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Abstract: Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a pathologic
protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). TDP-43
is normally a nuclear protein, but affected neurons of ALS or FTLD patients exhibit mislocalization
of nuclear TDP-43 and cytoplasmic inclusions. Basic studies have suggested gain-of-neurotoxicity of
aggregated TDP-43 or loss-of-function of intrinsic, nuclear TDP-43. It has also been hypothesized that
the aggregated TDP-43 functions as a propagation seed of TDP-43 pathology. However, a mechanistic
discrepancy between the TDP-43 pathology and neuronal dysfunctions remains. This article aims
to review the observations of TDP-43 pathology in autopsied ALS and FTLD patients and address
pathways of neuronal dysfunction related to the neuropathological findings, focusing on impaired
clearance of TDP-43 and synaptic alterations in TDP-43-related ALS and FTLD. The former may be
relevant to intraneuronal aggregation of TDP-43 and exocytosis of propagation seeds, whereas the
latter may be related to neuronal dysfunction induced by TDP-43 pathology. Successful strategies of
disease-modifying therapy might arise from further investigation of these subcellular alterations.

Keywords: ALS; autophagy; FTLD; synapse; TDP-43

1. Introduction

Transactivation response DNA binding protein 43 kDa (TDP-43) is known to be a
pathologic protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degen-
eration (FTLD) [1–3]. TDP-43 is an RNA-binding protein, which is coded on chromosome
1p [3]. Systemic organs, including the central nervous system, pancreas, and spleen, abun-
dantly express TDP-43, but its physiological function is largely unknown [3]. TDP-43 is
localized in the nucleus in normal settings, but affected neurons of ALS or FTLD patients
exhibit mislocalization of nuclear TDP-43 and cytoplasmic inclusions. Pathological and
molecular studies have suggested either gain-of-neurotoxicity of aggregated TDP-43 or
loss-of-function of intrinsic, nuclear TDP-43. However, a mechanistic discrepancy between
the TDP-43 pathology and neuronal dysfunctions remains. Recently, basic researches have
reported that abnormalities in TDP-43 are associated with dynamic and complex alter-
ations of neuronal substructures and metabolism. Concordant neuropathologic evidence
has also been accumulated from postmortem patient studies of TDP-43-related ALS or
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FTLD (ALS-TDP and FTLD-TDP, respectively). This review aims to discuss pathways from
TDP-43 pathology to mechanisms leading to neuronal dysfunction.

2. Clinical Findings of ALS and FTLD

ALS encompasses a sporadic or familial motor neuron disease, which is clinically
characterized with upper and lower motor neuron signs and symptoms [4]. The muscle
weakness is relentlessly progressive and lethal. The median survival duration is about three
years from disease onset, and the average age of onset is 58–60 years [5]. The prevalence is
approximately six cases per 100,000 [5]. Several clustered regions are known to have a high
prevalence of ALS, including Guam island of USA, Kii peninsula of Japan, and West New
Guinea. Patients in the clustered foci often show a phenotype of parkinsonism-dementia
complex (ALS/PDC) that is atypical of classical ALS. The prevalence has recently decreased
in these regions for unknown reasons, although it is still high in New Guinea [6].

FTLD is the pathological term corresponding to the clinical term of frontotemporal
dementia (FTD) [7]. FTD is the second most common form of dementia after Alzheimer-
type dementia. A study from the UK reported that the prevalence of FTLD was 10.8 per
100,000 population and highest between 60 and 69 years, although the data set also included
progressive supranuclear palsy (PSP) and corticobasal syndrome [8]. FTD is subclassified
into behavioral variant FTD (bvFTD) [9], progressive non-fluent aphasia (PNFA) [10],
and semantic dementia (SD) [10]. bvFTD is characterized by disinhibition and executive
disorders and more common than PNFA and SD. PNFA and SD manifest as impairment of
output and input of language, respectively.

