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ABSTRACT
Accurate classification of variants in cancer susceptibility 
genes (CSGs) is key for correct estimation of cancer 
risk and management of patients. Consistency in 
the weighting assigned to individual elements of 
evidence has been much improved by the American 
College of Medical Genetics (ACMG) 2015 framework 
for variant classification, UK Association for Clinical 
Genomic Science (UK- ACGS) Best Practice Guidelines 
and subsequent Cancer Variant Interpretation Group 
UK (CanVIG- UK) consensus specification for CSGs. 
However, considerable inconsistency persists regarding 
practice in the combination of evidence elements. 
CanVIG- UK is a national subspecialist multidisciplinary 
network for cancer susceptibility genomic variant 
interpretation, comprising clinical scientist and clinical 
geneticist representation from each of the 25 diagnostic 
laboratories/clinical genetic units across the UK and 
Republic of Ireland. Here, we summarise the aggregated 
evidence elements and combinations possible within 
different variant classification schemata currently 
employed for CSGs (ACMG, UK- ACGS, CanVIG- UK 
and ClinGen gene- specific guidance for PTEN, TP53 
and CDH1). We present consensus recommendations 
from CanVIG- UK regarding (1) consistent scoring for 
combinations of evidence elements using a validated 
numerical ’exponent score’ (2) new combinations of 
evidence elements constituting likely pathogenic’ and 
’pathogenic’ classification categories, (3) which evidence 
elements can and cannot be used in combination for 
specific variant types and (4) classification of variants for 
which there are evidence elements for both pathogenicity 
and benignity.

BACKGROUND
Variant interpretation in cancer susceptibility 
genetics
Accurate classification of variants in cancer suscep-
tibility genes (CSGs) is key for the correct estima-
tion of cancer risk and management of patients with 
potential cancer predisposition.1 There are specific 
interventions that would only be offered if a patient 
were at very substantially increased risk of cancer; 
most typically, only those carrying a (likely) patho-
genic variant in a relevant CSG. Incorrect classifi-
cation of a variant as (likely) pathogenic can thus 
lead to ‘overmanagement’, for example, the inap-
propriate performance of risk- reducing surgery. 

Conversely, there are significant potential sequelae 
of underclassification of a pathogenic variant as 
a ‘variant of uncertain significance’ (VUS). For 
example, for a variant in BRCA1/BRCA2, first, the 
patient with cancer may not be eligible for cancer 
treatments from which they would likely benefit, 
for example, platinum- based chemotherapy and/
or poly ADP ribose polymerase (PARP) inhibitors. 
Second, the patient with cancer may not be eligible 
for risk- reduction interventions appropriate to their 
true level of risk, for example, contralateral risk- 
reducing mastectomy or salpingo- oopherectomy. 
Third, family members will be unable to access 
presymptomatic testing by which their cancer 
risk can be clarified as either near- population or 
substantially elevated.2 Furthermore, the results of 
CSG analysis may be used for prenatal testing or 
preimplantation genetic diagnosis, for which accu-
racy of genetic test interpretation is also crucial. 
This difficult balance between reducing categorisa-
tion as uncertain and avoiding ‘false positives’ is a 
challenging tightrope in clinical cancer genetics, as 
indeed in other areas of genetics and medicine more 
widely.

2015 American College of Medical Genetics 
(ACMG) variant interpretation framework
A variety of evidence types can contribute to asser-
tions of pathogenicity or benignity, for example, the 
number of independent cases with a characteristic 
phenotype, familial segregation data, frequency in 
population controls and functional analyses. Histor-
ically, appropriation of disparate evidence elements 
could differ widely between diagnostic laboratories 
and produce discrepant classifications. To advance 
consistency in diagnostic variant interpretation, in 
2015, the ACMG published a framework for variant 
classification.3 In 2016, it was agreed by the UK Asso-
ciation for Clinical Genomic Science (UK- ACGS) to 
adopt formally across NHS molecular diagnostics 
the ACMG framework for variant interpretation. 
Each year, a detailed UK ACMG- based specification 
is published, ‘The UK- ACGS Best Practice Guidelines 
for Variant Classification in Rare Disease’.4

Cancer Variant Interpretation Group UK (CanVIG-
UK)
CanVIG- UK was established in 2017 as part of 
the UK- ACGS activity supporting adoption and 
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dissemination of the ACMG framework for variant interpreta-
tion.5 CanVIG- UK currently comprises >100 clinical scientists, 
clinical geneticists and genetic counsellors, with representation 
from each of the 25 Molecular Diagnostic Laboratories and Clin-
ical Genetics Services of the UK (NHS) and Republic of Ireland. 
The group meets monthly to undertake multidisciplinary review 
and interpretation of problematic clinically detected variants. 
CanVIG- UK maintains an annually updated consensus specifi-
cation for CSGs of the UK- ACGS Best Practice Guidelines for 
Variant Classification in Rare Disease (hereafter termed the 
CanVIG- UK specification).5

Combining evidence items under the ACMG framework
The ACMG framework has greatly improved the consistency with 
which variants in CSGs are classified within the UK molecular 
genetics laboratory community. Nevertheless, within the frame-
work, several areas are ambiguous, undefined or make reference 
to the need for ‘expert judgment’.3 Additional evidence elements 
not present in the original 2015 ACMG framework have been 
introduced in recent specifications of the framework by ClinGen 
expert groups, as well as the UK- ACGS and CanVIG- UK.4–9

Frequently encountered within CanVIG- UK are variants 
for which there is uncertainty and inconsistency regarding the 
combination of multiple evidence elements, in particular those 
for which (1) the evidence elements available do not conform to 
any of the combinations specified in the original ACMG frame-
work; (2) a proposed combination of evidence elements is of 
contentious legitimacy; and (3) there are conflicting evidence 
elements, that is, towards both pathogenicity and benignity.

