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ABSTRACT Genome-wide association (GWA) studies typically lack power to detect genotypes significantly associated with complex
diseases, where different causal mutations of small effect may be present across cases. A common, tractable approach for identifying
genomic elements associated with complex traits is to evaluate combinations of variants in known pathways or gene sets with shared
biological function. Such gene-set analyses require the computation of gene-level P-values or gene scores; these gene scores are also useful
when generating hypotheses for experimental validation. However, commonly used methods for generating GWA gene scores are
computationally inefficient, biased by gene length, imprecise, or have low true positive rate (TPR) at low false positive rates (FPR), leading
to erroneous hypotheses for functional validation. Here we introduce a new method, PEGASUS, for analytically calculating gene scores.
PEGASUS produces gene scores with as much as 10 orders of magnitude higher numerical precision than competing methods. In
simulation, PEGASUS outperforms existing methods, achieving up to 30% higher TPR when the FPR is fixed at 1%. We use gene scores
from PEGASUS as input to HotNet2 to identify networks of interacting genes associated with multiple complex diseases and traits; this is
the first application of HotNet2 to common variation. In ulcerative colitis and waist–hip ratio, we discover networks that include genes
previously associated with these phenotypes, as well as novel candidate genes. In contrast, existing methods fail to identify these networks.
We also identify networks for attention-deficit/hyperactivity disorder, in which GWA studies have yet to identify any significant SNPs.
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GENOME-WIDE association (GWA) studies and meta-
analyses are widely used to identify susceptibility loci

for complex diseases and traits, which are phenotypes gen-
erated by multiple mutations of moderate to small effect
(Hirschhorn and Daly 2005; McCarthy et al. 2008; Daly
2010; Jiang et al. 2012; Evangelou and Ioannidis 2013;
Nalls et al. 2014; Skibola et al. 2014; Woo et al. 2014; Buch
et al. 2015; Kouri et al. 2015; Litchfield et al. 2015; Renton
et al. 2015; Hallberg et al. 2016). To date,.2400 GWA studies
have been conducted tofind causal variants that are statistically

associated with a disease or trait (http://www.ebi.ac.uk/
gwas/). The GWA framework tests the hypothesis that indi-
vidual mutations of large effect generate phenotypes of inter-
est. However, this framework has multiple limitations when
applied to complex diseases. First, complex diseases are known
to exhibit genetic heterogeneity on multiple levels: (i) The
disease may be generated by multiple mutations within an
associated gene and (ii) mutations in distinct genes within a
pathwaymay interact and produce the disease state (McClellan
and King 2010). In both cases, separately testing individual
variants for statistical associations with a phenotype may not
identify susceptibility loci (McClellan and King 2010; Stranger
et al. 2011). Further, SNP-level GWA results are unlikely to re-
veal complex disease mechanisms, given that different combi-
nations of functionally related variants in genes and pathways
may interact to produce the phenotype of interest.

Gene-set analyses, which test for the statistical association
of phenotype state with a set of genes, are commonly used to
address these limitations of the GWA framework (see Wang
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et al. 2010, Leiserson et al. 2013, and Mooney et al. 2014 for
reviews). To increase computational efficiency and limit the
number of hypotheses tested, it is necessary to reduce the
combinations of variants examined to a tractable number. This
is typically done using databases of known pathways or other
biological interactions, nearly all of which are annotated at the
gene level. Thus, a crucial step in most gene-set analyses is
combining SNP-level GWA P-values within genes into a “gene
score” (Mooney et al. 2014).Hereweuse “gene-set analysis” to
describe three types of statistical tests for association at the
gene level with a phenotype of interest. First, we describe
permutation tests (e.g., DAPPLE and dmGWAS) (Jia et al.
2011; Rossin et al. 2011) where P-values are assigned to gene
scores observed in an annotated pathway. Second, we describe
tests for enrichment in related annotations among genes in a
predetermined list (e.g., GRAIL, MAGENTA, DAVID, and
GSEA-SNP) (Huang et al. 2007; Holden et al. 2008;
Raychaudhuri et al. 2009; Segrè et al. 2010). To conduct these
tests, the investigator must compute a gene score and, in some
cases, determine a threshold for extreme gene scores to gen-
erate a list of genes associated with the phenotype of interest.
In the third type of test, once a gene score is computed, the
investigator can conduct a gene-level association test and/or a
gene-network association test, to identify novel combinations
of variants that generate a phenotype of interest, due to un-
known interactions between genes or uncharacterized cross-
talk between pathways.

An informative gene score is a necessary ingredient for
accurate gene-set analyses, but all commonly used methods
for generating gene scores have substantial drawbacks. Com-
monly used methods include choosing the best SNP P-value
within a gene to be the gene score,which is sometimes referred
to as “minSNP” (Torkamani et al. 2008; Fehringer et al. 2012;
Gelernter et al. 2015; Hu et al. 2015); permutation-based
methods such as permSNP (Wang et al. 2007; Eleftherohorinou
et al. 2009; Ballard et al. 2010; Christoforou et al. 2014;
Evangelou et al. 2014; Backes et al. 2016); regression-based
methods such as the sequence kernel association test (SKAT)
family of tests (Wu et al. 2010, 2011) and stratified LD score
regression (Finucane et al. 2015); and VEGAS (Liu et al.
2010) and RAREMETALS (Liu et al. 2013), which correct
for linkage disequilibrium (LD) between SNPs, using simula-
tions from a multivariate normal distribution whose variance
is the empirical LD observed among SNPs within each gene
being analyzed.Multiplemethods exist that use the same null
distribution as VEGAS (Tzeng and Zhang 2007; Pan 2009).
Other methods that have been proposed include Fisher’s
combination test (where the gene score must be calculated
empirically using permutation tests), Simes’ combination
test, and Sidak’s combination test (Ballard et al. 2010; Peng
et al. 2010; Wojcik et al. 2015).

The limitations of these approaches range from biased
results to computational inefficiency to imprecision (Table 1).
minSNP is heavily biased by gene length; the longer the gene
is, the more likely it is to have a low gene score. permSNP
permutes case–control labels within a genotype data set to

calculate an empirical P-value for every gene, which becomes
computationally intractable for large data sets (Liu et al. 2010).
Further, permSNP and SKAT require gaining access to geno-
type data to performpermutations and regression, respectively.
The VEGAS method is more computationally efficient than
other permutationmethods (e.g., permSNP requires recomput-
ing GWA P-values for each permuted data set) and requires
only GWA SNP-level P-values as input, but both permSNP and
VEGAS give gene scores whose numerical precision depends
on the number of permutations and simulations, respectively,
that are performed. The smallest gene score VEGAS reports by
default is 1026 and for permSNP, it is the reciprocal of the
number of permutations performed per gene (Table 1).

Here we propose a newmethod—the precise, efficient gene
association score using SNPs (PEGASUS)—to calculate gene
scores analytically from a null chi-square distribution that cap-
tures LD between SNPs in a gene and addresses the shortcom-
ings of existing methods. PEGASUS requires only GWA study
summary statistics and a suitable reference population for LD
calculations as input and thus can be applied to GWA study
meta-analyses performed on summary statistics, pooled DNA
sequencing GWA studies, family-based GWA studies, transmis-
sion disequilibrium test (TDT) results, and also traditional
GWA studies where consent guidelines prohibit release of ge-
notype data. PEGASUS gene scores are correlated with statis-
tics like VEGAS (Tzeng and Zhang 2007; Pan 2009; Liu et al.
2010), which rely on the same null distributions to calculate
gene scores. These methods use different approximations for
the distribution of the sum of correlated chi-square statistics, in
contrast to the more accurate numerical integration of the null
distribution implemented in PEGASUS. We apply our method
to publicly available GWA data sets for nine common diseases
and three quantitative traits from the Psychiatric Genomics
Consortium (PGC) (Neale et al. 2010; Ripke et al. 2011,
2013; Sklar et al. 2011), the International IBD Genetics Con-
sortium (IIBDGC) (Franke et al. 2010; Anderson et al. 2011),
the Genetic Investigation of Anthropometric Traits (GIANT)
Consortium (Heid et al. 2010; Lango Allen et al. 2010;
Speliotes et al. 2010), the Broad Institute (Stahl et al. 2010),
theDiabetesGeneticsReplication andMeta-analysis (DIAGRAM)
Consortium (Morris et al. 2012), and Xu et al. (2013) (Table 2).
These data sets were chosen because the full set of SNP-level
P-values from the GWA study were available for public down-
load. We compare our method to gene scores generated
by minSNP, permSNP, SKAT, and VEGAS, using real and sim-
ulated GWA data. Finally, we use our gene scores as input in
pathway analysis withHotNet2 (Leiserson et al. 2015), thereby
conducting the first application of HotNet2 to common genetic
variation and identifying gene networks harboring several
variants associated with three phenotypes: attention-deficit/
hyperactivity disorder, ulcerative colitis, and waist–hip ratio.
For these three phenotypes of interest, HotNet2 using VEGAS
gene scores recovered fewer significant subnetworks for
attention-deficit/hyperactivity disorder, ulcerative colitis, and
waist–hip ratio. Neither VEGAS nor PEGASUS yielded signifi-
cant subnetworks for the other nine traits studied here.
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Materials and Methods

Data sets analyzed from genome-wide
association studies

Methods for computing gene scores require a full list of GWA
SNP-level P-values; these can be computed from genotype data
obtained from previously published GWA studies. We were
able to obtain complete results from previous GWA studies for
nine common diseases and three quantitative traits (Table 2).
See Supplemental Material, Table S3 for URLs to download
GWA P-values from the studies referenced in Table 2.

Gene scores

We compared PEGASUS to four existing methods for gener-
ating gene-based scores from GWA SNP-level P-values:
(i) minSNP (Torkamani et al. 2008; Fehringer et al. 2012;
Gelernter et al. 2015; Hu et al. 2015), (ii) permSNP (Wang
et al. 2007; Eleftherohorinou et al. 2009; Ballard et al. 2010;
Christoforou et al. 2014; Evangelou et al. 2014; Backes et al.
2016), (iii) SKAT (Wu et al. 2010, 2011), and (iv) VEGAS
(Liu et al. 2010). For n markers in a given gene, these meth-
ods use different strategies, each detailed below and summa-
rized in Figure 1, to combine P-values p1 . . . pn within the
gene and calculate a gene-level P-value. We refer to this
gene-level P-value as the gene score or pg:

minSNP: The minSNP method (Torkamani et al. 2008;
Fehringer et al. 2012; Gelernter et al. 2015; Hu et al. 2015)
for generating gene scores assigns the smallest GWA SNP-level
P-value in a given gene to be the gene score (Equation 1):

pg ¼ minðp1; p2; . . . ; pnÞ: (1)

permSNP: The permSNP method (Wang et al. 2007;
Eleftherohorinou et al. 2009; Ballard et al. 2010; Christo-
Forou et al. 2014; Evangelou et al. 2014; Backes et al.
2016) produces gene scores by permuting phenotype labels
across all genotyped individuals to generate an empirical

P-value for every gene. We carried out permSNP only on
the acute lymphoblastic leukemia (ALL) data set (Xu et al.
2013), as genotype data are required for this method, and we
did not have genotype data for the other traits analyzed here.
We calculated permSNP gene scores only for the top 400most
significant genes determined by minSNP using set-based test
analysis in PLINK due to computational constraints (Purcell
et al. 2007) (see File S1, Algorithm S1 for more details.)