3. TDP-43 Pathology in ALS and FTLD

There is a loss of upper and lower motor neurons in ALS patients, which results in
regional atrophy. Atrophy of the anterior roots is the most informative finding upon macro-
scopic observations, whereas that of the primary motor cortex is usually mild (Figure 1).
TDP-43 pathology has been observed in 95% of sporadic ALS cases [11,12], followed far
behind by fused-in-sarcoma (FUS) [13,14]. TDP-43 is mislocalized from the nucleus and ag-
gregates in the cytoplasm of motor neurons in ALS patients (Figure 2). Aggregated TDP-43
is phosphorylated, ubiquitylated, and truncated at the C-terminal side [15,16]. The TDP-43
pathology is more prominent in the lower motor neurons in the spinal cord and cranial
nerve nuclei than in the upper motor neurons (Betz cells) of the primary motor cortex.
Although eye movement, sensation, and urorectal functions are spared in ALS patients,
TDP-43 pathology has occasionally been found in the oculomotor nerve nucleus, Clarke
column, and Onuf nucleus [17,18]. Another finding of importance in ALS is Bunina bodies,
which are eosinophilic inclusion bodies found in the neuronal cell body. Bunina bodies
are an accumulation of tubular and vesicular structures from unknown origin and do not
represent a cytoplasmic aggregation of TDP-43, although a subset of those demonstrates
immunoreactivity to TDP-43 [19,20].

In FTLD, TDP-43 and tau each accounts for nearly 50% [21]. FTLD-TDP is currently
subclassified into pathological types A, B, and C [22–24]. Type A is characterized by TDP-
43-immunoreactive, short dystrophic neurites, and cytoplasmic inclusions in the upper
cortical layers. In type B, crescent or ring-shaped cytoplasmic aggregation of TDP-43 are
observed across all cortical layers. Type C is characterized by TDP-43 immunopositive
thick and long dystrophic neurites in the upper cortical layers, and cytoplasmic inclu-
sions are rare. The frontotemporal neocortices are vulnerable, and the hippocampus, the
amygdala, the neostriatum, and the substantia nigra are also preferentially involved with
TDP-43 pathology [25,26] (Figure 2). Cortical TDP-43 pathology often spreads toward
more posterior areas than prefrontal areas, in contrast to the topography of Pick disease
lesions. The distribution of FTLD lesions largely corresponds to clinical phenotypes of
FTD: involvement of frontal and temporal cortices is seen in bvFTD; that of the anterior
temporal cortices is seen in SD, and that of the frontal cortices and para-Sylvian areas is
seen in PNFA [27] (Figure 1).
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ALS-TDP and FTLD-TDP may overlap clinically or pathologically [28]. ALS-TDP
and FTLD-TDP often coexist in the same individuals; this phenotype is currently termed
frontotemporal dementia with motor neuron disease (FTD-MND). Regions vulnerable to
the TDP-43 pathology are often the same in ALS-TDP and FTLDTDP. For example, TDP-
43 aggregations in the hippocampus were found in 40% of the non-demented ALS-TDP
patients, whereas TDP-43 aggregations in the spinal cord motor neurons were found in 90%
of the FTLD-TDP patients even in the absence of motor neuron signs or symptoms [29,30]. It
has been suggested that ALS-TDP and FTLD-TDP could be a part of a continuous spectrum
of diseases, ‘TDP-43 proteinopathy’ [28]. However, molecular assays of aggregated TDP-
43 have revealed different molecular properties between ALS-TDP and FTLD-TDP and
among pathological subtypes of FTLD-TDP. The molecular weights of C-terminal fragments
of aggregated TDP-43 differ among FTLD-TDP type A, B, and C, and ALS [15,31]. In
addition, a recent study revealed that molecular size, density, structure, and neurotoxicity
differ among the subtypes of TDP-43 proteinopathy [32]. This evidence indicates the
possibility of a distinctive, at least partially, molecular pathway of TDP-43 aggregation in
each pathological phenotype of TDP-43 proteinopathy.
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Figure 1. Systemic atrophy of central nervous system in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar 
degeneration (FTLD) patients. The spinal cord and medulla oblongata are stained with Klüver–Barrera method. Involve-
ment of the upper motor neurons results in tract degeneration of the pyramidal tract in the medullary pyramid and lateral 
column (*) and anterior cerebrospinal fasciculus (arrow) of the spinal cord; the change is usually prominent in the caudal 
segments of the spinal cord. Involvement of the lower motor neurons results in atrophy of the anterior roots in the spinal 
cord (arrowhead); the anterior roots are thin and hardly visible, compared with the dorsal roots. Scale bars = 5 mm. Cere-
bral MRI illustrates a vulnerable region corresponding to each clinical subtype: the prefrontal area for behavioral variant 
frontotemporal dementia (bvFTD), the para-Sylvian operculum and primary motor cortex for progressive non-fluent 
aphasia (PNFA), and the anterior portion of the unilateral (dominant hemisphere) temporal lobe for SD (arrow). 

