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ABSTRACT The preprotein translocase of the outer mitochondrial membrane (TOM) func-
tions as the main entry gate for the import of nuclear-encoded proteins into mitochondria. 
The major subunits of the TOM complex are the three receptors Tom20, Tom22, and Tom70 
and the central channel-forming protein Tom40. Cytosolic kinases have been shown to regu-
late the biogenesis and activity of the Tom receptors. Casein kinase 2 stimulates the biogen-
esis of Tom22 and Tom20, whereas protein kinase A (PKA) impairs the receptor function of 
Tom70. Here we report that PKA exerts an inhibitory effect on the biogenesis of the β-barrel 
protein Tom40. Tom40 is synthesized as precursor on cytosolic ribosomes and subsequently 
imported into mitochondria. We show that PKA phosphorylates the precursor of Tom40. The 
phosphorylated Tom40 precursor is impaired in import into mitochondria, whereas the non-
phosphorylated precursor is efficiently imported. We conclude that PKA plays a dual role in 
the regulation of the TOM complex. Phosphorylation by PKA not only impairs the receptor 
activity of Tom70, but it also inhibits the biogenesis of the channel protein Tom40.

INTRODUCTION
Most mitochondrial proteins are imported from the cytosol. The 
proteins are synthesized as precursors on cytosolic ribosomes. Tar-
geting signals contained in the precursor proteins direct them to 
receptors on the mitochondrial surface (Hoogenraad et al., 2002; 
Dolezal et al., 2006; Neupert and Herrmann, 2007; Chacinska et al., 
2009; Endo et al., 2011). The translocase of the outer mitochondrial 

membrane (TOM complex) functions as the main entry gate for mi-
tochondrial precursor proteins. After passing through the TOM 
channel, the precursor proteins follow different import routes to the 
four mitochondrial subcompartments—outer membrane, intermem-
brane space, inner membrane, and matrix.

The TOM complex consists of seven subunits: three receptors, a 
central channel-forming protein, and three small subunits (Meisinger 
et al., 2001; Walther and Rapaport, 2009; Endo et al., 2011). The 
receptors Tom20 and Tom22 preferentially recognize precursor pro-
teins that carry amino-terminal targeting signals (presequences), 
whereas the third receptor, Tom70, mainly binds hydrophobic pre-
cursor proteins with internal targeting signals (metabolite carriers; 
Brix et al., 1999; Abe et al., 2000; Young et al., 2003; Li et al., 2009). 
Each of the receptors is anchored in the outer membrane via a sin-
gle α-helical transmembrane segment and exposes the preprotein-
binding domain to the cytosol. The β-barrel protein Tom40 is the 
essential core of the TOM complex. Tom40 forms a hydrophilic 
channel, through which the vast majority of mitochondrial proteins 
are imported (Hill et al., 1998; Ahting et al., 2001; Suzuki et al., 2004; 
Becker et al., 2005; Harsman et al., 2010). The small subunits Tom5, 

Monitoring Editor
Benjamin S. Glick
University of Chicago

Received: Nov 21, 2011
Revised: Feb 28, 2012
Accepted: Mar 6, 2012

This article was published online ahead of print in MBoC in Press (http://www 
.molbiolcell.org/cgi/doi/10.1091/mbc.E11-11-0933) on March 14, 2012.
*Present address: Division of Cell Biology, Medical University Innsbruck, 6020 
Innsbruck, Austria.
Address correspondence to: Nikolaus Pfanner (nikolaus.pfanner@biochemie 
.uni-freiburg.de), Chris Meisinger (chris.meisinger@biochemie.uni-freiburg.de).

© 2012 Rao et al. This article is distributed by The American Society for Cell Biol-
ogy under license from the author(s). Two months after publication it is available 
to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported 
Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
“ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of 
the Cell®” are registered trademarks of The American Society of Cell Biology.

Abbreviations used: CK2, casein kinase 2; Mim1, mitochondrial import protein 1 
of the outer membrane; PKA, protein kinase A; TEV, tobacco etch virus; TOM, 
translocase of the outer mitochondrial membrane. 