The following settings were used to calculate permSNP
gene scores in PLINK (Purcell et al. 2007): --set-r2 1, --set-p 1,
--set-max 99999, --maf 0.01, and --mperm 10,000 permuta-
tions of case–control labels. With these command flags,
PLINK first does an association test between phenotype state
and allele dosage at each SNP. Second, for every gene, the
SNP test statistics (q1; q2; . . . ; qn) within the gene are aver-
aged to calculate the observed gene-level test statistic Qobs

(File S1, Algorithm S1). Third, the phenotype labels are per-
muted M times and the previous two steps are repeated for
the permuted data each time, resulting in SNP statistics using
the permuted phenotype data and corresponding gene statis-
tics Q*: The gene score pg is then the fraction of times the
gene statistic Q* is greater than the observed statistic Qobs

over the M permutations (File S1, Algorithm S1).

SKAT (Wu et al. 2010, 2011): This method uses multiple
linear/logistic mixed-model regression of covariates and ge-
notypes for variants in a gene set, along with covariates, onto
disease state. Covariates can include sex, age, or top principal
components of genotype data to control for population strat-
ification. Under the multiple logistic regression model for a
continuous phenotype, the relationship between variant ge-
notypes Gi and the phenotype yi for the ith individual (of p
total individuals) is given by Equation 2, where a0 is an in-
tercept term, Ci is a vector of covariates, a is the vector of
regression coefficients for m covariates, b is the vector of
regression coefficients for the n SNPs in a gene, and ei is an
error term that is normally distributed with mean of zero and
variance s2: Given this model, SKAT tests the null hypothesis

Table 1 Summary of minSNP, permSNP, SKAT, and VEGAS gene score methods and limitations

Gene score
method How it works Limitations

minSNP The gene score for each gene is the smallest SNP P-value
observed within that gene in a GWA study.

Biased by gene length (longer genes have lower
gene scores).

permSNP Permutes case–control labels within a genotype data set,
recomputes GWA SNP P-values using a permuted data
set, and calculates an empirical gene P-value based on
the number of times the observed average SNP P-value
is lower than the permuted P-values

Requires access to genotype data; very
computationally costly for genome-wide data sets;
numerical precision of gene scores is bounded by
the number of permutations performed.

SKAT Uses multiple linear/logistic mixed-model regression of
covariates (such as principal components to control for
population stratification) and genotypes for variants in
a gene set onto disease state.

Requires access to genotype data.

VEGAS Uses simulations from a multivariate normal distribution
to correct for LD between SNPs. The variance of the
distribution is the empirical LD observed among SNPs
within each gene in the data set.

Numerical precision of gene scores is bounded by the
number of simulations performed; computationally
inefficient due to simulations.
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H0 : b ¼ 0: Assuming that each bj for the jth variant follows
some distribution with mean 0 and variance wjt;where t is a
variance component and wj is a weight for variant j, the null
hypothesis can be restated as H0 : t ¼ 0: The variance com-
ponent score statistic for this test is given by Equation 3,
where K is a p3 p matrix with kii9 ¼

Pn
j¼1wjGijGi9j; the

weighted genetic similarity between two subjects i and i9 in
the region with n markers, and m̂ ¼ ca0 þ Câ: Wu et al.
(2011) suggest setting the weights ffiffiffiffiffiwj

p ¼ BetaðMAFj; 1; 25Þ;
the beta distribution density function with parameters a1 ¼ 1
and a2 ¼ 25 evaluated at the sample minor-allele frequency
(MAF) for a given variant j. The SKAT test statistic follows a
mixture of chi-square distributions that can be evaluated
using numerical integration to obtain a P-value for the
gene (Wu et al. 2010, 2011):

yi ¼ a0 þ a9Ci þ b9Gi þ ei (2)

Q ¼ ðy2m̂Þ9Kðy2 m̂Þ: (3)

Because full genotype data are required for this method, we
applied SKAT only on the ALL data set (Xu et al. 2013) and the
WellcomeTrust Case Control Consortium (WTCCC) type 2di-
abetes data set (WTCCC 2007). We used the top four princi-
pal components from principal components analysis (PCA)
on these data sets as covariates in the regression and hold
these covariates constant across all methods tested in this
study (Wu et al. 2010, 2011; Peloso et al. 2014). The follow-
ing settings were used to calculate SKAT scores in R, using the
R package SKAT (Lee et al. 2015): (a) in the R function
SKAT_Null_Model, out_type ¼ “D” and Adjustment ¼ “F”
and (b) in the R function SKATBinary.SSD.All, method ¼
“SKAT”. These settings specify a linear weighted kernel with
the weights ffiffiffiffiffiwj

p ¼ BetaðMAFj; 1; 25Þ:

VEGAS (Liu et al. 2010): Consider a gene with n SNPs. Un-
der the null hypothesis of no association, a gene can be rep-
resented by an n-element multivariate normal vector with
mean 0 and variance

P
; the n3 n pairwise LDmatrix. Given

this model, VEGAS generates gene scores by (i) performing
106 multivariate normal simulations from the null distribu-
tion of LD-correlated SNPs, (ii) squaring the simulated values

and summing to get a null test statistic for each gene, and (iii)
calculating an empirical gene-level P-value based on the pro-
portion of times the observed test statistic is smaller than the
simulated null statistics across all simulations (Liu et al.
2010).

PEGASUS: The main innovation in PEGASUS is using an
analytical approach to compute gene-level P-values of ob-
served gene scores according to a null distribution modeling
LD (Figure 1D). Consider a gene (defined as the gene bound-
aries650 kb to include regulatory regions; the buffer of 50 kb
can be varied) with n SNPs. Suppose the P-values for SNPs
within the gene boundaries are fp1; p2; . . . ; png Let
xi ¼ F21ðpiÞ; where F21 is the inverse of the cumulative dis-
tribution function (CDF) x2

d:f:¼1: At the gene level, we are
interested in the observed value q, defined as the sum of
the correlated x2

d:f:¼1 variables within a gene (Equation 4):

q ¼
Xn
i¼1

xi: (4)

Our model for q is as follows: Let X ¼ fX1;X2; . . . ;Xng be
an n-element multivariate normal vector with mean m ¼ 0
and positive definite covariance matrix

P
; where

P
ij is

the LD between SNP i and SNP j and
P

ii ¼ 1: The
quadratic form in the random variables X1;X2; . . . ;Xn associ-
ated with an n3n symmetric matrix A ¼ ðaijÞ is de-
fined asQðXÞ ¼ QðX1;X2; . . . ;XnÞ ¼ X9AX ¼ Pn

i¼1
Pn

j¼1aij Xi Xj

(Mathai and Provost 1992). The quadratic form
QðXÞ ¼ X9AX has the following representation (Equation 5),
where l are the eigenvalues of

P
A and U are mutu-

ally independent standard normal variables (Mathai and
Provost 1992):

QðXÞ ¼
Xn
i¼1

liU2
i : (5)

Q ¼ Pn
i¼1X

2
i follows the same distribution as Equation 5, and

so the characteristic function of QðXÞ can be inverted to find
the CDF of the null distribution accounting for empirical LD,
which can be numerically integrated at the observed value
(q) to find the gene-level P-value (pg), ProbðQ. qÞ (Mathai

Table 2 Total numbers of cases and controls and number of SNP loci in GWA studies for the 12 phenotypes studied here

Disease or trait (reference) No. cases No. controls No. SNPs

Attention-deficit/hyperactivity disorder (ADHD) (Neale et al. 2010) 864 + 2,064 trios 2,455 1,206,461
Acute lymphoblastic leukemia (ALL) (Xu et al. 2013) 1,593 6,661 709,059
Bipolar disorder (BIP) (Sklar et al. 2011) 7,481 9,250 2,427,220
Body mass index (BMI) (Speliotes et al. 2010) NA 123,865 2,471,516
Crohn’s disease (CD) (Franke et al. 2010) 6,333 15,056 953,241
Height (Lango Allen et al. 2010) NA 183,727 2,469,635
Major depressive disorder (MDD) (Ripke et al. 2013) 9,240 9,519 1,235,109
Rheumatoid arthritis (RA) (Stahl et al. 2010) 5,539 20,169 2,556,271
Schizophrenia (SCZ) (Ripke et al. 2011) 9,394 12,462 1,252,901
Type 2 diabetes (T2D) (Morris et al. 2012) 12,171 56,862 2,473,441
Ulcerative colitis (UC) (Anderson et al. 2011) 6,687 19,718 1,428,749
Waist–hip ratio adjusted for BMI (WHR) (Heid et al. 2010) NA 77,167 2,483,325

786 P. Nakka, B. J. Raphael, and S. Ramachandran



and Provost 1992). The numerical integration is imple-
mented in the R package CompQuadForm (Duchesne and
Lafaye De Micheaux 2010). The LD (covariance) matrix
S is calculated using the --r flag (correlation) in PLINK
(Purcell et al. 2007). In contrast, VEGAS (Liu et al. 2010)
draws samples from the multivariate normal distribution
with variance equal to the LDmatrix, which are then summed
to obtain an approximation of the P-value. Software to run
PEGASUS is available at https://github.com/ramachandran-
lab/PEGASUS. Empirical LD can be calculated using the
1000 Genomes Phase 3 data set (Auton et al. 2015) (release
date: November 2014) as references. These data contain
2426 individuals in five superpopulations: East Asians, Euro-
peans, Africans, South Asians, and admixed Americans.

Connection between SKAT and PEGASUS tests: As shown in
Text S1, the SKAT and PEGASUS null distributions are

mixtures of chi-square distributions. Mixture proportions
for the SKAT null distribution are the eigenvalues of the
matrix s2½ðI2PÞK�; where P ¼ CðCTCÞ21CT is a projection
matrix dependent on the covariate matrix C and K ¼ GWG9
is a kernel matrix dependent on the genotype matrix G and a
diagonal matrix of weights W: For the PEGASUS null distri-
bution, mixture proportions are given by the eigenvalues of
the LD matrix

P
: If no covariates are considered and the

variant weights are uniform (wj ¼ 1) for all variants, the
SKAT null distribution becomes a mixture of chi-square dis-
tributions with mixture proportions given by the eigenvalues
of the K ¼ GWG9 matrix, which is a variance–covariance
matrix similar to the PEGASUS LD matrix

P
: Thus, under

these circumstances, the two tests give similar results. How-
ever, PEGASUS requires only summary statistics and is a
better choice when genotype data are not available for
analysis.