Figure 1. Systemic atrophy of central nervous system in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar
degeneration (FTLD) patients. The spinal cord and medulla oblongata are stained with Klüver–Barrera method. Involvement
of the upper motor neurons results in tract degeneration of the pyramidal tract in the medullary pyramid and lateral
column (*) and anterior cerebrospinal fasciculus (arrow) of the spinal cord; the change is usually prominent in the caudal
segments of the spinal cord. Involvement of the lower motor neurons results in atrophy of the anterior roots in the spinal
cord (arrowhead); the anterior roots are thin and hardly visible, compared with the dorsal roots. Scale bars = 5 mm.
Cerebral MRI illustrates a vulnerable region corresponding to each clinical subtype: the prefrontal area for behavioral
variant frontotemporal dementia (bvFTD), the para-Sylvian operculum and primary motor cortex for progressive non-fluent
aphasia (PNFA), and the anterior portion of the unilateral (dominant hemisphere) temporal lobe for SD (arrow).
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Figure 2. Histopathological findings of transactivation response DNA binding protein 43kDa (TDP-43)-related ALS (ALS-
TDP) and FTLD (FTLD-TDP). Panels A–D were taken from an ALS-TDP patient. Anti-TDP-43 immunohistochemistry 
revealed that TDP-43 was mislocalized from the nucleus to the cytoplasm and forms dot-like (A, arrow) or skein-like 
inclusions (B, arrow) in the spinal motor neuron. Unaffected neurons showed nuclear localization of TDP-43 (A and B, 
arrowheads). Anti-phosphorylated TDP-43 (p-TDP-43) immunohistochemistry revealed pathologic inclusions (C, arrow) 
but not the normal nuclear expression of TDP-43. TDP-43 inclusions were immunopositive for ubiquitin (D, arrow). Bu-
nina bodies are also observed in the motor neurons of ALS-TDP patients (E) and immunolabeled with cystation-C (F). 
Panels G–K were taken from FTLD-TDP patients. Sporadic FTLD-TDP is classified into types A, B, and C; type A is char-
acterized by short dystrophic neurites and round- or crescent-shaped neuronal inclusions in the superficial layers of the 
cerebral cortex; type B is characterized by ring-shaped neuronal inclusions across all cortical layers; and type C is charac-
terized by long and thick immunopositivity of neurites in the superficial cortical layers (G–I). Hippocampal granule cells 
(J) and neostriatum (K) are also preferentially involved. Panels (L–O) were taken from an ALS/ parkinsonism-dementia 
complex (PDC) (Kii peninsula) patient. The entorhinal cortex (L–N) showed multiple proteinopathies, including p-TDP-
43 (L), hyperphosphorylated tau (M), and α-synuclein (O). Relatively mild aggregation of p-TDP-43 was observed in the 
spinal cord, compared with classical ALS. Scale bars: (A,B) 20 μm, (C–F) 10 μm, and (G–O) 50 μm. 

  

Figure 2. Histopathological findings of transactivation response DNA binding protein 43kDa (TDP-43)-related ALS (ALS-
TDP) and FTLD (FTLD-TDP). Panels A–D were taken from an ALS-TDP patient. Anti-TDP-43 immunohistochemistry
revealed that TDP-43 was mislocalized from the nucleus to the cytoplasm and forms dot-like (A, arrow) or skein-like
inclusions (B, arrow) in the spinal motor neuron. Unaffected neurons showed nuclear localization of TDP-43 (A and B,
arrowheads). Anti-phosphorylated TDP-43 (p-TDP-43) immunohistochemistry revealed pathologic inclusions (C, arrow)
but not the normal nuclear expression of TDP-43. TDP-43 inclusions were immunopositive for ubiquitin (D, arrow). Bunina
bodies are also observed in the motor neurons of ALS-TDP patients (E) and immunolabeled with cystation-C (F). Panels
G–K were taken from FTLD-TDP patients. Sporadic FTLD-TDP is classified into types A, B, and C; type A is characterized
by short dystrophic neurites and round- or crescent-shaped neuronal inclusions in the superficial layers of the cerebral
cortex; type B is characterized by ring-shaped neuronal inclusions across all cortical layers; and type C is characterized
by long and thick immunopositivity of neurites in the superficial cortical layers (G–I). Hippocampal granule cells (J) and
neostriatum (K) are also preferentially involved. Panels (L–O) were taken from an ALS/ parkinsonism-dementia complex
(PDC) (Kii peninsula) patient. The entorhinal cortex (L–N) showed multiple proteinopathies, including p-TDP-43 (L),
hyperphosphorylated tau (M), and α-synuclein (O). Relatively mild aggregation of p-TDP-43 was observed in the spinal
cord, compared with classical ALS. Scale bars: (A,B) 20 µm, (C–F) 10 µm, and (G–O) 50 µm.
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4. Gain-of-Neurotoxicity and Loss-of-Function