Volume 23 May 1, 2012 Regulation of mitochondrial biogenesis | 1619 

To test for a possible effect of PKA on Tom40 in vivo, we grew 
yeast cells on fermentable medium containing sucrose as carbon 
source (Lemaire et al., 2004; Van de Velde and Thevelein, 2008). 
We compared bcy1Δ yeast to rho+ wild-type yeast as well as to rho− 
wild-type yeast that lack mitochondrial DNA and are thus also un-
able to grow on nonfermentable medium. The steady-state protein 
levels of Tom40 were reduced in bcy1Δ yeast cells in comparison to 
rho+ as well as rho− wild-type yeast (Figure 1A). The levels of several 
control proteins, including cytosolic kinases, were not affected. 
Moreover, the levels of Tom70 were not changed, in agreement with 
the findings of Schmidt et al. (2011) that PKA affects neither the 
biogenesis nor the level of Tom70 but inhibits the receptor activity 
of the mature, imported Tom70 (in the study by Schmidt et al., 2011, 
glucose was used as carbon source). These results suggest that a 
constitutive activation of PKA exerts an inhibitory influence on the 
level of Tom40.

To analyze whether Tom40 is a substrate of PKA in a homologous 
system, we generated a yeast strain expressing protein A–tagged 
Bcy1. Purification of Bcy1 by affinity chromatography led to the ef-
ficient copurification of PKA catalytic subunits, shown here with an-
tibodies directed against Tpk1 (Figure 1B; the protein A tag was 
removed by cleavage with tobacco etch virus [TEV] protease). On 
stimulation with 8Br-cAMP, the purified yeast PKA was active and 
phosphorylated the PKA model substrate Kemptide and the recep-
tor domain of Tom70 in the presence of [γ-33P]ATP (Figure 1C, lane 
2; Schmidt et al., 2011). Purified recombinant yeast Tom40 was 
phosphorylated by yeast PKA in the presence of 8Br-cAMP (Figure 
1C, lane 4). The phosphorylation was specific for the predicted PKA 
target residue Ser-54 since replacement of this serine by glutamic 
acid blocked the phosphorylation of Tom40 (Figure 1C, lane 6). As 
an independent assay, we used a yeast strain containing tagged 
Tpk1 and purified the enzyme. Purified wild-type Tom40, but not 
the mutant form Tom40S54E, was phosphorylated by Tpk1 (Figure 
1D, lanes 3 and 4). We conclude that Tom40 is a substrate of yeast 
PKA.

PKA phosphorylates the precursor of Tom40
Phosphate-affinity (Phos-tag) SDS–PAGE leads to a lower gel mobil-
ity of many phosphorylated proteins compared with the nonphos-
phorylated forms (Kinoshita et al., 2006). We asked whether the 
phosphorylation of Tom40 at Ser-54 by PKA could be directly moni-
tored by Phos-tag SDS–PAGE. We incubated purified Tom40 with 
PKA and indeed observed a slower-migrating form that was gener-
ated in a PKA- and time-dependent manner (Figure 2A, lanes 2–4). 
When Ser-54 was replaced by alanine, no phosphorylated form of 
Tom40 was detected (Figure 2A, lanes 6–8).

When isolated yeast mitochondria were incubated with PKA, 
however, a phosphorylated form of Tom40 was not detected (Figure 
2B; neither mammalian PKA nor yeast PKA in the presence of 8Br-
cAMP led to a detectable phosphorylation of Ser-54). Thus mature 
Tom40 that is stably integrated into the mitochondrial outer mem-
brane was not accessible to PKA, whereas purified Tom40 in deter-
gent was phosphorylated by PKA (Figures 1, C and D, and 2A). We 
therefore asked whether Tom40 can be phosphorylated in the cyto-
sol. We synthesized the precursor of Tom40 in reticulocyte lysate in 
the presence of [35S]methionine. When the synthesis was performed 
in the presence of PKA, a slower-migrating form of Tom40 was ob-
served by Phos-tag SDS–PAGE (Figure 2C, lanes 2 and 5). This form 
was sensitive to treatment with alkaline phosphatase (Figure 2C, 
lane 6). When Tom40S54A was synthesized in reticulocyte lysate, it 
was not affected by PKA (Figure 2C, lane 4). Taken together, these 
results indicate that the precursor of Tom40 is phosphorylated by 

Tom6, and Tom7 are involved in the assembly and stability of the 
TOM complex (Schmitt et al., 2005; Sherman et al., 2005; Meisinger 
et al., 2006b; Kato and Mihara, 2008; Becker et al., 2010, 2011; 
Yamano et al., 2010). Each subunit of the TOM complex is encoded 
by a nuclear gene and thus is synthesized as precursor in the cytosol 
and imported into mitochondria (Model et al., 2001; Walther and 
Rapaport, 2009).