Figure 1 Schematic representa-
tions of PEGASUS and the three
other methods—minSNP, permSNP,
and VEGAS—assessed in this
study. (A) minSNP defines the
gene score to be the lowest of
the SNP-level P-values within the
gene observed in a GWA study.
(B) permSNP (Ballard et al. 2010)
performsM permutations of case–
control labels in genotype data,
recomputes GWA P-values for
each SNP for each permuted data
set, averages SNP P-values within
each gene, and computes an
empirical gene P-value based on
the number of times the ob-
served gene P-value is lower than
permuted P-values. (C) VEGAS
performs multivariate normal sim-
ulations from a null distribution of
x2
1 statistics where the x2

1 statistics
are correlated by empirical LD
calculated from genotype data.
M simulations are performed, the
null statistics are summed within
each gene and the empirical gene
P-value is the number of times the
observed x2

1 statistic is lower than
the permuted x2

1 statistic. (D) In
PEGASUS, for each gene, we nu-
merically integrate the distribution
of the sum of correlated x2

1 statis-
tics at the observed gene statistic
to determine the gene score. We
also assess the performance of
SKAT (Wu et al. 2010, 2011),
which is not depicted here. SKAT
uses a multiple linear/logistic re-
gression framework, where geno-
types for variants in a gene set and
covariates are regressed onto phe-
notype to generate gene scores.
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GWA study replication

To further assess the robustness of our method, PEGASUS,
we attempted to replicate gene hits (pg , 2:83 1026 or
0:05  divided by approximately   18; 000 genes tested) gener-
ated by PEGASUS for four data sets [bipolar disorder (BIP),
Crohn’s disease (CD), rheumatoid arthritis (RA), and type 2 di-
abetes (T2D)], using genotype data from theWTCCC (WTCCC
2007). For the replication study, we carried out PEGASUS on
these four WTCCC data sets (our “replication cohort”) and
compared the top genes found in our “discovery” data sets
(Franke et al. 2010; Stahl et al. 2010; Sklar et al. 2011;
Morris et al. 2012) to those found in the WTCCC data sets.
We note that this is not an independent replication study since
the WTCCC data sets were included in the discovery cohorts;
cases from theWTCCC data sets comprised at most 38% of the
cases included in the discovery cohorts (Table S2). The repli-
cation data sets consist of �2000 cases for each disease and
�3000 shared controls recruited from the United Kingdom and
genotyped on the Affymetrix 500K GeneChip (WTCCC 2007).

Eight quality control steps were carried out for each of
the four WTCCC data sets. Steps 1–7 were carried out
using PLINK (Purcell et al. 2007) (version 1.07):

1. Markers with minor allele frequency,1% were removed.
2. Loci with a call rate #95% across individuals were

removed.
3. Individuals with at least 5% missingness across all loci

were removed.
4. Loci not in Hardy–Weinberg equilibrium were removed

(P-value threshold of 1025).
5. Individuals were pruned based on inbreeding coefficient

(F$ 0:05 or F# 20:025).
6. Duplicate individuals were removed (one individual for

each pair with identity by state$ 95%).
7. Related individuals were removed (one individual for

each pair with p̂. 0:0175).
8. Individuals determined to be outliers by principal com-

ponent analysis were removed. SmartPCA from the
EIGENSOFT (Price et al. 2006) software package (version
4.0.2) was used to do PCAwith outlier removal. Five iter-
ations of outlier removal were performed with the outlier
s threshold = 6.

We conducted GWA analysis using PLINK (Purcell et al.
2007) (version 1.07) on the WTCCC data sets. SNP-level
P-values were determined by logistic regression of disease
state onto minor allele dosage, using the top four principal
components as covariates in the logistic regression to control
for ancestry.

GWA study simulation

To compare how well minSNP, SKAT, VEGAS, and PEGASUS
can recover causal genes, we conducted a GWA study for a
simulated complex phenotype with known genetic architec-
ture based on the approach outlined in Wojcik et al. (2015)
and applied these four methods to the simulated data (Figure

S13). To choose causal genes, we picked four pathways
with .20 genes each at random from the KEGG pathway
database (Kanehisa 1997; Kanehisa et al. 2012). For each
pathway, we randomly sampled 20% of its genes, resulting
in 54 total causal genes. We ran Tagger (Haploview, Version
4.3) (Barrett et al. 2005) on each gene to find independent
tag SNPs (r2 , 0.2), using theWTCCC controls (N=2900 in-
dividuals) as reference individuals to calculate LD. For each
of the 54 causal genes, we chose 1, 2, or 5 tag SNPs to be
associated with the phenotype, giving 123 total causal SNPs.
All the chosen SNPs in each gene were randomly assigned an
effect size of either 1.2 or 2 to simulate a range of effect sizes.

Using software from Wojcik et al. (2015), we then calcu-
lated a per-individual liability score for each individual
(WTCCC controls served as our simulated cases and controls)
from a model of additive genetic effects by summing the
effect size s of each SNP multiplied by the minor allele dos-
age X at the SNP over all n SNPs (Equation 6). A “wiggle” (e)
was added to each raw liability score (Equation 7) to allow
the cases and controls to overlap in their liability score
distributions:

raw liability score ¼
X123 total causal SNPs

i¼1

siXi (6)

wiggled score ¼ raw liability scoreþ e;

where e � Nð0:1; 10Þ: (7)

Phenotypewas assigned to each individual based on themean
of100deviates fromthebinomialdistributionwithprobability
of success equal to the probability of the wiggled score from
the logistic distribution, which we obtained by applying the
logistic function to the wiggled score.

We then conducted GWA analysis using PLINK (Purcell
et al. 2007) (version 1.07) on the WTCCC controls and the
simulated phenotypes. SNP-level P-values were determined
by logistic regression of minor allele dosage onto disease
state. We used the top four principal components, deter-
mined by applying smartPCA (Price et al. 2006) to the geno-
types, as covariates in the logistic regression to control for
ancestry. To simulate spurious associations between SNPs
and our associated phenotype, we added 20% of significant
SNP P-values (144 new SNPs total) from an existing GWA
study on CD (Franke et al. 2010) to our simulated GWA
P-values; these spuriously associated SNPs did not overlap
with SNPs already associated with simulated phenotype. By
“spuriously associated” SNPs, we mean SNPs that achieve
genome-wide significance (P-value ,   53 1028) but are
not discussed or selected for replication studies, eQTL anal-
ysis, or other downstream analyses due to filtering steps.
Such SNPs may be excluded based on criteria such as failure
to achieve significance within a majority of the individual
cohorts analyzed in a meta-analysis (Anderson et al. 2011),
location within regions with complex LD or complex associ-
ation patterns with the trait such as the MHC or TNFAIP3
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regions for RA (Stahl et al. 2010), or P-value thresholds based
on additional in silico analyses such as GRAIL (Raychaudhuri
et al. 2009; Franke et al. 2010). Since the true causal genes
underlying the simulated phenotype are known, we are able
to measure true positive rate (TPR) and false positive rate
(FPR) for each gene score method and used the following
gene score thresholds: f7:531021; 53 1021; 2:53 1021;

1021; 7:53 1022; 53 1022; 2:53 1022; 1022; . . . ;

7:5310216; 53 10216; 2:53 10216g We find that our simu-
lation results are robust to varying percentages of spuri-
ously associated SNPs added and the GWA data set used
(Figure S14).

Pathway analysis

We performed pathway analysis with HotNet2 (Leiserson
et al. 2015), a topology-based method for finding signifi-
cantly mutated subnetworks within protein–protein interac-
tion networks, originally developed for analyzing somatic
mutation data from cancer data sets. HotNet2 uses directed
heat diffusion along interaction networks where every gene,
represented by nodes in the network graph, has a “heat score”
based on its gene score. We used negative log-transformed
gene scores generated by PEGASUS, VEGAS, and minSNP as
heat scores in HotNet2.

We use HotNet2 to find gene interaction subnetworks
containing genes that we have highest confidence are truly
associated with the phenotype. We found that HotNet2 does
not perform well when too many genes are assigned similar
heat scores, as will happen when the majority of genes have
insignificant P-values. Thus, following the approach used in
earlier applications of HotNet2 to somatic mutations in can-
cer, we assigned heat scores of zero to genes that we have
low confidence are truly associated with the phenotype
(Leiserson et al. 2015). To identify low-confidence genes,
we compute a hard threshold based on local false discovery
rates (lFDR) for the gene P-values. In a disease association
setting, lFDR is the probability that a gene is not associated
with the phenotype given its corresponding observed
P-value; thus, 12 lFDR can be thought of as “confidence.”
When plotting confidence against gene scores (Figure S5
and Figure S6), an “elbow” or inflection point typically cor-
responds to a sharp drop in confidence; therefore, the inflec-
tion point is a natural choice for a gene score threshold. We
compute the lFDRs for the gene scores using the twilight R
package (Scheid and Spang 2005) (version 1.44.0). We cal-
culate lFDR for minSNP, VEGAS, and PEGASUS gene scores
and then determine a cutoff at the first elbow or inflection
point in the graph of 12 lFDR against gene scores where
possible (Figure S5 and Figure S6). If the graph has no elbow
point, as in the minSNP lFDR curves, we used the gene score
corresponding to an lFDR cutoff of 0.05 (Figure S4). Since
the cutoffs for the minSNP scores were greater than those
calculated using PEGASUS and VEGAS gene scores, we ran
HotNet2 twice: once using the PEGASUS lFDR threshold and
once with the higher minSNP lFDR threshold. We assessed
significance of HotNet2 results for each run by permuting the

heat scores on genes to find a P-value for the number of
subnetworks containing $k genes, as reported by HotNet2
(Leiserson et al. 2015).

HotNet2 analysis was performed using the HINT interac-
tion network (Das and Yu 2012). Runs that had multiple
P-values #   0:05 of varying size k in the permutation test
were further studied, for example, by annotation using the
Genome-wide Repository of Associations between SNPs and
Phenotypes (GRASP) GWA study catalog (Leslie et al. 2014)
to determine significance of the genes in previous GWA
studies, along with functional annotations and literature
searches.

Data availability

GWA P-values analyzed here (Table 2) can be accessed at the
URLs given in Table S3. WTCCC data (WTCCC 2007) used in
power simulations and replication studies can be accessed
through the Wellcome Trust Case Control Consortium:
http://www.wtccc.org.uk/. PEGASUS software and LD
reference data are available online at the following URL:
https://github.com/ramachandran-lab/PEGASUS. HotNet2
(Leiserson et al. 2015) software is available online at the
following URL: https://github.com/raphael-group/hotnet2.

Results

Performance comparison of PEGASUS against minSNP,
permSNP, SKAT, and VEGAS

We compared PEGASUS against minSNP (Torkamani et al.
2008; Fehringer et al. 2012; Gelernter et al. 2015; Hu et al.
2015), permSNP (Wang et al. 2007; Eleftherohorinou
et al. 2009; Ballard et al. 2010; Christoforou et al. 2014;
Evangelou et al. 2014; Backes et al. 2016), SKAT (Wu et al.
2010, 2011), and VEGAS (Liu et al. 2010) (Figure 2 and Figure
S15), using several metrics to evaluate the different scores.

We find that, for all 12 GWA data sets analyzed, minSNP
gene scores are almost always smaller than PEGASUS gene
scores (Figure 2A and Figure S1). We also find that minSNP
gene scores show a clear dependence on gene length; as the
number of SNPs in a gene increases, the minSNP gene score
decreases for all data sets analyzed. In contrast, PEGASUS
gene scores do not show this trend (Figure 2A, Figure S2, and
Figure S16).