These ambivalent concepts may have arisen from the double face of TDP-43 pathology:
cytoplasmic aggregation and mislocalization from the nucleus. It is broadly believed that
the cytoplasmic inclusions of TDP-43 are neurotoxic. Neuronal death or axonal dysfunction
has been observed in models with overexpression of TDP-43 [33] and cells transfected with
pathological TDP-43 mutants [34,35] or cytoplasmically mislocalized TDP-43 with mutated
nuclear localization signals (NLSs) [36]. How aggregated TDP-43 triggers neuronal death
or dysfunction remains controversial. By contrast, evidence of loss-of-function of TDP-43
mechanisms has also been accumulated. Transgenic mice expressing human TDP-43 with a
mutated NLS displayed neuronal loss and tract degeneration. Endogenous nuclear TDP-43
is downregulated, and cytoplasmic inclusions were sparse. These facts suggest that the
loss of nuclear TDP-43 is more strongly correlated with neuronal dysfunction than is the
cytoplasmic inclusions [37]. Other TDP-43 suppression or knock-out models also showed
neuronal dysfunction, including an alteration of TDP-43-related transcriptome resulting
in synaptic abnormality [38], deficits in DNA repair [39], a loss of splicing repressor
function [40], and dsRNA-foci [41].

5. Anatomical Spreading of TDP-43 Pathology

Neuropathologic analyses of autopsied patients with ALS-TDP and FTLD-TDP have
indicated that TDP-43 pathology spreads along certain neurally connected anatomical sys-
tems rather than depending on spatial proximity. Direct or indirect corticofugal spreading
of TDP-43 pathology from the primary motor cortex to the lower motor neurons has been
suggested in ALS-TDP patients [42,43]. In FTLD-TDP, cortico-cortical spreading from pre-
frontal areas to caudal cortices has been proposed [44]. Subcellular observations revealed
granular aggregates of phosphorylated TDP-43 (p-TDP-43) within the axons and axonal
terminals of ALS-TDP and FTLD-TDP patients, which indicates an intra-axonal transfer
of the aggregates [43,45,46]. This finding is often observed in patients with short clinical
duration (Figure 3) [47]; hence, p-TDP-43 aggregations might be transferred through the
axons even in the early stages of the disease.

Premortem neurophysiological studies have supported a corticofugal manner in the
spreading of ALS lesions. Studies of transcranial magnetic stimulation revealed that re-
duction in short-interval intracortical inhibition precedes lower motor neuron dysfunction
among ALS patients, indicating early impairment of intracranial circuit within the pri-
mary motor cortex [48]. Structural [49–51] and functional [52] imaging technics have also
suggested the corticofugal manner of ALS lesions; for instance, a study of resting-state
functional MRI showed that patterns of increased connectivity, relevant to network expan-
sion and physical disability, were consistent with spreading patterns of TDP-43 pathology
in ALS [52].

Other patterns in the spreading of TDP-43 pathology have also been suggested. A
neuropathological study suggested that the dentate gyrus of the hippocampus is a starting
point for TDP-43 pathology in ALS-TDP and FTD-MND; the pathology may subsequently
spread to the anterior olfactory nucleus, the periamygdaloid complex, the piriform cortex
and eventually reach the orbital cortex and olfactory bulb [53,54]. Moreover, TDP-43
aggregates and dipeptide repeat proteins systematically involve the circadian sleep/wake-
associated regions, including the pineal body and hypothalamic neurons related to the
suprachiasmatic nucleus, in ALS patients with C9orf72 repeat expansion [55].