For a long time, little has been known about the regulation of the 
mitochondrial preprotein translocases. Recently, however, mass 
spectrometric analyses revealed that the subunits of the TOM com-
plex are phosphorylated at multiple sites (Chi et al., 2007; Li et al., 
2007; Albuquerque et al., 2008; Gnad et al., 2009; Schmidt et al., 
2011). On the basis of prediction programs for kinase target sites 
and in vitro assays with recombinant Tom proteins and purified ki-
nases, a number of candidate kinases for TOM phosphorylation 
were identified (Rao et al., 2011; Schmidt et al., 2011). So far, a func-
tional role of TOM phosphorylation has been shown for the Tom 
receptors in vivo and in organello. 1) Cytosolic casein kinase 2 (CK2) 
phosphorylates the precursor of Tom22 in the cytosol and thereby 
stimulates its import into the outer membrane. In addition, CK2 also 
phosphorylates the mitochondrial import protein Mim1, an outer 
membrane protein that mediates membrane insertion of the precur-
sors of Tom20 and Tom70 (Becker et al., 2008; Hulett et al., 2008; 
Popov-Celeketic et al., 2008), and thus promotes the import of 
these two receptors. The assembly of Tom20 with mature Tom22 in 
the TOM complex is enhanced when Tom22 is in the phosphory-
lated state. Taken together, CK2 stimulates the biogenesis of the 
three Tom receptors (Rao et al., 2011; Schmidt et al., 2011). 2) In 
contrast, cytosolic protein kinase A (PKA) was found to inhibit the 
receptor activity of Tom70. Phosphorylation by PKA does not affect 
the biogenesis of the Tom70 precursor but exerts an inhibitory ef-
fect on the mature Tom70 receptor and thus impairs the import of 
metabolite carriers into mitochondria (Schmidt et al., 2011).

We analyzed a possible effect of kinases on the channel protein 
Tom40. We show that PKA impairs import of the Tom40 precursor 
into mitochondria. The inhibitory effect is selectively caused by phos-
phorylation of a specific serine residue of the Tom40 precursor in the 
cytosol, whereas mature, imported Tom40 is not accessible to phos-
phorylation by PKA. We conclude that cytosolic kinases not only regu-
late the biogenesis and activity of Tom receptors, but they also exert 
an inhibitory effect on the biogenesis of the channel protein Tom40.

RESULTS
Phosphorylation of Tom40 by yeast PKA
The in vitro screen for TOM phosphorylation by Schmidt et al. (2011) 
led to the prediction of Ser-54 of Tom40 as PKA target site and the 
demonstration that purified mouse PKA phosphorylates recombi-
nant Saccharomyces cerevisiae Tom40 at this site. It has not been 
determined whether the phosphorylation takes place in yeast and 
whether it is of functional relevance. PKA consists of two catalytic 
subunits and two regulatory (inhibitory) subunits. In yeast the cata-
lytic subunits are encoded by the genes TPK1, TPK2, and TPK3 and 
the regulatory subunit by BCY1 (Cannon and Tatchell, 1987; Toda 
et al., 1987a, 1987b; Thevelein, 1994; Zaman et al., 2008; Smets 
et al., 2010). PKA is activated on fermentable growth conditions that 
lead to increased intracellular cAMP levels (Broach, 1991; Thevelein, 
1994). cAMP binds to Bcy1, leading to a release of the active cata-
lytic subunits (Taylor et al., 1990; Thevelein, 1994; Tamaki, 2007; 
Zaman et al., 2008). BCY1-deficient yeast cells lack cAMP-depen-
dent regulation of PKA activity and are unable to grow under non-
fermentable conditions (Matsumoto et al., 1983; Toda et al., 1987a; 
Cameron et al., 1988).
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The assembly pathway of Tom40 involves several steps. On ini-
tial import of the precursor by the TOM complex to the intermem-
brane space side, intermembrane space chaperone complexes 
transfer Tom40 to the sorting and assembly machinery (SAM com-
plex) of the outer membrane (Model et al., 2001; Kozjak et al., 2003; 
Paschen et al., 2003; Wiedemann et al., 2003, 2004; Gentle et al., 
2004; Hoppins and Nargang, 2004). The interaction of the Tom40 
precursor with the SAM complex can be directly monitored by blue 
native electrophoresis after lysis of the mitochondria with the non-
ionic detergent digitonin (Ryan et al., 2001; Wittig et al., 2006; Sto-
janovski et al., 2007). The SAM intermediate of ∼250 kDa is followed 
by a second intermediate (Int-II) of lower molecular mass and finally 
the assembly of imported Tom40 into the mature TOM complex of 
∼400 kDa (Figure 4A, lanes 1–3; Wiedemann et al., 2003; Kutik 
et al., 2008). When the precursor of Tom40 was phosphorylated by 
PKA, formation of the assembly steps was considerably impaired. 
The inhibition occurred already at an early stage, since the genera-
tion of the SAM intermediate was impaired (Figure 4A, lanes 4–6). 
To exclude that PKA inhibited the assembly of the TOM complex in 

PKA in the cytosol, whereas mature imported Tom40 is not a sub-
strate of PKA.

