collected for each sample for isolation of total mRNA,
and six replicates of each acinus and duct segment were
collected from each animal [13].

RNA extraction and reverse transcription: Total cellular RNA
was isolated from RNAlater-treated samples with an
RNeasy® Midi Kit (Qiagen,Valencia, CA) plus on-column
DNase digestion. Detailed procedures were described in our
previous report [13]. Briefly, RNA samples were then treated
with DNase I to degrade any contaminating DNA and
evaluated with a spectrophotometer (ND-1000; Nanodrop
Technologies, Wilmington, DE) for quality and quantity.
These samples were reverse-transcribed to cDNA with High
Capacity cDNA Reverse Transcription Kit with RNase
Inhibitor (Applied Biosystems, Foster City, CA) in a thermal
cycler (DNA Engine, Bio-Rad, Hercules, CA).

Real-time RT-PCR analysis and pre-amplification: The
sequences of primers and probes used in this study are listed
in Table 1. The sequences were selected on computer (Primer
Express; ABI) and synthesized by ABI. All probes
incorporated the 5’ reporter dye 6-carboxyfluorescin (FAM)
and the 3' quencher dye 6-carboxytertramethylrhodamine
(TAMRA). For LCM samples, pre-amplification was
performed using a TagMan® PreAmp Master Mix Kit
(Applied Biosystems). The pooled assay mix was prepared by
combining up to 50 of 20% gene expression assays into a single
tube and subsequently diluted to a final concentration of 0.2x.
The 50 pl of pre-amplification reaction included 25 pl of 2x
MasterMix, 12.5 pl of 0.2x pooled assay mix, and 12.5 pl of
cDNA sample. The reactions were then incubated in the
thermal cycler for 10 min at 95 °C followed by 14 cycles at
95 °C for 15 s and 4 min at 60 °C and then held at 4 °C. The
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pre-amplification product was then diluted 20x with 1x TE
(Tris-EDTA, pH 8.0) buffer and analyzed by real-time RT-
PCR (TagMan; Applied Biosystems).

For the real-time RT-PCR step, amplification was
performed on a sequence-detection system (Prism 7900HT,
with TagMan Gene Expression Master Mix; ABI) containing
the internal dye ROX as a passive reference, in accordance
with the procedures described. The PCR reaction volume was
10 pl. It contained 1x master mix, 900 nM forward and reverse
primers, 250 nM probes, and 2.5 pl of 1x TE—diluted cDNA
template. The FAM signal was measured against the ROX
signal to normalize for non-PCR-related fluorescence
fluctuations. The cycle threshold (CT) value represented the
refraction cycle number at which a positive amplification
reaction was measured and was set at 10x the standard
deviation from the mean baseline emission calculated for PCR
cycles 3 through 15. Each sample was measured in triplicate.
The difference between the CT for each target mRNA and the
internal housekeeping gene glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in each sample was used to
calculate the level of target mRNA relative to that of
GAPDH mRNA in the same sample.

Immunofluorescence and microscopy: The primary
antibodies used were all purchased from Santa Cruz
Biotechnology (Santa Cruz, CA). The dilution for al (mouse
monoclonal, sc-71638) was 1:400; for a2 (goat polyclonal,
sc-31391), 1:400; for Bl (mouse monoclonal, sc-21713),
1:100; for B2 (mouse monoclonal, sc-135997), 1:100; and for
B3 (goat polyclonal, sc-66343), 1:250. Secondary antibodies
used were fluorescein isothiocyanate (FITC)-conjugated
AffiniPure donkey anti-goat and anti-mouse IgG (Jackson
ImmunoResearch Laboratories, West Grove, PA), at a
dilution of 1:200. Rhodamine conjugated phalloidin
(Invitrogen, Carlsbad, CA), at a dilution of 1:200, was also
used to stain F-actin to show the morphological profiles of the
LGs.