Molecular biological studies have revealed propagative properties of TDP-43 aggre-
gates. Full-length TDP-43 contains NLSs, whereas the C-terminal fragments do not [16].
Therefore, the fragments are considered to be more often present in the cytoplasm than
full-length sequences and are thus good candidates as ‘seeds’ for aggregations [16,36,37].
Induction of patient-derived TDP-43 seeds resulted in the spreading of TDP-43 aggregates
in a cell-to-cell and in a corticofugal manner for SH-SY5Y cells and mice with a mutated
human TDP-43 NLS (CamKIIa-hTDP-43NLSm), respectively [16,56].
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Figure 3. TDP-43 pathology in multi-system axons and axon terminals. The upper section (A) demonstrates the spinal 
cord of an ALS-TDP patient who died six months after the disease onset. Phosphorylated TDP-43 (p-TDP-43) aggregated 
not only in the anterior horn neurons (arrowhead) but also in the anterior roots (arrows). Scale bars: 100 μm for the panel 
of the anterior horn and 10 μm for the panels of the anterior roots. The lower section (B) displays pathologic changes of 
the cortico-striatal circuit in FTLD-TDP patients. Axon terminals of the corticofugal neurons were visualized with anti-
VGLUT-1 immunohistochemistry (IHC) in the neostriatum. Those of the striatofugal neurons were labeled with anti-
enkephalin (Enk) IHC in the external segments of the globus pallidus (GPe) or with anti-substance-P (Sub-P) IHC in the 
internal segment of GP (GPi) and pars reticulata of the substantia nigra (SNr). Patients with FTLD-TDP displayed loss of 
those axon terminals and p-TDP-43 aggregation within the pre-synaptic buttons. Comparing the loss of VGLUT-1-im-
munopositive terminals in the neostriatum (arrows) and sparing of synaptophysin (Syn) immunostaining indicates spe-
cific loss of cortico-striatal projections but spares of other projections. Scale bars: 10 μm. 

  

Figure 3. TDP-43 pathology in multi-system axons and axon terminals. The upper section (A) demonstrates the spinal cord
of an ALS-TDP patient who died six months after the disease onset. Phosphorylated TDP-43 (p-TDP-43) aggregated not
only in the anterior horn neurons (arrowhead) but also in the anterior roots (arrows). Scale bars: 100 µm for the panel of
the anterior horn and 10 µm for the panels of the anterior roots. The lower section (B) displays pathologic changes of the
cortico-striatal circuit in FTLD-TDP patients. Axon terminals of the corticofugal neurons were visualized with anti-VGLUT-1
immunohistochemistry (IHC) in the neostriatum. Those of the striatofugal neurons were labeled with anti-enkephalin (Enk)
IHC in the external segments of the globus pallidus (GPe) or with anti-substance-P (Sub-P) IHC in the internal segment of
GP (GPi) and pars reticulata of the substantia nigra (SNr). Patients with FTLD-TDP displayed loss of those axon terminals
and p-TDP-43 aggregation within the pre-synaptic buttons. Comparing the loss of VGLUT-1-immunopositive terminals
in the neostriatum (arrows) and sparing of synaptophysin (Syn) immunostaining indicates specific loss of cortico-striatal
projections but spares of other projections. Scale bars: 10 µm.
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6. Are ALS-TDP and FTLD-TDP Synaptopathies?

Ultrastructural observations of autopsied ALS patients revealed degradation of axon
terminals in the motor neuron system, associated with alterations of pre-synaptic vesicles,
mitochondria, and neurofilament bundles [57,58]. We have found loss of axon terminals
in cortico-striatal projections, striatopallidal projections, and striatonigral projections in
autopsied ALS-TDP and FTLD-TDP patients using immunolabeling of glutamatergic or
GABAergic pre-synaptic vesicles [45,46] (Figure 3). The depletion of axon terminals was
more severe in FTLD-TDP patients than in ALS-TDP patients without dementia. Aggrega-
tion of p-TDP-43 was also found within the remaining terminals. A recent study quantified
axonal terminal densities with high precision using array tomography. It revealed signifi-
cant depletion of axonal endings in the prefrontal cortex and its correlation with cognitive
decline in ALS patients [59].

Studies using models of increased expression of TDP-43 have reported a loss of axon
terminal or dendritic spines. It has also been suggested that TDP-43 is physiologically
transported within the axons and contributes to axonal outgrowth [60]. Mice overexpress-
ing human-TDP-43 showed reductions in the expression of mRNAs that encode proteins
involved in pre-synaptic activity via an RNA-binding property of TDP-43 [61]. It is un-
known whether the aggregation of p-TDP-43 within axonal terminals demonstrates in situ
synaptotoxicity, which has been reported for a tauopathy model; induction of pathogenic
mutant tau bound to pre-synaptic vesicles and disrupted synaptic functions [62]. Depletion
of TDP-43 in neurons or microglia has also been reported to be correlated with synaptic loss,
impairment of synaptic plasticity, alterations in RNA transcripts that are closely relevant
to synaptic plasticity, or disruption of axonal growth [38,63–65]. We also found that FUS,
which is the second most common pathological protein in ALS, plays a role in synaptic
functions. Downregulation of FUS expression by shRNA resulted in depletion of dendritic
spines and AMPA receptors and a loss of spine plasticity in primary cortical neurons and
mice, respectively [66]. Synaptopathy might explain the neuronal dysfunction in a broad
spectrum of disorders related to ALS and FTLD.