Phosphorylation impairs the biogenesis of Tom40
To analyze the biogenesis of Tom40, we incubated the 35S-labeled 
precursor with isolated mitochondria. We used the wild-type precur-
sor of Tom40 and two mutant forms of Ser-54. When serine was re-
placed by alanine, the binding of Tom40 to mitochondria was only 
mildly affected compared with the wild-type precursor (Figure 3A, 
lanes 4–9). When serine was replaced by the phosphomimetic resi-
due glutamate, however, binding of Tom40 to mitochondria was 
reduced (Figure 3A, lanes 1–3). Treatment of mitochondria with so-
dium carbonate at alkaline pH leads to the extraction of soluble and 
peripheral membrane proteins, whereas integral membrane pro-
teins remain in the membrane sheets (Fujiki et al., 1982; Stojanovski 
et al., 2007). Mitochondria were incubated with [35S]Tom40 and then 
treated at alkaline pH, demonstrating that the replacement of Ser-
54 by glutamate considerably reduced the membrane integration of 
Tom40 (Figure 3B, lanes 1–3).

FIGURE 1: Phosphorylation of Tom40 by yeast PKA. (A) Yeast cells from rho+ wild-type (WT), rho− wild type, and bcy1Δ 
were grown on sucrose-containing medium at 30°C. Protein extracts were prepared by postalkaline lysis and analyzed 
by SDS–PAGE and Western blotting. Alo1, d-arabinono-1,4-lactone oxidase; Pgk1, 3-phosphoglycerate kinase. (B) Yeast 
PKA (Bcy1-Tpk) was purified by affinity chromatography using a Bcy1ProtA yeast strain as described in Materials and 
Methods. Total (yeast lysate) and TEV eluate were analyzed by SDS–PAGE and Western blotting. Total, 10%; eluate, 
100%. Cka1, Cka2, catalytic subunits of CK2; Ssa1, cytosolic member of heat shock protein 70 family. (C) Kemptide, the 
cytosolic domain of Tom70, and recombinant Tom40 (WT and S54E mutant form) were incubated with purified yeast 
PKA (Bcy1-Tpk) and [γ-33P]ATP in the presence of 8Br-cAMP as indicated. The samples were analyzed by SDS–PAGE, 
digital autoradiography, and staining with Coomassie brilliant blue R-250. Arrowhead, bovine serum albumin. (D) 
Recombinant Tom40WT and Tom40S54E were incubated with affinity-purified yeast Tpk1 as indicated and [γ-33P]ATP. The 
samples were analyzed as described for C.
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phosphorylation of Ser-54. Taking the data together, we conclude 
that phosphorylation by PKA impairs the biogenesis pathway of 
Tom40 at an early that is, at or before formation of the SAM 
intermediate.

Mitochondria import the nonphosphorylated form of Tom40
The initial stage of Tom40 import, that is, translocation via the TOM 
complex to the intermembrane space side, does not involve a blue 
native–stable intermediate and thus cannot be directly monitored 
by native gel analysis (Wiedemann et al., 2004). Therefore we used 
the accessibility to externally added protease to determine a possi-
ble role of PKA phosphorylation in this initial import step. To distin-
guish between phosphorylated and nonphosphorylated Tom40 pre-
cursors, we analyzed the mitochondria by Phos-tag SDS–PAGE. The 
nonphosphorylated Tom40 was protected against added proteinase 
K, indicating that it was imported into mitochondria (Figure 5A; 
Model et al., 2001; Wiedemann et al., 2003). The phosphorylated 
Tom40 precursor, however, was almost completely degraded by 
proteinase K (Figure 5A), demonstrating that the precursor was still 
located on the mitochondrial surface and not imported.