The samples frozen in Optimal Cutting Temperature
(OCT) compound were cut 8 um thick and placed on slides
then fixed with ready-to-use formaldehyde/zinc fixative
(Electron Microscopy Sciences, Hatfield, PA) for 15 min.
They were then washed in phosphate-buffered solution (PBS)
3x for 10 min each and blocked with donkey normal serum
(Jackson ImmunoResearch Laboratories) for 1 h at room
temperature. The slides were then incubated with primary
antibodies at respective dilutions overnight at 4 °C. On the
next day, slides were again washed 3x for 10 min in PBS and
incubated with secondary antibody for 1 h at room
temperature then washed 3x for 10 min in PBS and 1x for 15
min in 4 mM sodium bicarbonate. Finally, one drop of
aqueous mounting medium (Vector Laboratories,
Burlingame, CA) was placed on slides and covered with
coverslips. Slides were observed with a Leica epifluorescence
microscope (Leica Microsystems, Buffalo Grove, IL) and a
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Figure 1. Real-time RT-PCR of al and
a2 from whole LG (left panels) and
lacrimal epithelial cells collected by

LCM (right panel). mRNA levels of al
from whole LG of IAD rabbits were
significantly lower than those of control
animals  (p<0.05), whereas no
significant difference was detected
between control and IAD animals for a2
(p>0.05). In epithelial cells collected by
LCM, mRNA of ol was the least
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abundant in acini, whereas its level was
significantly higher in all duct segments.
Compared to control animals [13],
mRNA level of al was significantly
lower in acini and every duct segment
except in intralobar duct in IAD animals
(p<0.05). However, we were unable to
detect any NKAa2 in epithelial cells
collected by LCM due to its low level.
D4: intralobular duct. D3: interlobular
duct. D2: intralobar duct. D1: interlobar
duct. Data were presented as mean
+SEM.

TABLE 2. MRNA CHANGES FROM RABBITS WITH IJAD COMPARED TO CONTROLS [13].

Subunit Whole LG Acini Intralobular
al ! I I
02 - ND ND
Bl ! I I
B2 - I I
B3 ! I -

Interlobular Intralobar Interlobar
I - I
ND ND ND
l l l
d - d

Note: |: significant decrease; 1: significant increase; —: no significant difference; ND: not detected.

Zeiss LSM 710 confocal laser scanning microscope (Carl
Zeiss Microimaging, Thornwood, NY). FITC-conjugated
secondary antibodies were visualized by excitation at 488 nm
using an argon laser. Images were analyzed with LSM image
browser and PhotoShop (Adobe Systems, Mountain View,
CA).

Western blot: LGs were homogenized in RIPA buffer (50 mM
Tris-HCI pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X
100, 1% Na deoxycholate, 0.1% SDS, 1 mM PMSF, 1 pg/ml
aprotinin, 1 pg/ml leupeptin) and centrifuged at 2,000x g for
20 min. The supernatant was denatured in SDS-PAGE sample
buffer for 20 min at 60 °C, resolved on a 7.5% or 4%—20%
gradient SDS-PAGE gel (Bio-Rad, Hercules, CA), and then
transferred onto PVDF membrane (Immobilon-P; Millipore,
Billerica, MA). To assess transporter proteins, a constant
quantity of proteins from each sample was analyzed.
Membrane blots were probed with al at a dilution of 1:1,000,
a2 at 1:500, B1 at 1:2,000, and B2 and B3 at 1:500. All blots
were incubated with Alexa 680-labeled donkey anti-goat or
goat anti-mouse secondary antibody (Invitrogen) and detected

2371

with an Odyssey Infrared Imaging System (Li-Cor, Lincoln,
NE). Densitometry analysis of the resulting gel was performed
by the manufacturer’s software.

Statistics: Data were presented as mean+SEM. Student’s #-test
and ANOVA were used to evaluate the significance of the
differences; a p<0.05 was considered significant.