7. Impaired Clearance of TDP-43

Aggregated TDP-43 is ubiquitylated and tagged with p62, which indicates a contribu-
tion of ubiquitin-proteasome and endosome-autophagy systems to process the aggregates.
The role of p62 would be to guide the ubiquitylated proteins towards the autophagy
system [67]. A neuropathological study reported that a subset of TDP-43 aggregates is
immunopositive for LC3 [68], which is an autophagosomal marker [60]. Activation of
the autophagosome-lysosome system has been reported to decrease the neurotoxicity of
aggregated TDP-43 in neuron models [69,70]. In a yeast model, increased TDP-43 level
disrupted the fusion and function of vesicles linked to the autophagy-lysosome system [71].
In addition, we have shown the importance of exosomes, which are another endosome-
mediated clearance mechanism in the metabolism of TDP-43 (Figure 4). Neuro2a cells
that were transfected with human-strain TDP-43 secreted the exogeneous TDP-43 with
the exosomes [72]. Moreover, high levels TDP-43 and insoluble C-terminal fragments
were found in the exosome fraction, which was extracted from FTD-MND patients’ brains.
Inhibition of exosomes resulted in intracytoplasmic mislocalization and aggregation of
TDP-43. Intake of exosome carrying C-terminal fragments into the cells also facilitated the
TDP-43 pathology. These facts indicate that exosomal secretion of TDP-43 is a critical step
in TDP-43 metabolism and that secreted TDP-43 functions as a seed for neuron-to-neuron
propagation of TDP-43 [16,73]. When considering together with a concept of synaptopathy,
it can be hypothesized that transmission of TDP-43 seeds between pre- and post-synapse,
depending on the exocytosis, could be a mechanism of centrifugal, anatomical propagation
of TDP-43 pathology. Exosomal fraction is also identified in plasma and cerebrospinal fluid
(CSF). However, whether exosomal TDP-43 levels are elevated there in patients with ALS
is controversial [74].



Int. J. Mol. Sci. 2021, 22, 3843 8 of 17Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 4. Endosome-autophagosome system and TDP-43 pathology. (A) Aggregated TDP-43 and dysfunction/haploinsuf-
ficiency of ALS/FTLD-TDP-related genes have been reported to impair maturation, transport, or fusion of endosomal and 
autophagosomal vesicles. (B) The exosomal fraction of brain lysates from ALS-TDP patients contains abundant TDP-43, 
particularly C-terminal fragments. (C) Neuro2a cells that were treated with ALS-patients-derived exosome and transfected 
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multivesicular bodies (MVBs) (D). GVD granules, which were immunolabeled with CHMP2B and CK1δ, contained p-
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Figure 4. Endosome-autophagosome system and TDP-43 pathology. (A) Aggregated TDP-43 and dysfunc-
tion/haploinsufficiency of ALS/FTLD-TDP-related genes have been reported to impair maturation, transport, or fusion
of endosomal and autophagosomal vesicles. (B) The exosomal fraction of brain lysates from ALS-TDP patients contains
abundant TDP-43, particularly C-terminal fragments. (C) Neuro2a cells that were treated with ALS-patients-derived
exosome and transfected with human-derived TDP-43 exhibited cytoplasmic aggregation of TDP-43. (D–F) These panels
show neuropathologic changes of ALS/FTLD-TDP patients carrying C9-orf72 hexanucleotide expansions. Hippocampal
pyramidal neurons often displayed granulovacuolar degeneration (GVD) that was associated with immunoreactivity for
CHMP2B, a marker of multivesicular bodies (MVBs) (D). GVD granules, which were immunolabeled with CHMP2B and
CK1δ, contained p-TDP-43 and hyperphosphorylated tau (E). Mutation-derived sense (poly GA, poly GP, and poly GR) and
antisense dipeptides (poly PR and poly PA) were frequently covered with CHMP2B-immunopositive GVD granules. Scale
bars: 10 µm.
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ALS-TDP- or FTLD-TDP-related genes, including SQSTM1 (p62), UBQLN2, VCP, GRN,
and OPTN, are important players in the autophagy system [75]. Indeed, homozygous muta-
tions of the GRN gene cause neuronal ceroid lipofuscinosis, which is characterized by lyso-
somal storage of lipopigment [76]. Haploinsufficiency of C9orf72 correlated to disruption of
autophagy, particularly of endosomal trafficking [77]. Upon our postmortem observations, the
hippocampi and frontal cortices of C9orf72-mutated patients frequently and broadly displayed
granulovacuolar degeneration (GVD) containing an accumulation of CHMP2B (charged mul-
tivesicular body protein 2B) [78]. CHAMP2B is a marker of the multivesicular body, which is
the turning point of the lysosome or exosome pathway. CHMP2B-immunopositive vesicles
of GVD often coexisted with dipeptide repeat proteins, derived from non-ATG-dependent
translation of repeat sequences [78,79]. A mutation in the CHMP2B gene is also known to
cause familial FTD, although the postmortem findings remain unknown [80]. A recent study
reported that GVDs carrying necrosome-markers were primarily found in the hippocampus
of ALS-TDP and FTLD-TDP with and without C9orf72 mutation [81].