We tested whether two corrections to minSNP gene scores
mitigated its bias with gene length: (i) calculating P-values
for minSNP gene scores from the Beta(1, no. of SNPs in gene)
distribution (note that minSNP can be thought of as the first-
order statistic for SNP P-values) and (ii) multiplying minSNP
gene scores by the number of SNPs in a gene. Both corrections
resulted in gene scores that decrease with increasing gene
length (Figure S7 and Figure S8).

Since permSNP requires genotype data and is computa-
tionally expensive, permSNP was carried out only on the
ALL data set (Xu et al. 2013), using 10,000 permutations;
thus, there is large variation in PEGASUS gene scores at a
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permSNP gene score of 1024 (Figure 2B). Further, permSNP
is extremely computationally costly: Carrying out permSNP
on a random subset of 400 genes took �6 hr. Thus,
permSNP would be extremely computationally inefficient
for analyzing a genome-wide human data set (�18,000–
20,000 genes).

SinceSKATrequiresgenotypedata,SKATwascarriedouton
the ALL (Xu et al. 2013) and theWTCCC T2D (WTCCC 2007)
data sets, using the top four principal components from PCA
on these data sets as covariates. We find that PEGASUS gene
scores and SKAT gene scores are correlated (r ¼ 0:44 and
r ¼ 0:49; P-values ,   23 10216 and ,   2310216 for ALL
and T2D, respectively) for both data sets (Figure S15, A and
B). We also find that PEGASUS gene scores and unweighted
SKAT gene scores are correlated (r ¼ 0:96 and r ¼ 0:94;
P-values ,   23 10216 and ,   23 10216 for ALL and T2D,
respectively) (Figure S15, C and D).

Compared to VEGAS, our method has increased numerical
precisionwhen calculating gene scores (Figure 2C). Due to its
underlying Monte Carlo simulations (106 by default), VEGAS
does not calculate gene scores less than the reciprocal of the
number of simulations. However, PEGASUS can evaluate
gene scores to the machine precision of R, which is �10216:

In addition, VEGAS gene scores become inaccurate close to
1026 due to the random nature of Monte Carlo simulations
(Figure 2C), whereas PEGASUS does not have a stochastic
element. We find that VEGAS produces less numerically pre-
cise gene scores than PEGASUS in all 12 data sets analyzed
(Figure S3). We also find that PEGASUS runs twice as fast as
VEGAS when using HapMap data (Frazer et al. 2007) (Phase
2) as references for LD.

Enrichment for known associations in real data

To assess how well minSNP and PEGASUS recover known
GWA associations, we calculated the percentage of genes
with significant minSNP and PEGASUS gene scores
(pg , 2:83 1026) for the 12 phenotypes in this analysis that
have been found to be significantly associated (SNP-level
P-value, 53 1028) with the disease or trait in GWA studies
conducted with different genotype data (Figure 3). Taking
known associations to be “true positives,” we calculated pos-
itive predictive values (PPV) for every gene score for every
disease. We find that in 10 of 12 data sets, significantly asso-
ciated PEGASUS gene hits (pg , 2:83 1026) have higher PPV
than minSNP gene hits by as much as 2.8-fold, showing that
PEGASUS gene hits are enriched for known associations in
comparison to minSNP (Figure 3). For the remaining two
disorders, attention-deficit/hyperactivity disorder (ADHD)
and major depressive disorder (MDD), minSNP identifies sig-
nificantly associated genes (pg , 2:83 1026) that have not
been found in other GWA studies while PEGASUS does not
report any findings (Figure 3).

Replication of PEGASUS gene hits in WTCCC data

We attempted to replicate gene hits (pg , 2:83 1026) gen-
erated by PEGASUS for four data sets (BIP, CD, RA, and T2D)
for which we have genotype data from the WTCCC (WTCCC
2007). We note that our replication cohorts (WTCCC) were
included in the discovery cohorts, and thus this is not an in-
dependent replication. We find that we are able to replicate
up to 57.2% of gene hits in the case of RA and as low as
0 gene hits in the BIP data set (Table S2). We note that the
four meta-analyses we consider our “discovery cohorts” are

Figure 2 Quantile–quantile plots comparing gene scores produced by PEGASUS against those produced by minSNP, permSNP, and VEGAS. (A)
Quantile–quantile plots of PEGASUS gene scores vs. minSNP gene scores. Each point represents a gene and is colored yellow, red, or blue based on
gene length percentile, 0–25%, 25–75%, and 75–100%, respectively. The phenotype used is waist–hip ratio adjusted for body mass index
(WHR). minSNP gene scores are smaller than PEGASUS gene scores and decrease with increasing number of SNPs in a gene. The deviations from
y ¼ x show that minSNP scores are biased toward being smaller than PEGASUS scores, and this bias increases for increasing gene length (genes colored
in blue and red). (B) Base-10 logarithm of PEGASUS gene scores vs. base-10 logarithm of permSNP gene scores for acute lymphoblastic leukemia (ALL).
permSNP can determine gene scores only as low as the reciprocal of the number of permutations (10,000 in this case) whereas PEGASUS can determine
gene scores as low as 2:22310216 (the numerical precision of R). Note that the minimum permSNP scores of 1024 differ widely from their P-values
computed by PEGASUS. (C) Base-10 logarithm of PEGASUS gene scores vs. base-10 logarithm VEGAS gene scores. Using 1 million simulations, the
lowest gene scores output by VEGAS are 1026; while PEGASUS determines gene scores as low as 2:223 10216: In addition, for gene scores close to the
reciprocal of the maximum number of simulations performed, VEGAS can return inaccurate gene scores compared to PEGASUS.
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composed of much larger sample sizes than our replication
data sets and thus had greater power to identify associated
variants. Further, we do not necessarily follow the same steps
for quality control and ancestry correction in our GWA study
as did the meta-analyses reanalyzed here (see Materials and
Methods), which may explain our low percentage of repli-
cated significant genes for BIP and CD.

Power analysis using simulated GWA data

To compare how well minSNP, SKAT, VEGAS, and PEGASUS
can recover causal genes, we conducted gene-level tests for
association, using these methods on a GWA study for a
simulated phenotype calculated from a model of additive
genetic effects. PEGASUS and VEGAS outperform minSNP
with a 30% TPR when the FPR is fixed at 1%, and PEGASUS
andVEGASoutperformSKATwith28%higherTPRwhenFPR
is fixed at 1% (Figure 4). We find that minSNP, when applied
to the GWA data sets in Table 2, outputs high numbers of
significant genes (genes with pg , 2:83 1026). For example,
as many as 5.5% of all genes (lower bound: 0.01%) are
below the Bonferroni-corrected threshold for significance
when using minSNP across the 12 data sets we analyzed
(Table S1). In our simulation, we find that the high FPR
in minSNP is due to genes with spurious SNP association
P-values added in as part of the simulation. This suggests
that some minSNP gene hits in observed GWA studies are
spurious associations as well. By correcting for LD, PEGASUS
and VEGAS are able to ignore these false positives (Figure
4). At very low FPR (,   0:34%), SKAT is the most sensitive
method, but SKAT has lower sensitivity overall. This could be

a desirable feature if one is looking for a small number of
reliable gene hits. However, for pathway/network analysis,
it is useful to obtain high sensitivity, as the pathway/network
information will help reduce the remaining false positives.
We were unable to add in spurious SNP association P-values
for the SKAT method since this test requires genotype data;
however, inclusion of these SNPs could only decrease the
performance of SKAT in simulation.

The downstream effect of gene scores on
pathway analysis

Using gene scores generated from minSNP, VEGAS, and
PEGASUS as input to HotNet2 (Leiserson et al. 2015), we
performed pathway analysis on each of the 12 GWA data
sets. We find significantly associated gene subnetworks for
ADHD, ulcerative colitis (UC), and waist–hip ratio adjusted
for body mass index (WHR). Figure 5 shows a selection of
subnetworks containing known or biologically plausible
gene associations for these three phenotypes based on pre-
vious GWA or functional studies. Other significantly asso-
ciated subnetworks can be found in Figure S9 and Figure
S12.

PEGASUS identifies multiple subnetworks containing
genes with known associations to each phenotype of interest.
Someof these subnetworks are not foundwhenusingminSNP
and VEGAS gene scores as input to HotNet2 (Figure S10 and
Figure S11). We also identify subnetworks associated with
ADHD (Figure 5, D–F), a disorder for which GWA studies
have not identified any SNPs with genome-wide significance.
We detail our findings for each disease or trait below.

Figure 3 PEGASUS gene hits are enriched for known
GWA study associations compared to minSNP gene hits.
Shown are the numbers of minSNP gene hits (blue) and
PEGASUS gene hits (orange) that contain known GWA
study associations and gene hits not previously found in
GWA studies (gray) for 12 GWA study data sets. To the
right of each bar are positive predictive values (PPV) for
each gene score for every data set; where possible, bold-
face type indicates the gene score with the highest PPV for
each disease and “NA” means that PPV is undefined,
which occurs when there are zero gene hits. A gene hit
is a gene with a score of ,   2:831026; and known GWA
study associations are genes containing genome-wide sig-
nificant SNPs in GWA studies conducted with different
data sets from the 12 data sets analyzed here. We find
that PEGASUS gene hits have as much as 2.8-fold higher
PPV than minSNP gene hits.

Gene and Network Analysis of 12 Diseases 791

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/TableS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/FigureS9.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/FigureS12.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/FigureS12.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/FigureS10.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.116.188391/-/DC1/FigureS11.pdf


UC: Inflammatory bowel disease (IBD), an inflammatory
disease of the gastrointestinal tract, has two major subtypes:
UC and CD. IBD is hypothesized to result from dysregulated
T-cell immune responses to commensal enteric bacteria in the
gut that develop in individuals who are genetically predis-
posed to the disease. Environmental factors also play an
important role in triggering onset or recurrence of symptoms
(Sartor 2006; Lee et al. 2012). UC is characterized by super-
ficial, ulcerating inflammation that is limited to the colon
(Christophi et al. 2012).

HotNet2 analysis using PEGASUS scores identifies a sub-
network containing several genes in JAK2-STAT signaling
pathways as associated with UC disease state (Figure 5A).
The subnetwork in Figure 5A contains the genes JAK2,
IL12RB2, IFNG, PTPN2, and STAT4, which all have genome-
wide significant SNP hits (SNP P-value ,   53 1028) in GWA
studies for IBD (Duerr et al. 2006; Jostins et al. 2012). The
gene IFNG also has genome-wide significant SNPs in GWA
studies for ulcerative colitis conducted with different data
sets from the data set used in this study ð2:53 10212 and
4:2310212Þ (Silverberg et al. 2009; McGovern et al.
2010). The following genes shown in this subnetwork have
also been significantly associated (SNP P-value ,   53 1028)
with CD (CD alone or in concert with psoriasis or celiac dis-
ease) in other GWA studies: JAK2, IL12RB2, SOCS1, and
PTPN2 (Raelson et al. 2007; WTCCC 2007; Barrett et al.
2008; Franke et al. 2010; Festen et al. 2011; Ellinghaus
et al. 2012). Two closely related pro-inflammatory cytokine

signaling pathways involve many genes shown in this sub-
network: the interleukin (IL)-23/type 17 helper T-cell
(TH17) signaling pathway and the IL-12/type 1 helper
T-cell (TH1) signaling pathway. Both signaling pathways ul-
timately result in cytokine-mediated gut destruction (Wang
et al. 2010; Parkes et al. 2013).