RESULTS

Expressions of mRNA:

ol—The mRNA levels for al from whole LG were
significantly lower in the animals with IAD (0.63+0.04)
compared with the control group (0.89+0.06), with a 29.1%
difference (p<0.05; Figure 1). Data from the LCM samples
indicated that mRNA for al from the rabbits with IAD was
least abundant in the acini, consistent with results from normal
control rabbits in our previous report [13], and its level was
significantly lower in the acini and every duct segment, except
the intralobar duct (p<0.05; Table 2).

02—The expression of mRNA for a2 was very low in the
LGs; in fact, it was the least abundant of all Na*/K*-ATPase
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subunits (Figure 1 and Figure 2). No significant difference of
a2 mRNA from whole LG was detected (p>0.05) between the
rabbits with IAD (0.00124+0.0004) and the control animals
(0.0014+0.0001), and we were unable to detect any presence
of a2 mRNA in the epithelial cells collected by LCM.

p1—mRNA for Bl from whole LG was significantly
lower in the animals with IAD (1.717+0.107) than in the
control group (2.411£0.125), with a 28.8% difference
(p<0.05; Figure 2). Data from the LCM samples showed that
mRNA for B1 was most abundant in the acini, and its levels
were significantly lower than in the control animals [13] in
the acini and all duct segments (p<0.05).

p2—No significant difference of B2 mRNA from whole
LG was detected (p>0.05) between the control rabbits
(0.02+0.003) and the rabbits with IAD (0.023+0.003; Figure
2). mRNA from the epithelial cells collected by LCM was
least abundant in the acini and most abundant in the interlobar
duct, and its levels were significantly lower than in the control
animals [13] in the acini and all duct segments, except in the
intralobar duct (p<0.05).

p3—mRNA for B3 from whole LG was significantly
lower in the animals with IAD (0.045+0.008) than in the
control group (0.062+0.003), with a 27.7% difference
(p<0.05; Figure 2). Data from the LCM samples showed that
mRNA for B3 was least abundant in the acini, and its levels

were significantly lower in the acini (p<0.05), while no
differences were detected in the duct segments (p>0.05)
compared to the control animals [13].

Western blot and densitometry: We studied the expressions of
o (Figure 3) and B (Figure 4) subunits by the immunoblotting
of whole LG homogenates. Densitometry analysis showed
that expressions of al from the rabbits with IAD were 58%
higher and expressions of a2 were 67% higher than the control
rabbits, both significantly different (p<0.05). The expressions
of all three B subunits were significantly higher in the rabbits
with IAD, with differences of 21% for 1, 35% for 32, and
37% for B3 (p<0.05).
Immunofluorescence:

ol—Na"/K*-ATPase ol immunoreactivity (IR) was
detected in all acinar cells, most prominently on the
basolateral membranes (Figure 5). No a1-IR was found on the
apical membranes. However, the al-IR showed a “mosaic”
pattern among the acini, i.e., some acini/acinar cells showed
much stronger al-IR, while the intensity in other acini was
much weaker. The ducts were all stained as intensely as the
acinar cells showing the most intense al1-IR. In LGs from the
rabbits with [AD, the distribution pattern of a.1-IR was similar
to those in the control rabbits, and no significant difference
was detected.
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Figure 3. Western blots of a subunits
from whole LG homogenates. Both al
and o2 were significantly increased in
LG from rabbits with IAD (p<0.05). B-
Actin was used as loading controls. Data
are representative images of at least 3

15 1

Densitometry

o
v
1

Control IAD al

different animals each.