It is well known that chaperone proteins are critical to regulating the folding or
solubility of pathologic proteins in motor neuron diseases and other neurodegenerative
disorders [82,83]. A comprehensive study has revealed that the heat-shock response
reduced insoluble, phosphorylated TDP-43 and was suppressed in spinal cord tissues
of sporadic ALS-TDP patients [84]. It has also been reported that chaperon-mediated
autophagy (CMA), which specifically directs the degradation of soluble proteins, regulates
TDP-43 metabolism under physiological and pathologic conditions and that aggregated
TDP-43 affects the integrity of CMA-associated lysosomes [85]. Degradation of liquid-
liquid phase separation along with aging, genetic, or environmental factors, followed
by reduction in HSP-70, has been reported to perturb the solubility of TDP-43 [86]. A
postmortem study hypothesized that abnormal but soluble TDP-43 in the Betz cells, where
TDP-43 pathology is considered to be initiated, could be an early mechanism of ALS; the
hypothesis arose from the fact that aggregation of p-TDP-43 was relatively sparse in the
Betz cells compared with mislocalization of nuclear TDP-43 [87]. Full-length TDP-43, the
45 kDa form, and ubiquitylated TDP-43 have been found in the soluble, inclusion-free
fraction of brain tissues from ALS-TDP patients, which indicates that mislocalization of
TDP-43, preceding the aggregation, play a role in the early pathogenesis of ALS [88].

In addition to the intraneuronal machinery, neuroinflammation toward TDP-43 ag-
gregation has been emphasized. A study revealed high extracellular expression of a
neuroinflammatory marker, cyclophilin-A, in CSF from SOD-1G93A models and sporadic
ALS patients, and drug-derived inhibition of cyclophilin-A reduced nuclear factor kappa
B (NF-κB) activation, endoplasmic reticulum stress, and insoluble phosphorylated TDP-
43 [89]. From the viewpoint of neuroinflammation, the pathophysiological importance
of glial reactions increases. Recent studies revealed neuroprotective properties of astro-
cytes and microglia, of which activation and proliferation reduce pathological TDP-43
levels [90,91]. Impacts of altered glial expression of TDP-43 have also been investigated. A
study of primary-cultured astrocytes suggested that knock-down of TDP-43 facilitated neu-
roinflammatory along with elevated NF-κB and dsRNA-foci [92], whereas a contradictory
study described no influences of it toward astrocytic activation and neuronal survival [93].

8. Linkage between TDP-43 and tau Pathology

Postmortem studies have demonstrated that TDP-43 pathology is observed in a sub-
set of non-ALS/FTLD disorders, including Alzheimer disease (AD) [94,95], PSP [96],
corticobasal degeneration (CBD) [97], Lewy body disease (LBD) [98–101], hippocampal
sclerosis [102], LRRK-2 mutated Parkinson disease [103], and post-traumatic chronic en-
cephalopathy [104]. Subpopulations (up to 20%) of neurologically healthy, aged people also
show TDP-43 aggregation in the limbic systems, which is referred to as limbic-predominant
age-related TDP-43 encephalopathy (LATE) [105].

The prevalence of TDP-43 pathology is particularly high in AD patients and accounts
for up to 75% [94,95]. Impacts on clinical manifestations or on brain atrophy of the co-
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morbid TDP-43 pathology in AD, PSP, and CBD patients have been reported [94,96,97],
although whether the comorbid TDP-43 pathology is ‘bystander’ or ‘pathogenic’ is still
controversial [106]. The molecular basis of comorbid TDP-43 pathology in miscellaneous
disorders remains unclear. At least, the spatial distribution, the spreading pattern, and the
morphology of TDP-43 aggregations partially but definitely differ from those observed in
patients with ALS-TDP or FTLD-TDP. This is in great contrast with the reported similarities
between AD-related tau pathology and primary age-related tauopathy [107].