Tom20, Tom22, and Tom70 function as receptors for import of 
nuclear-encoded precursor proteins into mitochondria (Kiebler 
et al., 1993; Brix et al., 1997, 1999; van Wilpe et al., 1999; Yamano 
et al., 2008; Rimmer et al., 2011; Shiota et al., 2011). Pretreatment 
of mitochondria with trypsin removes the receptor domains and in-
hibits preprotein import into mitochondria (Ryan et al., 2001). Trypsin 
pretreatment considerably impaired the interaction of the nonphos-
phorylated precursor of Tom40 with mitochondria but not the phos-
phorylated precursor (Figure 5B). We thus studied mutant mito-
chondria deficient in Tom receptors. The import of radiolabeled 

general, we imported two small Tom precursors—Tom6 and Tom7—
whose assembly can be efficiently monitored by blue native electro-
phoresis (Dembowski et al., 2001; Model et al., 2001). Both proteins 
were assembled into the TOM complex independent of the pres-
ence or absence of PKA (Figure 4B).

To analyze whether the inhibitory effect of PKA was specific for 
the phosphorylation of Ser-54 of Tom40, we compared formation of 
the SAM intermediate of the wild-type Tom40 precursor to the mu-
tant precursor Tom40S54A. In the absence of PKA, wild-type precur-
sor and mutant precursor accumulated at the SAM after a short-
term import reaction (Figure 4C, lanes 1 and 4). PKA only inhibited 
the formation of the SAM intermediate of the wild-type precursor 
and not of the mutant precursor (Figure 4C, lanes 2 and 3), demon-
strating that PKA inhibits the biogenesis of Tom40 selectively via 

FIGURE 2: PKA phosphorylates the precursor of Tom40 at serine 54. 
(A) Recombinant Tom40WT or Tom40S54A was incubated with purified 
PKA (New England BioLabs). The samples were lysed in Laemmli 
buffer and analyzed by Phos-tag SDS–PAGE and Western blotting 
using antiserum directed against Tom40. (B) Mitochondria were 
isolated from WT and Tom40S54A yeast strains and incubated with 
purified yeast PKA (Bcy1-Tpk) and 8Br-cAMP for the indicated 
periods. Where indicated, the samples were subsequently incubated 
with alkaline phosphatase (AP). The samples were analyzed as 
described for A. Similarly, mammalian PKA did not phosphorylate 
Ser-54 of Tom40 in intact mitochondria. (C) 35S-Labeled Tom40WT and 
Tom40S54A were synthesized in reticulocyte lysate in the presence or 
absence of PKA as indicated. Sample 6 was subsequently treated with 
AP. The samples were analyzed by Phos-tag SDS–PAGE and digital 
autoradiography. Arrowhead, nonspecific band; Tom40P, 
phosphorylated form of Tom40.

FIGURE 3: Replacement of serine 54 by glutamate impairs import of 
Tom40 into mitochondria. 35S-Labeled Tom40S54E, Tom40WT, and 
Tom40S54A precursors were incubated with isolated yeast wild-type 
mitochondria at 25°C for the indicated periods. The samples were 
split in half, and the mitochondria were reisolated. (A) One half was 
lysed in Laemmli buffer and analyzed by SDS–PAGE and digital 
autoradiography. (B) The other half was resuspended in Na2CO3, 
pH 11.5, and incubated for 30 min on ice. Membrane sheets were 
pelleted by centrifugation at 100,000 × g and analyzed by SDS–PAGE 
and digital autoradiography.
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FIGURE 4: Phosphorylation of Tom40 by PKA impairs formation of 
the SAM import intermediate. (A) 35S-Labeled precursor of Tom40 was 
synthesized in the presence or absence of PKA (New England 
BioLabs) as indicated and incubated with isolated yeast wild-type 
mitochondria for the indicated periods at 25°C. The mitochondria 
were solubilized in digitonin-containing buffer and analyzed by blue 
native electrophoresis and digital autoradiography. (B) 35S-Labeled 
precursors of Tom6 and Tom7 were imported into isolated 
mitochondria in the presence or absence of PKA. The mitochondria 
were analyzed as described for A. (C) [35S]Tom40WT and [35S]Tom40S54A 
precursors were synthesized in the presence or absence of PKA and 
incubated with isolated mitochondria for 5 min at 25°C. The 
mitochondria were analyzed as described for A.