IAD a2

02—1In LGs from the control animals, minimal a2-IR was
detected in the acinar cells, while its intensity was much
stronger in the ducts and appeared as clustered punctate
staining (Figure 6). The distribution of a2-IR in LGs from the
rabbits with TAD was very similar to that of the control
animals, and no significant difference was observed.

p1—Similar to the pattern of al, B1-IR was also only
detected in the basolateral membranes of all acinar and ductal
cells, but not on the apical membranes (Figure 7). Numerous
punctate staining was also present within the cytoplasm. In
addition, levels of B1-IR differed in a “mosaic” pattern, higher
in some acinar cells and/or acini than in other acini, a pattern
similar to that of al. B1-IR in the ductal cells was much
stronger. These results were consistent with our previous
report [13]. In the rabbits with TAD, B1-IR was also present in
all acinar cells and demonstrated a “mosaic” pattern similar
to that observed in the control animals. The ducts also showed
much higher B1-IR levels. No significant difference was
observed between the control and IAD animals.

p2—pP2-IR was detected in all acinar cells as numerous
punctate staining that aggregated toward the apical cytoplasm
(Figure 8); its intensity was much higher in the ducts. The
distribution pattern of B2-IR from the rabbits with IAD was

similar to that of the LGs from the control rabbits, and no
significant difference was observed.

p3—p3-IR was detected in all acinar cells in a diffuse
pattern as numerous punctate staining within the cytoplasm,
while minimal f3-IR was detected in the ducts (Figure 9). In
the rabbits with IAD, the distribution pattern of B3-IR was
similar to that of the control rabbits.

DISCUSSION

Our real-time RT-PCR data demonstrated the presence of all
five subunits of Na'/K*-ATPase in the rabbit LGs, although
their levels varied greatly. o1 was the dominant o subunit, with
an abundance approximately 650 times that of 02. In fact, a2
levels were so low that it was undetectable in the LCM
samples. Like al, Bl was also the dominant B subunit, with
its mRNA levels approximately 120 times that of B2, and 39
times that of B3. These data appear to suggest that a1p1 is the
dominant heterodimer, which is supported by our
immunofluorescence results. Both al and f1 were present in
the basolateral membranes in a “mosaic” pattern in the LGs
(Figure 5 and Figure 7), i.e., they were particularly rich in
some acini and/or acinar cells, while the rest of the acini
demonstrated much weaker intensity. The ductal cells also
demonstrated intense staining with both a1l and B1.
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Our recent results showed that the acini and/or acinar
cells that displayed intense B1 staining were in fact mucous
cells capable of secreting mucins, along with all ductal cells.
The results clearly demonstrate that the rabbit LG is a mixed
gland comprised of both serous and mucous cells, and it also
contributes to the mucin pool in the tear film [29].

a2 was detected by immunofluorescence only in the
ductal cells. However, while particularly rich in the ducts, p2
was also found in apical cytoplasm of all acinar cells as
numerous punctate staining. Interestingly, B3 was only
detected in the acini and was virtually absent from the ducts.

Our immunofluorescence results appear to be different
from those reported by Bradley et al. [18], who showed that
antibodies against the Na'/K*-ATPase holoenzyme and al
were detected in both apical and basolateral membranes of the
acinar cells from rat LG, although the intensity to al was
relatively weaker, particularly in the apical membranes. In

addition, intense punctate staining was detected in the apical
cytoplasm of both antibodies, and the ductal cells were
positively stained. Bl staining was mostly observed as a
diffuse cytoplasmic distribution in the acinar cells, with some
focal concentrations.

Other studies have demonstrated the presence of Na*/K*-
ATPase in both acinar and ductal cells from LGs of rats [11,
16,23-26] and rabbits [6,13,15-22]. However, another study,
on mouse and rat LGs, showed that the acinar cells failed to
be stained with Na*/K*-ATPase, while all segments of the duct
system stained intensely in the basolateral membranes [30].

Dartt et al. [6], in a pioneering and elegant study, first
demonstrated the presence of Na*/K*-ATPase in the LG and
showed that the ductal cells were actively involved in lacrimal
secretion, which supports the idea of Na”/K*-ATPase as a
major factor in LG function. The authors also suggested that
the cholinergic activation of LG secretion is dependent upon
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Control

Figure 5. Immunofluorescence of al. Control: al-IR (green) was present in every acinar cell, most prominently in the basolateral membranes,
but not on the apical membranes. The al-IR was much stronger in some acini/acinar cells (arrowheads), while much weaker in other acini/
acinar cells (arrows), giving the gland a “mosaic” pattern. Ducts (D) were all stained as strongly as those acinar cells showing intense a1-IR.
IAD: the distribution pattern of a1-IR was similar to those in control rabbits, and no significant difference was detected. Scale bar=100 um.