Similar pathways centered around IL-12, IL-23, and JAK2-
STAT signaling have been manually compiled based on GWA
studies for CD and IBD (Wang et al. 2010; Parkes et al. 2013).
In addition, the subnetwork (Figure 5A) contains the gene
PTPN2, which encodes protein tyrosine phosphatase nonre-
ceptor type 2 (PTPN2) and has been shown to regulate auto-
phagy in human intestinal epithelial cells; knockdown of
PTPN2 caused impaired autophagosome formation and dys-
functional autophagy that eventually resulted in increased
apoptosis of intestinal cells in response to IFNG and tumor
necrosis factor-a (Scharl et al. 2012). This subnetwork illus-
trates interactions between multiple genes involved in the
immune response to pathogens that may underlie the pathol-
ogy of ulcerative colitis.

The subnetwork we identify in Figure 5B shows interac-
tions between the human leukocyte antigen (HLA) class I
genes and transporter associated with antigen processing
(TAP) genes. These genes are thought to underlie IBD pa-
thology as well as other immune-mediated disorders such as
psoriasis and ankylosing spondylitis (Parkes et al. 2013). Fi-
nally, HotNet2 reports a significantly associated subnetwork
containing genes that are part of the tumor necrosis factor
(TNF) signaling pathway (Figure 5C). TNF signaling results
in activation of nuclear factor kappa-light-chain enhancer of
activated B cells (NF-kB), which is a known inflammatory
response in IBD (Anderson et al. 2011). Additional significant
gene subnetworks are shown in Figure S12.

We emphasize that neither the JAK2-STAT subnetwork
(Figure 5A) nor the HLA class 1 and TAP genes (Figure 5B)
are foundwhen using VEGAS gene scores as input to HotNet2
(Figure S11), demonstrating the importance of high-precision
gene scores in downstream analysis.

ADHD: ADHD is a highly heritable neuropsychiatric disorder
characterized by the following traits: inattention, hyperactiv-
ity, and impulsivity (Franke et al. 2009). It is thought to be a
very complex multifactorial trait and, despite high heritabil-
ity estimates (76%) (Neale et al. 2010), it has been difficult to
find genes underlying the phenotype. GWA studies with very
large sample sizes have been performed, yet no variants have
reached genome-wide significance (Franke et al. 2009).

Using PEGASUS gene scores as input to HotNet2, we find
five significantly associatedgene subnetworks associatedwith
ADHD (Figure 5 and Figure S9). Figure 5D includes interac-
tions between multiple genes previously associated with
cognition-related traits and neurodevelopmental disorders.
RPS6KA5, PDZD2, and RAI1 are associated with years of edu-
cation (GWA SNP P-values of 9:231024; 5:93 1024; and
3:63 1025; respectively) (Rietveld et al. 2013). The genes
RPS6KA5, PDZD2, and ST3GAL3 have also been associated

Figure 4 Receiver operating characteristic (ROC) curves from GWA con-
ducted with simulated phenotypes show gene scores controlling for LD
achieve higher true positive rates at low false positive rates. We per-
formed a GWA study for a simulated phenotype with known underlying
true causal genes (see Materials and Methods) and determined true pos-
itive rate (TPR; genes truly associated with phenotype that were identified
as such) and false positive rate (FPR; genes identified as causal by a gene
score method that were not truly associated with the simulated pheno-
type) for minSNP, VEGAS, SKAT, and PEGASUS for various gene score
thresholds (see Materials and Methods). We find that PEGASUS and
VEGAS, which control for pairwise correlations between SNPs within
genes, outperform minSNP and SKAT with higher TPRs at very low FPRs.
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(3:43 1025 # p#23 1024) with performance on multiple
tests of cognitive function and memory in previous GWA
studies (Need et al. 2009; Cirulli et al. 2010, 2012; Luciano
et al. 2011; De Jager et al. 2012). In particular, RPS6KA5,
which encodes ribosomal protein S6 kinase alpha-5, is part
of a pathway involved in brain-derived neurotrophic factor
(BDNF)/neurotrophin signaling; BDNF and other neurotro-
phins are important in neural development, learning, and
memory and are implicated in neurodegenerative diseases
such as Huntington’s, Alzheimer’s and Parkinson’s (Tang
et al. 2011). RPS6KA5 is also thought to be a part of the
upstream pathway involved in learning-dependent chroma-
tin remodeling, which is important in long-term memory for-
mation (Peixoto and Abel 2013). In addition, the gene
PDLIM1 has been found to have strongmaternal transmission
in trios where the child is affected with ADHD, and PDLIM1
has been shown to play a role in Alzheimer’s disease (Wang
et al. 2012). A linkage study for intellectual disability found
mutations in the ST3GAL3 gene (Hu et al. 2011), and muta-
tions in the ACTG1 gene cause Baraitser–Winter syndrome, a
developmental disorder affecting the face and brain (Rivière
et al. 2012). Taken together, multiple studies suggest that
genes in this subnetwork we identified using PEGASUS and
HotNet2 are involved in regulatory processes that affect neu-
ral development, learning, and memory.

The second subnetwork (Figure 5E) contains FURIN and
other genes that play important roles in cell trafficking
processes that may be involved in the pathology of neuropsy-
chiatric and cognitive disorders such as Alzheimer’s disease
and intellectual disability (Wan et al. 1998; Fuentealba et al.
2010; Schuurs-Hoeijmakers et al. 2012; Carlino et al. 2013).
A third subnetwork (Figure 5F) contains genes that are likely
involved in brain development (Maden 2007). Two addi-
tional subnetworks found by HotNet2 using PEGASUS scores
contain genes that play regulatory roles in neurogenesis and
responses to stress (Figure S9A) and genes associated with
other social and behavioral abnormalities (Figure S9B). Ad-
ditional information about genes in these subnetworks can
be found in Text S2.

WHR adjusted for body mass index:WHR adjusted for body
mass index (BMI) is a quantitative trait that measures body
fat distribution. Both WHR and BMI are heritable traits (25–
70% heritability), but mechanisms underlying body fat dis-
tribution are still unclear (Baker et al. 2005). WHR is a useful
trait for predicting risk for T2D and heart disease since it
accounts for waist and hip size, which both have associations
with these traits (Heid et al. 2010). Increasing waist size is
associated with increased risk for T2D and heart disease,
but gluteal fat deposits play a protective role against T2D,

Figure 5 Subnetworks for ulcera-
tive colitis (A–C), attention-deficit/
hyperactivity disorder (D–F), and
waist–hip ratio adjusted for body
mass index (G and H) from signif-
icant runs of HotNet2 (Leiserson
et al. 2015) (p#0:05 for multiple
subnetwork sizes), using PEGASUS
gene scores as input. Circles repre-
sent genes in each subnetwork
and are colored by heat score
(negative log-transformed PEGA-
SUS gene scores); the color bar
indicates the lowest heat score
(blue or “cold” genes) and the
highest heat score (red or “hot”
genes) in each subnetwork for a
given phenotype. Lines between
genes indicate a direct gene–gene
interaction from the HINT data-
base (Das and Yu 2012). Gene
names that are underlined, in bold-
face type, and italicized represent
genes that have been previously as-
sociated with the ulcerative colitis
(Duerr et al. 2006; Raelson et al.
2007; WTCCC 2007; Barrett et al.
2008; Silverberg et al. 2009; Franke
et al. 2010; McGovern et al. 2010;
Anderson et al. 2011; Festen et al.
2011; Ellinghaus et al. 2012; Jostins

et al. 2012; Scharl et al. 2012; Parkes et al. 2013), attention-deficit/hyperactivity disorder (Wan et al. 1998; Maden 2007; Davis et al. 2008; Naka et al. 2008;
McGrath et al. 2009; Need et al. 2009; Chen et al. 2010; Cirulli et al. 2010, 2012; Fuentealba et al. 2010; Neale et al. 2010; Hu et al. 2011; Luciano et al. 2011;
Tang et al. 2011; De Jager et al. 2012; Rivière et al. 2012; Schuurs-Hoeijmakers et al. 2012; Peixoto and Abel 2013; Rietveld et al. 2013), and waist–hip ratio
(Cantile et al. 2003; Eguchi et al. 2008, 2011; Guth et al. 2009; Hagberg et al. 2010; Heid et al. 2010; Siervo et al. 2012; Tchkonia et al. 2013; Karpe and
Pinnick 2015) phenotypes in GWA or functional studies.
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hypertension, and dyslipidemia (Heid et al. 2010; Shungin
et al. 2015).

HotNet2 analysiswith PEGASUSgene scores identifies two
subnetworks with interactions between genes known to be
associated with WHR that may shed light on the genetic
determination of body fat distribution. Figure 5G displays a
subnetwork of homeobox (HOX) genes, a family of transcrip-
tion factors that play an important role in morphogenesis in
animals (Zhang et al. 2007). The complete HOX gene net-
work was found to be active in human white adipose tissue
and fetal brown adipose tissue (Cantile et al. 2003). HOX
genes contained in this subnetwork include HOXA9, HOXC11,
HOXA11, and EMX2. Multiple studies of gene expression in
human subcutaneous abdominal adipose tissue and gluteal
adipose tissue found that the HOXA9 gene has increased ex-
pression in abdominal adipose tissue; MEIS1, which encodes
a HOX cofactor and is also contained in this subnetwork, was
also expressed more in abdominal adipose tissue than in glu-
teal depots in men only (Karpe and Pinnick 2015). In con-
trast, HOXC11 and HOXA11 have increased gene expression
in gluteal adipose tissue than in abdominal adipose tissue
(Karpe and Pinnick 2015). HOXA9 and EMX2, another
homeobox gene, were induced after extreme weight loss fol-
lowing bariatric surgery (Tchkonia et al. 2013). The subnet-
work shows SOX8, which encodes a transcription factor
thought to play a role in development; mice deficient in
SOX8 develop surprisingly normally, but undergo a severe
degeneration of adipose tissue as adult mice (Guth et al.
2009). Guth et al. (2009) posit that SOX8 plays a role in
adipocyte development, especially during replenishment of
the adipocyte pool in adult mice. IRF4 is also contained in
this subnetwork and encodes interferon regulatory factor
4 (IRF4), which is part of a family of transcription factors
that are involved in various immune functions including reg-
ulation of innate immunity via the Toll-like receptor (TLR)
signaling pathway (Eguchi et al. 2011). Many IRF proteins
including IRF4 are also expressed in preadipocytes and ma-
ture adipocytes; their function is to repress adipogenesis
(Eguchi et al. 2008). Eguchi et al. (2011) find that knockout
mice lacking IRF4 in adipocytes display excess adiposity and
resistance to lipolysis induced by catecholamines, fasting, or
cold exposure, suggesting that IRF4 plays an important role in
transcriptional regulation of lipid handling in fat. These find-
ings indicate that this subnetworkmay play an important role
in development of adipocytes and fat distribution.

The second subnetwork found by HotNet2 (Figure 5H)
elucidates the interactions of VEGFA, which contains a known
GWA study association for WHR (SNP P-value 1:38310210)
and VEGFB, which is moderately associated with WHR (SNP
P-value 7:23 1023) (Heid et al. 2010). Additional informa-
tion about this subnetwork can be found in Text S3.