Tom40 precursor was strongly inhibited in mitochondria lacking the 
central receptor Tom22 (Figure 5C, lanes 7 and 8; Model et al., 
2001). Analysis by Phos-tag SDS–PAGE revealed that interaction of 

the nonphosphorylated precursor with mitochondria was strongly 
inhibited when Tom22 was lacking, whereas binding of the phos-
phorylated form to mitochondria was not affected (Figure 5C, lanes 
11 and 12). As observed with wild-type mitochondria, the phospho-
rylated Tom40 interacting with tom22Δ mitochondria was digested 
by externally added protease (Figure 5C, lanes 13–16), demonstrat-
ing that phosphorylated Tom40 was not imported into mitochon-
dria. Similarly, mitochondria lacking Tom20 or Tom70 were impaired 
in the interaction with nonphosphorylated Tom40, whereas the 
binding of phosphorylated Tom40 to the isolated mitochondria was 
not affected by lack of the receptors (Figure 5, D and E).

Swelling of mitochondria leads to a release of intermembrane 
space chaperones and thus inhibits the biogenesis of Tom40 
(Wiedemann et al., 2004). Swollen mitochondria (mitoplasts) were 
inhibited in the interaction with nonphosphorylated Tom40 but not 
phosphorylated Tom40 (Figure 5F). tim10-2 mutant mitochondria 
are impaired in the activity of the Tim9–Tim10 intermembrane space 
chaperone and thus in the import of Tom40 (Truscott et al., 2002; 
Wiedemann et al., 2004). Only nonphosphorylated Tom40, and not 
the phosphorylated form of Tom40, was affected by the tim10-2 
mutant (Figure 5G).

Taking the data together indicates that the nonphosphorylated 
precursor of Tom40 shows the characteristics of specific import into 
mitochondria, including dependence on Tom receptors and inter-
membrane space chaperones. In contrast, phosphorylated Tom40 
remains on the mitochondrial surface in a receptor-independent 
manner and is not imported into mitochondria, indicating that the 
binding observed with mitochondria is nonproductive. We conclude 
that mitochondria specifically import the nonphosphorylated form 
of Tom40.

PKA inhibits Tom40 import independently 
of Tom70 phosphorylation
Phosphorylation of the receptor Tom70 by PKA impairs the interac-
tion of the cytosolic chaperone Hsp70 with Tom70 (Schmidt et al., 
2011). Hsp70 delivers hydrophobic precursor proteins such as the 
inner membrane metabolite carriers to Tom70 (Young et al., 2003; Li 
et al., 2009; Zara et al., 2009). PKA selectively phosphorylates Ser-
174 of Tom70, which is located close to the chaperone-binding site 
of Tom70, and thus disturbs the Hsp70–Tom70 interaction (Schmidt 
et al., 2011). We asked whether the phosphorylation of Tom70 influ-
enced the import of Tom40. In yeast mitochondria in which Ser-174 
of Tom70 was replaced by alanine, the import of carrier precursors 
was enhanced, whereas a replacement of Ser-174 by glutamate in-
hibited carrier import (Schmidt et al., 2011). In the case of Tom40, 
however, neither replacement of Ser-174 by alanine nor replace-
ment by glutamate affected the import of the precursor in compari-
son to wild-type mitochondria (Figure 6, lanes 1, 2, 5, 6, 9, and 10). 
Phosphorylation of the Tom40 precursor by PKA inhibited its import 
into Tom70S174A and Tom70S174E mitochondria like that into wild-
type mitochondria (Figure 6, lanes 3, 4, 7, 8, 11. and 12). Given that 
Ser-174 is the only PKA target site of Tom70 (Schmidt et al., 2011), 
these results demonstrate that the inhibitory effect of PKA on the 
import of Tom40 occurs independently of the phosphorylation of 
Tom70.