Figure 6. Immunofluorescence of a2. Control: Minimal a2-IR was detected in acinar cells (arrows), while strong a2-IR was observed in ductal
cells as clustered punctate staining (arrowheads). IAD: The distribution of a2-IR in LG from rabbits with IAD was very similar to that of
control animals, i.e., 02-IR was mostly found in ductal cells as clusters of punctate staining. Red: F-actin that has been stained with rhodamine-

conjugated phalloidin. Scale bar=50 pum.

Na*/K*-ATPase, which derives energy from ATP hydrolysis
to drive the efflux of Na* and influx of K+ through the plasma
membranes, both against electrochemical gradients. The
resulting Na* gradient provides the direct energy for other
transporters and channels, a notion that has been supported by
inhibitory studies that showed that ouabain, the specific
inhibitor of Na'/K*-ATPase, inhibited rabbit LG secretion
[31] and completely abolished carbachol-induced short-
circuit currents in a rabbit acinar cell monolayer cultured on
polyester membrane scaffolds [22].

It has been shown that Na'/K*-ATPase expression
undergoes significant changes under several conditions. LGs
of female rat showed rapid atrophy after hypophysectomy,

and total Na*/K*-ATPase activity was reduced by half, while
dihydrotestosterone (DHT) and prolactin treatment both
partially restored its activity [26]. However, DHT treatment
of ovariectomized rabbits increased Na*/K*-ATPase activity
by 29%, while the synthetic estrogen diethylstilbestrol (DES)
decreased total Na*/K*-ATPase by 12% [20].

In rat LGs, cholinergic stimulation caused translocation
of Na"/K*-ATPase from intracellular pools to basolateral
membranes [16]. Carbachol stimulation of primary cultured
rabbit LG acinar cells also caused a significant decrease of
total content of Na“”/K*-ATPase, suggestive of its increased
flux to lysosomes, where it was degraded [21]. Cholinergic
stimulation of rabbit acinar cells demonstrated that Na*/K"-
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Control

Figure 7. Immunofluorescence of f1. Control: Like al, f1-IR was also only present in the basolateral membranes of all acinar and ductal
cells, and numerous punctate staining within the cytoplasm. However, levels of f1-IR differed in a “mosaic” pattern, higher in some acinar
cells and/or acini (arrowheads) than others. f1-IR in ductal cells was uniformly higher (arrow). These data were similar to our previous report
[13]. IAD: like in control animals, B1-IR was also present in all acinar cells and demonstrated a similar “mosaic” pattern (arrowheads). Ducts
also showed a much higher B1-IR (arrow). No significant difference of B1-IR was observed between control and IAD animals. Scale bar=50

um.

ATPase cytoplasmic reserves were recruited to the basolateral
membrane [15-17], suggesting that the intracellular reserves
of Na*"/K*-ATPase are available for rapid recruitment to the
basolateral membranes. It has also been suggested that the
carbachol-induced redistribution of Na'/K*-ATPase to the
basolateral membrane represents a mechanism by which the
cell compensates for the increased Na™ influx [16].

The only literature regarding the presence of Na"/K*-
ATPase in the LGs of Sjogren’s syndrome patients showed
that the distribution of Na*/K*-ATPase was unchanged in the
LGs, although its expression was not quantified [32].
However, a recent study on salivary glands, another exocrine
gland that is very similar to LG anatomically and
physiologically, showed that in salivary glands from patients
with primary Sjogren’s syndrome, Na”/K*-ATPase was one
of the main targets of anti-M3 IgG. These patients also
produced functional IgG autoantibodies that acted as partial
muscarinic agonists in the submandibular gland and increased
PGE2 and cAMP production, therefore inhibiting Na*/K*-
ATPase activity. These autoantibodies could also interfere
with  the  secretory effect of  parasympathetic
neurotransmitters, and may play arole in Sjogren’s syndrome-
related dry mouth [28].