Additionally, abnormalities in tau protein have also been discussed in ALS-TDP
patients. Aggregation or hyperphosphorylation of tau has been observed in the motor
neurons of ALS-TDP patients [108,109]. It has been reported that FTLD-TDP patients
carrying C9orf72-repeat expansions tended to have a higher burden of tau aggregations in
the temporal cortex and hippocampus than GRN-mutated patients [110]. However, contra-
dictory results have also been reported; a cohort-based study of autopsied FTLD/ALS-TDP
and FTLD-tau indicated no predisposition towards TDP-43 pathology in FTLD-tau patients
or to tau pathology in FTLD-TDP patients [111]. ALS/PDC patients of Kii peninsula, Japan,
often exhibit multiple proteinopathies, including TDP-43, tau, and α-synuclein, promi-
nently in the limbic system (Figure 2); interestingly, the aggregation is usually mild in the
motor neurons [112]. Although the genetic background and pathogenesis of this phenotype
are still unknown, recent neuropathological studies have revealed that mutant ubiquitin
(UBB+1) is highly expressed in the hippocampus or cerebral cortices, and dyshomeostasis
of the ubiquitin-proteasome system is suggested [113].

The coexistence of TDP-43 and tau pathologies suggests overlapped mechanisms be-
tween these two major groups among neurodegenerative disorders. Our observations re-
vealed that the hippocampal and cortical neurons of autopsied patients with ALS/FTLD-TDP,
ALS-FUS, PSP, and CBD showed aberrant interaction of two intranuclear proteins, namely,
FUS and splicing factor proline/glutamine-rich proteins (SFPQ) [114,115]. FUS and SFPQ are
physiologically co-localized within the neuronal nuclear matrix, whereas they are spatially
and biochemically dissociated in disease. Importantly, the dissociation of FUS and SFPQ
was not observed in AD or Pick disease patients and neurologically healthy controls. An
investigation using human mutant-TDP-43-knock-in mice showed alterations in splicing
of microtubule-associated protein tau (MAPT) gene [116]. Genome analyses revealed shared
genetic risks across PSP, CBD, FTD, and FTD-MND [117,118]. Intermediate repeat expansion
in C9orf72 has recently been reported to be a risk factor for CBD [119]. Upon postmortem
observations of AD or CBD brains, intracellular TDP-43 aggregates and tau aggregates some-
times seem to be co-localized and sometimes not [101,120]. It remains to be clarified whether
the coexistence of TDP-43 and tau pathology signifies a common mechanism upstream of
pathogenesis or a process secondary to aggregation of either protein.

9. Conclusions

Recent studies have revealed correlations between TDP-43 abnormalities and impair-
ment of some cellular substructures. We focused on the involvement of the endosome-
autophagosome system and synaptic integrity as key actors in the pathogeneses of TDP-43
proteinopathy from the viewpoint of translational approaches across neuropathological
and basic investigations. The concept of multiple proteinopathies, including interactions
between TDP-43 and tau, suggests a pathophysiological link at a very early stage before
protein aggregation. Although the whole pathway leading to neuronal dysfunction remains
unclear, successful strategies of disease-modifying therapy may arise from those results.
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AD Alzheimer disease
ALS amyotrophic lateral sclerosis
ALS-TDP TDP-43-related ALS
bvFTD behavioral variant FTD
CBD corticobasal degeneration
CHMP2B charged multivesicular body protein 2B
CK1δ casein kinase 1δ
CMA chaperon-mediated autophagy
CSF cerebrospinal fluid
FTD frontotemporal dementia
FTD-MND frontotemporal dementia with motor neuron disease
FTLD frontotemporal lobar degeneration
FTLD-TDP TDP-43-related FTLD
FUS fused-in-sarcoma
GVD granulovacuolar degeneration
HSP-70 70 kDa heat shock proteins
LATE limbic-predominant age-related TDP-43 encephalopathy
LBD Lewy body disease
MAPT microtubule-associated protein tau
MVB multivesicular body
NF-κB nuclear factor kappa B
PDC parkinsonism-dementia complex
PNFA progressive non-fluent aphasia
PSP progressive supranuclear palsy
SD semantic dementia
SFPQ splicing factor proline/glutamine-rich proteins
TDP-43 Transactivation response DNA binding protein 43 kDa
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