We also conducted HotNet2 analysis using minSNP gene
scores for all phenotypes studied here. Since minSNP gene
scores are misleadingly small (Figure 2A, Figure S2, and
Figure S16), single highly significant genes pull in many
unrelated genes with low gene scores to create artifactual

“star-shaped” subnetworks that are likely false positives
(see Figure S10 for HotNet2 results using minSNP gene
scores for ulcerative colitis).

Discussion

Here we present a new approach for identifying geno–
phenotype associations from case–control data that combines
a novel gene score, PEGASUS, with network-based analyses
using HotNet2 (Leiserson et al. 2015). PEGASUS computes
gene scores that measure the statistical association of a gene
with a phenotype of interest and has multiple advantages
over commonly used methods for generating gene scores.

First, PEGASUSanalyticallymodels LDamongSNPswithin
genes, producing a computationally efficient method that
yields precise results—gene scores as small as 2:223 10216

(the machine precision of R). By modeling linkage disequi-
librium, PEGASUS, like VEGAS (Liu et al. 2010), is sensitive
to genes with multiple SNPs that are moderately associated
with the phenotype of interest. Unlike existing methods, our
gene scores are not biased by gene length or poor precision.
In the future, our approach can be extended to combine SNP-
level P-values within linkage blocks in contrast to the gene
boundaries used in this study.

Second, we apply PEGASUS to 12 genome-wide associa-
tion studies for complex diseases and traits and, in 10 of
12 studies, our significant gene scores (pg , 2:83 1026) en-
rich for genes known to be associated with the phenotypes of
interest (Figure 3). In simulation studies, we find that mod-
eling fine-scale LD (or pairwise correlations between SNPs
within genes), as in the PEGASUS and VEGAS methods, pro-
duces gene scores with much higher true positive rates of
identifying genes associated with the simulated phenotype
than does using minSNP (Figure 4). Thus, PEGASUS can be
applied after conducting a GWA study to prioritize genes for
functional validation.

Third, because our approach precisely assesses the statis-
tical association of a gene with a phenotype of interest,
PEGASUS offers the opportunity to identify novel sets of
interacting genes underlying complex phenotypes via path-
way or network analysis with our gene scores as input.
Complex phenotypes may be generated via mutations in a
subset of genes in a predefined gene set [such as the gene sets
used in gene set enrichment analysis (Subramanian et al.
2005)] or via crosstalk between gene sets or pathways. To
identify novel subnetworks of genes associated with each of
the complex phenotypes analyzed in this study, we used gene
scores generated by PEGASUS as input to HotNet2 (Leiserson
et al. 2015); this is the first application of HotNet2 to common
genetic variation. In our network analyses, minSNP and
VEGAS miss key subnetworks containing genes known to
be associated with the phenotype of interest (Figure 5, A
and B, ulcerative colitis).

Fourth, in ADHD, a disease for which large GWA studies
(n. 9543 individuals) have not identified genome-wide sig-
nificant associations (Franke et al. 2009; Neale et al. 2010),
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we identify significant subnetworks of interacting genes
(p# 0:05) that are involved in neural development and
learning and cognition. As knowledge of the human interac-
tome continues to improve, post hoc analysis of GWA stud-
ies using gene scores from PEGASUS in conjunction with
HotNet2 has the potential to generate promising hypotheses
for functional validation.

Finally, we argue that human genetics would benefit
greatly if more GWA studies released all SNP-level P-values
generated, instead of reporting a subset of P-values the au-
thors consider to be of interest. The present situation, where
only the genotypes are deposited in public repositories under
managed access, makes it impossible to replicate the various
filtering, quality control, ancestry correction, and other steps
that lead from raw genotype calls to the handful of genome-
wide significant SNPs reported in publications. Of course,
participant confidentiality requirements may limit the pub-
lic distribution of SNP P-values (Masca et al. 2011), but
P-values could be released with the genotype data under a
managed access model. If these summary statistics were rou-
tinely released, gene score methods like PEGASUS, network/
pathway analyses like HotNet2 (Leiserson et al. 2015), and
other computational innovations from the community could
be more widely applied to yield new insight into the genomic
underpinnings of complex diseases and traits.

Acknowledgments

We thank the Psychiatric Genomics Consortium, the Genetic
Investigation of Anthropometric Traits Consortium, the In-
ternational Inflammatory Bowel Disease Genetics Consor-
tium, the Diabetes Genetics Replication and Meta-analysis
Consortium, and the Broad Institute for making full genome-
wide association (GWA) P-values data sets available for pub-
lic download. We also thank Heng Xu, Virginia Perez-Andreu,
and Jun J. Yang from the St. Jude Children’s Research Hos-
pital for providing full GWA P-values and genotype data from
their multiethnic acute lymphoblastic leukemia GWA study
(Xu et al. 2013) and for help with curating the raw geno-
type data. We gratefully acknowledge Max Leiserson and
Jonathan Eldridge for assistance with HotNet2 analysis;
Matt Reyna, Julia Palacios, and Lauren A. Sugden for helpful
discussions; and Genevieve Wojcik for providing software and
help with GWA simulations. We also thank Chris Cotsapas for
helpful discussions. B.J.R. is supported by a Career Award at
the Scientific Interface from the Burroughs Wellcome Fund,
an Alfred P. Sloan Research Fellowship, U.S. National Science
Foundation (NSF) grant IIS-1016648, an NSF CAREER award
(CCF-1053753), and U.S. National Institutes of Health (NIH)
grants R01HG007069 and R01CA180776. P.N. is supported
by an Oliver Cromwell Gorton Arnold predoctoral fellow-
ship from Brown University and by NSF CAREER award
DBI-1452622 (to S.R.). S.R. is also supported by NIH grant
R01GM118652, the Pew Charitable Trusts as a Pew Scholar
in the Biomedical Sciences, and an Alfred P. Sloan Research
Fellowship.

Literature Cited

Anderson, C. A., G. Boucher, C. W. Lees, A. Franke, M. D’Amato
et al., 2011 Meta-analysis identifies 29 additional ulcerative
colitis risk loci, increasing the number of confirmed associations
to 47. Nat. Genet. 43: 246–252.

Auton, A., G. R. Abecasis, D. M. Altshuler, R. M. Durbin, D. R.
Bentley et al., 2015 A global reference for human genetic var-
iation. Nature 526: 68–74.

Backes, C., B. Meder, A. Lai, M. Stoll, F. Rühle et al.,
2016 Pathway-based variant enrichment analysis on the ex-
ample of dilated cardiomyopathy. Hum. Genet. 135: 31–40.

Baker, M., N. Gaukrodger, B. M. Mayosi, H. Imrie, M. Farrall et al.,
2005 Association between common polymorphisms of the
proopiomelanocortin gene and body fat distribution: a family
study. Diabetes 54: 2492–2496.

Ballard, D. H., J. Cho, and H. Zhao, 2010 Comparisons of multi-
marker association methods to detect association between a
candidate region and disease. Genet. Epidemiol. 34: 201–212.

Barrett, J. C., B. Fry, J. Maller, and M. J. Daly, 2005 Haploview:
analysis and visualization of LD and haplotype maps. Bioinfor-
matics 21: 263–265.

Barrett, J. C., S. Hansoul, D. L. Nicolae, J. H. Cho, R. H. Duerr et al.,
2008 Genome-wide association defines more than 30 distinct
susceptibility loci for Crohn’s disease. Nat. Genet. 40: 955–962.

Buch, S., F. Stickel, E. Trépo, M. Way, A. Herrmann et al., 2015 A
genome-wide association study confirms PNPLA3 and identifies
TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis.
Nat. Genet. 47: 1443–1448.

Cantile, M., A. Procino, M. D’Armiento, L. Cindolo, and C. Cillo,
2003 HOX gene network is involved in the transcriptional reg-
ulation of in vivo human adipogenesis. J. Cell. Physiol. 194:
225–236.

Carlino, D., M. De Vanna, and E. Tongiorgi, 2013 Is altered BDNF
biosynthesis a general feature in patients with cognitive dys-
functions? Neuroscientist 19: 345–353.

Chen, C.-M., H.-Y. Wang, L.-R. You, R.-L. Shang, and F.-C. Liu,
2010 Expression analysis of an evolutionarily conserved
metallophosphodiesterase gene, Mpped1, in the normal and
beta-catenin-deficient malformed dorsal telencephalon. Dev.
Dyn. 239: 1797–1806.

Christoforou, A., T. Espeseth, G. Davies, C. P. D. Fernandes, S.
Giddaluru et al., 2014 GWAS-based pathway analysis differen-
tiates between fluid and crystallized intelligence. Genes Brain
Behav. 13: 663–674.

Christophi, G. P., R. Rong, P. G. Holtzapple, P. T. Massa, and S. K.
Landas, 2012 Immune markers and differential signaling net-
works in ulcerative colitis and Crohn’s disease. Inflamm. Bowel
Dis. 18: 2342–2356.

Cirulli, E. T., D. Kasperavicite, D. K. Attix, A. C. Need, D. Ge et al.,
2010 Common genetic variation and performance on stan-
dardized cognitive tests. Eur. J. Hum. Genet. 18: 815–820.

Cirulli, E. T., T. J. Urban, S. E. Marino, K. N. Linney, A. K. Birnbaum
et al., 2012 Genetic and environmental correlates of topiramate-
induced cognitive impairment. Epilepsia 53: e5–e8.

Daly, A. K., 2010 Genome-wide association studies in pharmaco-
genomics. Nat. Rev. Genet. 11: 241–246.

Das, J., and H. Yu, 2012 HINT: high-quality protein interactomes
and their applications in understanding human disease. BMC
Syst. Biol. 6: 92.

Davis, L. K., K. J. Meyer, D. S. Rudd, A. L. Librant, E. A. Epping et al.,
2008 Pax6 39 deletion results in aniridia, autism and mental
retardation. Hum. Genet. 123: 371–378.

De Jager, P. L., J. M. Shulman, L. B. Chibnik, B. T. Keenan, T. Raj
et al., 2012 A genome-wide scan for common variants affect-
ing the rate of age-related cognitive decline. Neurobiol. Aging
33: 1017.e1–1017.e15.

Gene and Network Analysis of 12 Diseases 795



Duchesne, P., and P. Lafaye De Micheaux, 2010 Computing the
distribution of quadratic forms: further comparisons between
the Liu-Tang-Zhang approximation and exact methods. Comput.
Stat. Data Anal. 54: 858–862.

Duerr, R. H., K. D. Taylor, S. R. Brant, J. D. Rioux, M. S. Silverberg
et al., 2006 A genome-wide association study identifies IL23R as
an inflammatory bowel disease gene. Science 314: 1461–1463.

Eguchi, J., Q.-W. Yan, D. E. Schones, M. Kamal, C.-H. Hsu et al.,
2008 Interferon regulatory factors are transcriptional regula-
tors of adipogenesis. Cell Metab. 7: 86–94.

Eguchi, J., X. Wang, S. Yu, E. E. Kershaw, P. C. Chiu et al.,
2011 Transcriptional control of adipose lipid handling by
IRF4. Cell Metab. 13: 249–259.