DISCUSSION
We report a new mechanism of how cytosolic kinases regulate the 
preprotein translocase of the outer mitochondrial membrane. PKA 
phosphorylates the precursor of Tom40, the channel-forming core 
component of the TOM complex, and thus inhibits the import of 
Tom40 into mitochondria. So far, cytosolic kinases had been shown 
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FIGURE 5: Mitochondria import the nonphosphorylated precursor of Tom40, whereas phosphorylated Tom40 remains on 
the mitochondrial surface. (A) [35S]Tom40 was synthesized in the presence of PKA (New England BioLabs) and incubated 
with isolated wild-type mitochondria for the indicated periods at 25°C. The mitochondria were treated with proteinase K 
(Prot. K; Stojanovski et al., 2007) where indicated and analyzed by Phos-tag SDS–PAGE and digital autoradiography. 
(B) [35S]Tom40 was synthesized in the presence or absence of PKA and imported into mitochondria that had been 
pretreated with trypsin (Ryan et al., 2001) as indicated. The mitochondria were analyzed by Phos-tag SDS–PAGE. (C) [35S]
Tom40 was imported into mitochondria, which were isolated from tom22Δ yeast or the corresponding wild-type (WT) 
strain, in the presence or absence of PKA. The mitochondria were treated with proteinase K where indicated and analyzed 
by Phos-tag SDS–PAGE. (D) [35S]Tom40 was imported into mitochondria, which were isolated from tom20Δ and wild-type 
yeast, in the presence or absence of PKA. The mitochondria were analyzed by Phos-tag SDS–PAGE. (E) [35S]Tom40 was 
imported into mitochondria, which were isolated from tom70Δ and wild-type yeast, in the presence of PKA. The 
mitochondria were treated with proteinase K where indicated and analyzed by Phos-tag SDS–PAGE. (F) Mitochondria 
were preincubated in isotonic or hypotonic (swelling) buffer for 30 min on ice (Stojanovski et al., 2007). The mitochondria/
mitoplasts were reisolated and incubated with [35S]Tom40 in the presence or absence of PKA and analyzed by Phos-tag 
SDS–PAGE. (G) [35S]Tom40 was imported into mitochondria, which were isolated from tim10-2 yeast or the corresponding 
wild-type strain, in the presence or absence of PKA. The mitochondria were analyzed by Phos-tag SDS–PAGE.
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Sherman et al., 2006; Kutik et al., 2008). A linear sorting signal for 
binding of Tom40 to the SAM complex has been identified in the 
carboxy-terminal region of the precursor (Kutik et al., 2008); how-
ever, a targeting signal that is responsible for the initial recognition 
of Tom40 by the TOM complex has not been found. It is conceiv-
able that several elements of the precursor may contribute to the 
targeting process. Serine 54 is not essential for the targeting of 
Tom40, since this residue can be deleted (Rapaport and Neupert, 
1999; Rapaport et al., 2001; Taylor et al., 2003; Humphries et al., 
2005; Sherman et al., 2006; Kutik et al., 2008) or replaced by alanine 
(this study) without blocking Tom40 targeting. Harsman et al. (2010) 
reconstituted purified Tom40WT and Tom40S54E into planar lipid bi-
layers and observed a similar gating behavior of the Tom40 channel 
of wild type and mutant, indicating that the replacement of Ser-54 
by the phosphomimetic residue glutamate did not disturb the over-
all folding of Tom40. Of interest, the association rate of positively 
charged presequence peptides with Tom40 was altered when Ser-
54 was replaced by glutamate (Harsman et al., 2010), suggesting 
that modification of this residue can affect the interaction properties 
of Tom40 in vitro. We analyzed the biogenesis of Tom40S54E in or-
ganello and observed an impairment of import into mitochondria. 
Using PKA, we showed that phosphorylation of Ser-54 inhibits the 
translocation of Tom40 via the TOM complex, demonstrating that 
phospho–Ser-54 interferes with the targeting process. Although the 
exact nature of the Tom40 targeting signal remains elusive, the 
strong inhibitory effect of a single phosphorylation event provides 
an efficient mechanism to control the import of Tom40.

Taking our results together with the findings by Schmidt et al., 
(2011), we conclude that cytosolic kinases regulate biogenesis and 
function of the TOM complex at multiple levels. The main protein 
entry gate of mitochondria is not functioning autonomously but is 
tightly integrated into a network of regulatory kinases.

MATERIALS AND METHODS
Yeast strains and cloning
Most S. cerevisiae strains used in this study are derived from 
the strain YPH499 (MATa, ade2-101, his3-Δ200, leu2-Δ1, ura3-
52, trp1-Δ63, lys2-801; Sikorski and Hieter, 1989). YPH499-
tom40Δ+pFL39-TOM40 was made by transforming the shuffling 
strain tom40Δ+Yep-TOM40 (Kutik et al., 2008) with the plasmid 
pFL39-TOM40 as described (Schmidt et al., 2011). The mutations 
Tom40S54A and Tom40S54E were generated by site-directed muta-
genesis. Clones were verified by sequencing. The Tom70S174E 
and Tom70S174A yeast strains, tom20Δ strain, tom22Δ strain, 
tom70Δ strain, tim10-2 strain, and bcy1Δ strain have been de-
scribed previously (Moczko et al., 1994; van Wilpe et al., 1999; 
Truscott et al., 2002; Stojanovski et al., 2007; Schmidt et al., 
2011). The Bcy1ProtA strain was constructed by amplifying the 
HIS3MX6-pNOP-ProtA-TEV plasmid (Meisinger et al., 2007) with 
primers A1 (5′ ATTACAACAAGC AGATTATTTTCAAAAGACAA-
CAGTAAGAATAAACGGGAATACGAATTCGAGCTC 3′) and A2 (5′ 
GTTCTGGAACAGTTGCAATTCGGCTTGCGATTCCTTG-
GGCAAAGA AGATACCACGTCACTCATACCCTGA 3′) and inte-
grating into the BCY1 open reading frame by homologous re-
combination. The Tom70WT/pET19 and Kemptide-GST/pETGEXct 
constructs were reported previously (Brix et al., 1997; Schmidt 
et al., 2011).