In LG samples from rabbits with TAD, the mRNA levels
from whole LG of al, B1, and B3 were significantly lower than
those of the control animals, while the levels of a2 and (2

remained unchanged. Compared to the results from the control
rabbits [13], mRNA levels were significantly lower in many
duct segments (Table 2). However, our western blots showed
opposite results, i.e., the protein expressions of all subunits
were significantly higher in the rabbits with IAD, although
none of the subunits’ distribution patterns showed noticeable
differences. Whether the increased expressions of Na*/K'-
ATPase subunits in rabbits with IAD was a primary or
secondary consequence of IAD remains unknown, but given
the fact that LG fluid production in these animals was greatly
reduced [3-5], it is more likely that the increased protein
expressions were due to compensation for reduced LG
secretion.

It should be noted that there were discrepancies in mRNA
and protein expressions in the data presented herein, which
also have been reported in previous studies in other tissues
and organs [33,34]. Various mechanisms could be responsible
for these discrepancies; changes in protein redistribution and
recycling during inflammation, such as IAD, may be possible
reasons [35,22]. Furthermore, differences in protein
expression may also not always reflect the functional status in
the phenotype. However, this topic is beyond the scope of the
present study but highlights the importance of direct
functional studies of the LG’s functional changes in rabbits
with IAD to provide definitive evidence.
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Control

Figure 8. Immunofluorescence of B2. Control: B2-IR (green) was present in all acinar cells as numerous punctate staining that aggregate toward
the apical cytoplasm (arrowheads), while its intensity was much higher in ducts (arrow). [AD: the distribution pattern of B2-IR was similar
in LG from rabbits with IAD with those in control rabbits, i.e., numerous punctate B2-IR was detected in the cytoplasm of every acinar cell
(arrowheads), while $2-IR was much stronger in ducts (arrows). Red: F-actin that has been stained with rhodamine-conjugated phalloidin.
Scale bar=100 pum.

Control

Figure 9. Immunofluorescence of 3. Control: B3-IR (green) was present in every acinar cell as numerous punctate staining within the
cytoplasm (arrowheads) in a diffuse pattern. However, minimal B3-IR was detected in the duct cells (arrows). IAD: the distribution pattern
of B3-IR from rabbits with IAD was similar to that of control rabbits, i.e., numerous punctate f3-IR was detected in the cytoplasm of every
acinar cell (arrowheads), while minimal 33-IR was present in the duct cells (arrows). Red: F-actin that has been stained with rhodamine. Scale
bar=50 um.

Despite the fact that up to 15% of all epithelial cells in
the LG are ductal cells [36-38], most of the previous LG
studies have focused on the acinar cells, which represent
approximately 80% of all epithelial cells, with only a few
studies having paid sufficient attention to the duct system
[6,11,13,14,29,39]. The significant presence of Na“/K'-
ATPase in the ductal cells, and their significant changes in
rabbits with IAD, point to active Na" and K* transport in the
ductal cells and their potential contribution to LG deficiency
during TAD.

In summary, our findings demonstrated that there were
significant changes in mRNA and protein expression of Na*/
K*-ATPase subunits in the acinar and ductal cells of rabbits
with TAD. These data strongly suggest that changes in this
solute transporter and its subunits may contribute to reduced
tear secretion in rabbits with IAD, although direct functional
studies are needed to provide definitive evidence. Data
presented herein also support the notion that acini and ducts
play different roles in LG secretion. However, the exact
mechanisms of how Na*/K*-ATPase functions in the LG in
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physiologic and pathological conditions are unknown, and
more studies into their roles are certainly needed.
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