Eleftherohorinou, H., V. Wright, C. Hoggart, A.-L. Hartikainen,
M.-R. Jarvelin et al., 2009 Pathway analysis of GWAS pro-
vides new insights into genetic susceptibility to 3 inflammatory
diseases. PLoS One 4: e8068.

Ellinghaus, D., E. Ellinghaus, R. P. Nair, P. E. Stuart, T. Esko et al.,
2012 Combined analysis of genome-wide association studies
for Crohn disease and psoriasis identifies seven shared suscep-
tibility loci. Am. J. Hum. Genet. 90: 636–647.

Evangelou, E., and J. P. A. Ioannidis, 2013 Meta-analysis methods
for genome-wide association studies and beyond. Nat. Rev.
Genet. 14: 379–389.

Evangelou, M., D. J. Smyth, M. D. Fortune, O. S. Burren, N. M.
Walker et al., 2014 A method for gene-based pathway analysis
using genomewide association study summary statistics reveals
nine new type 1 diabetes associations. Genet. Epidemiol. 38:
661–670.

Fehringer, G., G. Liu, L. Briollais, P. Brennan, C. I. Amos et al.,
2012 Comparison of pathway analysis approaches using lung
cancer GWAS data sets. PLoS One 7: e31816.

Festen, E. A. M., P. Goyette, T. Green, G. Boucher, C. Beauchamp
et al., 2011 A meta-analysis of genome-wide association scans
identifies IL18RAP, PTPN2, TAGAP, and PUS10 as shared risk
loci for Crohn’s disease and celiac disease. PLoS Genet. 7:
e1001283.

Finucane, H. K., B. Bulik-Sullivan, A. Gusev, G. Trynka, Y. Reshef
et al., 2015 Partitioning heritability by functional annotation
using genome-wide association summary statistics. Nat. Genet.
47: 1228–1235.

Franke, B., B. M. Neale, and S. V. Faraone, 2009 Genome-wide
association studies in ADHD. Hum. Genet. 126: 13–50.

Franke, A., D. P. B. McGovern, J. C. Barrett, K. Wang, G. L. Radford-
Smith et al., 2010 Genome-wide meta-analysis increases to
71 the number of confirmed Crohn’s disease susceptibility loci.
Nat. Genet. 42: 1118–1125.

Frazer, K. A., D. G. Ballinger, D. R. Cox, D. A. Hinds, L. L. Stuve
et al., 2007 A second generation human haplotype map of over
3.1 million SNPs. Nature 449: 851–861.

Fuentealba, R. A., Q. Liu, J. Zhang, T. Kanekiyo, X. Hu et al.,
2010 Low-density lipoprotein receptor-related protein 1 (LRP1)
mediates neuronal Abeta42 uptake and lysosomal trafficking.
PLoS One 5: e11884.

Gelernter, J., H. R. Kranzler, R. Sherva, L. Almasy, A. I. Herman
et al., 2015 Genome-wide association study of nicotine depen-
dence in American populations: identification of novel risk loci
in both African-Americans and European-Americans. Biol. Psy-
chiatry 77: 493–503.

Guth, S. I. E., K. Schmidt, A. Hess, and M. Wegner, 2009 Adult-
onset degeneration of adipose tissue in mice deficient for the
Sox8 transcription factor. J. Lipid Res. 50: 1269–1280.

Hagberg, C. E., A. Falkevall, X. Wang, E. Larsson, J. Huusko et al.,
2010 Vascular endothelial growth factor B controls endothe-
lial fatty acid uptake. Nature 464: 917–921.

Hallberg, P., N. Eriksson, L. Ibañez, E. Bondon-Guitton, R. Kreutz
et al., 2016 Genetic variants associated with antithyroid

drug-induced agranulocytosis: a genome-wide association
study in a European population. Lancet Diabetes Endocrinol.
4: 507–516.

Heid, I. M., A. U. Jackson, J. C. Randall, T. W. Winkler, L. Qi et al.,
2010 Meta-analysis identifies 13 new loci associated with
waist-hip ratio and reveals sexual dimorphism in the genetic
basis of fat distribution. Nat. Genet. 42: 949–960.

Hirschhorn, J. N., and M. J. Daly, 2005 Genome-wide association
studies for common diseases and complex traits. Nat. Rev.
Genet. 6: 95–108.

Holden, M., S. Deng, L. Wojnowski, and B. Kulle, 2008 GSEA-SNP:
applying gene set enrichment analysis to SNP data from
genome-wide association studies. Bioinformatics 24: 2784–
2785.

Hu, H., K. Eggers, W. Chen, M. Garshasbi, M. M. Motazacker et al.,
2011 ST3GAL3 mutations impair the development of higher
cognitive functions. Am. J. Hum. Genet. 89: 407–414.

Hu, Y., L. Deng, J. Zhang, X. Fang, P. Mei et al., 2015 A pooling
genome-wide association study combining a pathway analysis
for typical sporadic Parkinson’s disease in the Han population of
Chinese mainland. Mol. Neurobiol. 53: 4302–4318.

Huang, D. W., B. T. Sherman, Q. Tan, J. R. Collins, W. G. Alvord
et al., 2007 The DAVID Gene Functional Classification Tool: a
novel biological module-centric algorithm to functionally ana-
lyze large gene lists. Genome Biol. 8: R183.

Jia, P., S. Zheng, J. Long, W. Zheng, and Z. Zhao, 2011 dmGWAS:
dense module searching for genome-wide association studies in
protein-protein interaction networks. Bioinformatics 27: 95–
102.

Jiang, D.-K., J. Sun, G. Cao, Y. Liu, D. Lin et al., 2012 Genetic
variants in STAT4 and HLA-DQ genes confer risk of hepatitis B
virus related hepatocellular carcinoma. Nat. Genet. 45: 72–75.

Jostins, L., S. Ripke, R. K. Weersma, R. H. Duerr, D. P. McGovern
et al., 2012 Host-microbe interactions have shaped the genetic
architecture of inflammatory bowel disease. Nature 491: 119–
124.

Kanehisa, M., 1997 A database for post-genome analysis. Trends
Genet. 13: 375–376.

Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe,
2012 KEGG for integration and interpretation of large-scale
molecular data sets. Nucleic Acids Res. 40: D109–D114.

Karpe, F., and K. E. Pinnick, 2015 Biology of upper-body and
lower-body adipose tissue–link to whole-body phenotypes.
Nat. Rev. Endocrinol. 11: 90–100.

Kouri, N., O. A. Ross, B. Dombroski, C. S. Younkin, D. J. Serie et al.,
2015 Genome-wide association study of corticobasal degener-
ation identifies risk variants shared with progressive supranu-
clear palsy. Nat. Commun. 6: 7247.

Lango Allen, H., K. Estrada, G. Lettre, S. I. Berndt, M. N. Weedon
et al., 2010 Hundreds of variants clustered in genomic loci and
biological pathways affect human height. Nature 467: 832–838.

Lee, M. J., J.-K. Lee, J. W. Choi, C.-S. Lee, J. H. Sim et al.,
2012 Interleukin-6 induces S100A9 expression in colonic epi-
thelial cells through STAT3 activation in experimental ulcerative
colitis. PLoS One 7: e38801.

Lee, S., L. Miropolsky, and M. Wu, 2015 Skat: Snp-Set (Sequence)
Kernel Association Test. R package version 1.1.2. Available at:
https://CRAN.R-project.org/package=SKAT.

Leiserson, M. D. M., J. V. Eldridge, S. Ramachandran, and B. J.
Raphael, 2013 Network analysis of GWAS data. Curr. Opin.
Genet. Dev. 23: 602–610.

Leiserson, M. D. M., F. Vandin, H.-T. Wu, J. R. Dobson, J. V.
Eldridge et al., 2015 Pan-cancer network analysis identifies
combinations of rare somatic mutations across pathways and
protein complexes. Nat. Genet. 47: 106–114.

Leslie, R., C. J. O’Donnell, and A. D. Johnson, 2014 GRASP: anal-
ysis of genotype-phenotype results from 1390 genome-wide

796 P. Nakka, B. J. Raphael, and S. Ramachandran

https://CRAN.R-project.org/package=SKAT


association studies and corresponding open access database.
Bioinformatics 30: i185–i194.

Litchfield, K., R. Sultana, A. Renwick, D. Dudakia, S. Seal et al.,
2015 Multi-stage genome-wide association study identifies
new susceptibility locus for testicular germ cell tumour on chro-
mosome 3q25. Hum. Mol. Genet. 24: 1169–1176.

Liu, D. J., G. M. Peloso, X. Zhan, O. L. Holmen, M. Zawistowski
et al., 2013 Meta-analysis of gene-level tests for rare variant
association. Nat. Genet. 46: 200–204.

Liu, J. Z., A. F. McRae, D. R. Nyholt, S. E. Medland, N. R. Wray
et al., 2010 A versatile gene-based test for genome-wide asso-
ciation studies. Am. J. Hum. Genet. 87: 139–145.

Luciano, M., N. K. Hansell, J. Lahti, G. Davies, S. E. Medland et al.,
2011 Whole genome association scan for genetic polymor-
phisms influencing information processing speed. Biol. Psychol.
86: 193–202.

Maden, M., 2007 Retinoic acid in the development, regeneration
and maintenance of the nervous system. Nat. Rev. Neurosci. 8:
755–765.

Masca, N., P. R. Burton, and N. A. Sheehan, 2011 Participant
identification in genetic association studies: improved methods
and practical implications. Int. J. Epidemiol. 40: 1629–1642.

Mathai, A. M., and S. Provost, 1992 Quadratic Forms in Random
Variables: Theory and Applications. Marcel Dekker Inc., New York.

McCarthy, M. I., G. R. Abecasis, L. R. Cardon, D. B. Goldstein, J.
Little et al., 2008 Genome-wide association studies for com-
plex traits: consensus, uncertainty and challenges. Nat. Rev.
Genet. 9: 356–369.

McClellan, J., and M.-C. King, 2010 Genetic heterogeneity in hu-
man disease. Cell 141: 210–217.

McGovern, D. P. B., A. Gardet, L. Törkvist, P. Goyette, J. Essers
et al., 2010 Genome-wide association identifies multiple ulcer-
ative colitis susceptibility loci. Nat. Genet. 42: 332–337.

McGrath, C. L., S. J. Glatt, P. Sklar, H. Le-Niculescu, R. Kuczenski
et al., 2009 Evidence for genetic association of RORB with
bipolar disorder. BMC Psychiatry 9: 70.

Mooney, M. A., J. T. Nigg, S. K. McWeeney, and B. Wilmot,
2014 Functional and genomic context in pathway analysis of
GWAS data. Trends Genet. 30: 390–400.

Morris, A. P., B. F. Voight, T. M. Teslovich, T. Ferreira, A. V. Segrè
et al., 2012 Large-scale association analysis provides insights
into the genetic architecture and pathophysiology of type 2 di-
abetes. Nat. Genet. 44: 981–990.

Naka, H., S. Nakamura, T. Shimazaki, and H. Okano, 2008 Require-
ment for COUP-TFI and II in the temporal specification of
neural stem cells in CNS development. Nat. Neurosci. 11:
1014–1023.