Isolation of mitochondria and preparation of yeast 
protein extracts
Yeast strains were typically grown on nonfermentable YPG medium 
(1% [wt/vol] yeast extract, 2% [wt/vol] bactopeptone, 3% [wt/vol] 

either to stimulate the biogenesis of Tom subunits (phosphorylation 
of Tom22 and Mim1 by CK2) or to inhibit the receptor activity of a 
Tom receptor without affecting its biogenesis (phosphorylation of 
Tom70 by PKA; Schmidt et al., 2011). We found that the PKA effect on 
Tom40 biogenesis was independent of the phosphorylation status of 
Tom70, demonstrating that PKA exerts two different inhibitory effects 
on the TOM complex: inhibition of receptor activity (Tom70) and inhi-
bition of precursor import (Tom40). In agreement with these observa-
tions, in a yeast strain lacking the inhibitory PKA subunit Bcy1, the 
steady-state level of Tom40, but not that of Tom70, was reduced.

PKA is rapidly activated by addition of fermentable carbon 
sources such as glucose and sucrose that lead to increased intracel-
lular cAMP levels in yeast cells (Broach, 1991; Thevelein, 1994; 
Santangelo, 2006; Tamaki, 2007; Zaman et al., 2008; Smets et al., 
2010). PKA was shown to affect numerous cellular processes, includ-
ing morphology of the mitochondrial membranes, programmed cell 
death, and oxidative metabolism. In addition, a few precursor pro-
teins were found to be phosphorylated in a cAMP-dependent man-
ner, affecting their interaction with molecular chaperones and trans-
location into mitochondria (Anandatheerthavarada et al., 1999; Cho 
et al., 2001; Robin et al., 2002, 2003; Pagliarini and Dixon, 2006; 
Chang and Blackstone, 2007; Carlucci et al., 2008; De Rasmo et al., 
2008; Santel and Frank, 2008; Soubannier and McBride, 2009). The 
inhibitory effects of PKA on TOM biogenesis (this study) and func-
tion (Schmidt et al., 2011) provide a direct means to control the mi-
tochondrial preprotein entry gate upon shift to fermentable growth 
conditions, under which a lower mitochondrial activity is required. 
Under nonfermentable, respiratory conditions the cAMP levels and 
PKA activity are low (Russell et al., 1993; Thevelein, 1994; Zaman 
et al., 2008; Smets et al., 2010), and thus Tom40 is efficiently 
imported.

The biogenesis pathway of Tom40 can be dissected into several 
steps, involving transport by the TOM complex, intermembrane 
space chaperones, and the SAM complex (Model et al., 2001; 
Wiedemann et al., 2003; Waizenegger et al., 2004; Habib et al., 
2005; Kutik et al., 2008). Phosphorylation of the Tom40 precursor by 
PKA inhibits the initial stage of precursor translocation through the 
TOM complex to a protease-protected location. Whereas nonphos-
phorylated Tom40 precursor is efficiently imported, the phosphory-
lated form remains nonproductively bound to the mitochondrial 
surface and is not translocated. Numerous mutational studies have 
been performed with Tom40 (Rapaport and Neupert, 1999; 
Rapaport et al., 2001; Taylor et al., 2003, Humphries et al., 2005; 

FIGURE 6: Inhibition of Tom40 import by PKA is not connected to 
the phosphorylation of Tom70 by PKA. 35S-Labeled precursor of 
Tom40 was imported into mitochondria, which were isolated from 
Tom70S174E, Tom70WT, or Tom70S174A yeast strains, at 25°C in the 
presence or absence of PKA (New England BioLabs) as indicated. The 
mitochondria were solubilized in digitonin-containing buffer and 
analyzed by blue native electrophoresis and digital autoradiography.
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