Nalls, M. A., N. Pankratz, C. M. Lill, C. B. Do, D. G. Hernandez et al.,
2014 Large-scale meta-analysis of genome-wide association
data identifies six new risk loci for Parkinson’s disease. Nat.
Genet. 46: 989–993.

Neale, B. M., S. E. Medland, S. Ripke, P. Asherson, B. Franke et al.,
2010 Meta-analysis of genome-wide association studies of
attention-deficit/hyperactivity disorder. J. Am. Acad. Child
Adolesc. Psychiatry 49: 884–897.

Need, A. C., D. K. Attix, J. M. McEvoy, E. T. Cirulli, K. L. Linney
et al., 2009 A genome-wide study of common SNPs and CNVs
in cognitive performance in the CANTAB. Hum. Mol. Genet. 18:
4650–4661.

Pan, W., 2009 Asymptotic tests of association with multiple SNPs
in linkage disequilibrium. Genet. Epidemiol. 33: 497–507.

Parkes, M., A. Cortes, D. A. van Heel, and M. A. Brown, 2013 Genetic
insights into common pathways and complex relationships among
immune-mediated diseases. Nat. Rev. Genet. 14: 661–673.

Peixoto, L., and T. Abel, 2013 The role of histone acetylation in
memory formation and cognitive impairments. Neuropsycho-
pharmacology 38: 62–76.

Peloso, G. M., P. L. Auer, J. C. Bis, A. Voorman, A. C. Morrison et al.,
2014 Association of low-frequency and rare coding-sequence
variants with blood lipids and coronary heart disease in 56,000
whites and blacks. Am. J. Hum. Genet. 94: 223–232.

Peng, G., L. Luo, H. Siu, Y. Zhu, P. Hu et al., 2010 Gene and
pathway-based second-wave analysis of genome-wide associa-
tion studies. Eur. J. Hum. Genet. 18: 111–117.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A.
Shadick et al., 2006 Principal components analysis corrects for
stratification in genome-wide association studies. Nat. Genet.
38: 904–909.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira
et al., 2007 PLINK: a tool set for whole-genome association
and population-based linkage analyses. Am. J. Hum. Genet.
81: 559–575.

Raelson, J. V., R. D. Little, A. Ruether, H. Fournier, B. Paquin et al.,
2007 Genome-wide association study for Crohn’s disease in
the Quebec Founder Population identifies multiple validated
disease loci. Proc. Natl. Acad. Sci. USA 104: 14747–14752.

Raychaudhuri, S., R. M. Plenge, E. J. Rossin, A. C. Y. Ng, S. M.
Purcell et al., 2009 Identifying relationships among genomic
disease regions: predicting genes at pathogenic SNP associations
and rare deletions. PLoS Genet. 5: e1000534.

Renton, A. E., H. A. Pliner, C. Provenzano, A. Evoli, R. Ricciardi
et al., 2015 A genome-wide association study of myasthenia
gravis. JAMA Neurol. 72: 396–404.

Rietveld, C. A., S. E. Medland, J. Derringer, J. Yang, T. Esko et al.,
2013 GWAS of 126,559 individuals identifies genetic variants
associated with educational attainment. Science 340: 1467–1471.

Ripke, S., A. R. Sanders, K. S. Kendler, D. F. Levinson, P. Sklar et al.,
2011 Genome-wide association study identifies five new
schizophrenia loci. Nat. Genet. 43: 969–976.

Ripke, S., N. R. Wray, C. M. Lewis, S. P. Hamilton, M. M. Weissman
et al., 2013 A mega-analysis of genome-wide association stud-
ies for major depressive disorder. Mol. Psychiatry 18: 497–511.

Rivière, J.-B., B. W. M. van Bon, A. Hoischen, S. S. Kholmanskikh,
B. J. O’Roak, et al., 2012 De novo mutations in the actin genes
ACTB and ACTG1 cause Baraitser-Winter syndrome. Nat. Genet.
44: 440–444, S1–S2.

Rossin, E. J., K. Lage, S. Raychaudhuri, R. J. Xavier, D. Tatar et al.,
2011 Proteins encoded in genomic regions associated with
immune-mediated disease physically interact and suggest un-
derlying biology. PLoS Genet. 7: e1001273.

Sartor, R. B., 2006 Mechanisms of disease: pathogenesis of
Crohn’s disease and ulcerative colitis. Nat. Clin. Pract. Gastro-
enterol. Hepatol. 3: 390–407.

Scharl, M., K. A. Wojtal, H. M. Becker, A. Fischbeck, P. Frei et al.,
2012 Protein tyrosine phosphatase nonreceptor type 2 regu-
lates autophagosome formation in human intestinal cells. In-
flamm. Bowel Dis. 18: 1287–1302.

Scheid, S., and R. Spang, 2005 twilight; a Bioconductor package
for estimating the local false discovery rate. Bioinformatics 21:
2921–2922.

Schuurs-Hoeijmakers, J. H. M., E. C. Oh, L. E. L. M. Vissers, M. E. M.
Swinkels, C. Gilissen et al., 2012 Recurrent de novo muta-
tions in PACS1 cause defective cranial-neural-crest migration
and define a recognizable intellectual-disability syndrome. Am.
J. Hum. Genet. 91: 1122–1127.

Segrè, A. V., L. Groop, V. K. Mootha, M. J. Daly, and D. Altshuler,
2010 Common inherited variation in mitochondrial genes is
not enriched for associations with type 2 diabetes or related
glycemic traits. PLoS Genet. 6: e1001058.

Shungin, D., T. W. Winkler, D. C. Croteau-Chonka, T. Ferreira, A. E.
Locke et al., 2015 New genetic loci link adipose and insulin
biology to body fat distribution. Nature 518: 187–196.

Siervo, M., D. Ruggiero, R. Sorice, T. Nutile, M. Aversano et al.,
2012 Body mass index is directly associated with biomarkers

Gene and Network Analysis of 12 Diseases 797



of angiogenesis and inflammation in children and adolescents.
Nutrition 28: 262–266.

Silverberg, M. S., J. H. Cho, J. D. Rioux, D. P. B. McGovern, J. Wu
et al., 2009 Ulcerative colitis-risk loci on chromosomes 1p36
and 12q15 found by genome-wide association study. Nat. Genet.
41: 216–220.

Skibola, C. F., S. I. Berndt, J. Vijai, L. Conde, Z. Wang et al.,
2014 Genome-wide association study identifies five suscepti-
bility loci for follicular lymphoma outside the HLA region. Am.
J. Hum. Genet. 95: 462–471.

Sklar, P., S. Ripke, L. Scott, O. Andreassen, S. Cichon et al.,
2011 Large-scale genome-wide association analysis of bipolar
disorder identifies a new susceptibility locus near ODZ4. Nat.
Genet. 43: 977–983.

Speliotes, E. K., C. J. Willer, S. I. Berndt, K. L. Monda, G. Thorleifsson
et al., 2010 Association analyses of 249,796 individuals reveal
18 new loci associated with body mass index. Nat. Genet. 42:
937–948.

Stahl, E. A., S. Raychaudhuri, E. F. Remmers, G. Xie, S. Eyre et al.,
2010 Genome-wide association study meta-analysis identifies
seven new rheumatoid arthritis risk loci. Nat. Genet. 42: 508–514.

Stranger, B. E., E. A. Stahl, and T. Raj, 2011 Progress and promise
of genome-wide association studies for human complex trait
genetics. Genetics 187: 367–383.

Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L.
Ebert et al., 2005 Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 102: 15545–15550.

Tang, B., P. Di Lena, L. Schaffer, S. R. Head, P. Baldi et al.,
2011 Genome-wide identification of Bcl11b gene targets re-
veals role in brain-derived neurotrophic factor signaling. PLoS
One 6: e23691.

Tchkonia, T., T. Thomou, Y. Zhu, I. Karagiannides, C. Pothoulakis
et al., 2013 Mechanisms and metabolic implications of re-
gional differences among fat depots. Cell Metab. 17: 644–656.

Torkamani, A., E. J. Topol, and N. J. Schork, 2008 Pathway anal-
ysis of seven common diseases assessed by genome-wide asso-
ciation. Genomics 92: 265–272.

Tzeng, J.-Y., and D. Zhang, 2007 Haplotype-based association
analysis via variance-components score test. Am. J. Hum. Genet.
81: 927–938.

Wan, L., S. S. Molloy, L. Thomas, G. Liu, Y. Xiang et al.,
1998 PACS-1 defines a novel gene family of cytosolic sorting
proteins required for trans-Golgi network localization. Cell 94:
205–216.

Wang, K., M. Li, and M. Bucan, 2007 Pathway-based approaches
for analysis of genomewide association studies. Am. J. Hum.
Genet. 81: 1278–1283.

Wang, K., M. Li, and H. Hakonarson, 2010 Analysing biological
pathways in genome-wide association studies. Nat. Rev. Genet.
11: 843–854.

Wang, K.-S., X. Liu, Q. Zhang, N. Aragam, and Y. Pan,
2012 Parent-of-origin effects of FAS and PDLIM1 in attention-
deficit/hyperactivity disorder. J. Psychiatry Neurosci. 37: 46–
52.

Wellcome Trust Case Control Consortium, 2007 Genome-wide
association study of 14,000 cases of seven common diseases
and 3,000 shared controls. Nature 447: 661–678.

Wojcik, G. L., W. H. L. Kao, and P. Duggal, 2015 Relative perfor-
mance of gene- and pathway-level methods as secondary ana-
lyses for genome-wide association studies. BMC Genet. 16: 34.

Woo, D., G. J. Falcone, W. J. Devan, W. M. Brown, A. Biffi et al.,
2014 Meta-analysis of genome-wide association studies iden-
tifies 1q22 as a susceptibility locus for intracerebral hemor-
rhage. Am. J. Hum. Genet. 94: 511–521.

Wu, M. C., P. Kraft, M. P. Epstein, D. M. Taylor, S. J. Chanock et al.,
2010 Powerful SNP-set analysis for case-control genome-wide
association studies. Am. J. Hum. Genet. 86: 929–942.

Wu, M. C., S. Lee, T. Cai, Y. Li, M. Boehnke et al., 2011 Rare-
variant association testing for sequencing data with the se-
quence kernel association test. Am. J. Hum. Genet. 89: 82–93.

Xu, H., W. Yang, V. Perez-Andreu, M. Devidas, Y. Fan et al.,
2013 Novel susceptibility variants at 10p12.31–12.2 for child-
hood acute lymphoblastic leukemia in ethnically diverse popu-
lations. J. Natl. Cancer Inst. 105: 733–742.

Zhang, X., J.-i. Hamada, A. Nishimoto, Y. Takahashi, T. Murai et al.,
2007 HOXC6 and HOXC11 increase transcription of S100beta
gene in BrdU-induced in vitro differentiation of GOTO neuro-
blastoma cells into Schwannian cells. J. Cell. Mol. Med. 11:
299–306.

Communicating editor: E. Eskin

798 P. Nakka, B. J. Raphael, and S. Ramachandran


































































































	188391_SI_1.pdf
	FigureS4
	FigureS5
	FigureS6
	FigureS9
	FigureS10
	FigureS11
	FigureS12
	FigureS13
	FigureS14
	FigureS15
	FigureS16
	TableS1
	TableS2
	TableS3
	FileS1
	TextS1
	TextS2
	TextS3