We thus sought within CanVIG- UK to improve consistency 
in combination of evidence elements within the ACMG frame-
work, addressing the following five objectives:

 ► To establish an objective numerical system for combining 
evidence elements.

 ► To evaluate the maximum number of evidence items attain-
able via new ACMG- based specifications.

 ► To define specifically permitted and non- permitted combi-
nations of evidence elements.

 ► To define all new combinations of evidence elements attain-
able using new ACMG- based specifications.

 ► To establish consistent practice in classification of variants 
with discordant (conflicting) evidence elements.

OBJECTIVE 1: TO ESTABLISH AN OBJECTIVE NUMERICAL 
SYSTEM FOR COMBINING EVIDENCE ELEMENTS WITHIN 
THE ACMG FRAMEWORK
Background and approach
In the original 2015 ACMG framework, four evidence strength 
levels were defined: supporting (P), moderate (M), strong (S) 
and very strong (VS).3 Empirical combinations of evidence 
elements were set out for classification categories of pathogenic 
(eight combinations), likely pathogenic (six combinations), likely 
benign (two combinations) and benign (two combinations).

Although developed empirically through clinical consensus, 
the ACMG framework was subsequently demonstrated by Tavti-
gian et al to conform well to a Bayesian structure, namely, that 
prior probability × likelihood ratio = posterior probability, 
where the evidence strength levels were related in an exponen-
tial series to a base of 2.08.10 We sought to evolve the Tavti-
gian Bayesian metastructure into a numerical ‘scoring’ system to 
provide for clinical users an easy- to- use system for the combining 
of evidence elements that is consistent and objective.

Outcome
Derived from the Tavtigian Bayesian metastructure and consis-
tent with the UK- ACGS Best Practice Guidelines for Variant Clas-
sification in Rare Disease 2020, we defined an ‘exponent scoring 
system’, similar to the approach taken by Tavtigian et al in a 
recent adaptation of their original metastructure.4 10 11 Evidence 
elements were allocated points according to evidence strength 
level: (towards pathogenicity) VS (eight points), S (four points), 
M (two points), and P (one point) and (towards benignity) S (−4 
points) and P (−1 points) (table 1A). Arithmetic summing of the 
exponent scores for the contributing evidence elements gener-
ates an ‘exponent sum’. Assignment of a particular classification 
is predicated on attainment of an exponent sum threshold value 
of 6–9 (likely pathogenic), ≥10 (pathogenic), (−1)−(−5) (likely 
benign) and ≤−6 (benign) (table 1B).

Discussion
Conversion of the tally- based 2015 ACMG framework into a 
numerical exponent scoring system (derived from the Tavti-
gian Bayesian metastructure) is a useful evolution of the ACMG 
framework allowing rapid calculation of variant classification 
category. It is designed to augment, not replace the five- level 
classification system. In addition, the exponent scoring system:

 ► Enables delineation of previously undescribed legitimate 
combinations of evidence elements of equivalent numerical 
posterior probability.

 ► Highlights the incongruity in the numerical posterior prob-
ability for some combinations of evidence elements in the 
original 2015 ACMG framework, as previously described by 
Tavtigian et al.10

 ► Allows objective stratification of the evidence strength for 
likely pathogenic variants (exponent score sum range 6–9). 
The exponent system provides a clearer and more consistent 
numerical language with which to continue dialogue 
regarding management quandaries about likely pathogenic 
variants being of ‘lower confidence’ and ‘higher confidence’. 
This typically comprises contexts in which a higher bar of 
evidence is argued to be desirable (eg, prenatal testing).

 ► Likewise allows objective stratification of evidence strength 
for ‘uncertain’ variants (exponent score sum range 0–5) 
(table 2, as described in the UK- ACGS Best Practice Guide-
lines for Variant Classification in Rare Disease 2020).4 Again, 

Table 1 Probability calculations for attaining (A) evidence elements 
and (B) classification categories

(A)

Evidence strength Odds of pathogenicity Exponent score

Very Strong (VS) 350 2.088 8

Strong (S) 18.7 2.084 4

Moderate (M) 4.33 2.082 2

Supporting (P) 2.08 2.081 1

(B)

Classification 
category

Prior 
probability

Combined odds 
of pathogenicity

Exponent 
sum

Posterior 
probability

Pathogenic 0.1 1514 (2.08+10) ≥10 0.99

Likely pathogenic 81 (2.08+6) 6–9 0.90

Likely benign 0.48 (2.08−1) (−1)−(−5) 0.05

Benign 0.01 (2.08−6) ≤−6 0.001*

*The posterior probability attained with an exponent sum of −6 has been rounded 
down to 0.001, consistent with the UK Association for Clinical Genomic Science 
Best Practice Guidelines for Variant Classification in Rare Disease 2020.4
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the exponent system provides a clearer and more consistent 
numerical language with which to debate longstanding clin-
ical quandaries/scenarios, such as:
i. Quantifying the magnitude of additional evidence 

required for a VUS to achieve a classification of likely 
pathogenic (eg, ‘a four- point- VUS, for which two more 
exponent points are required for upclassification to 
likely pathogenic’).

ii. Defining the swathe of VUSs for which ‘active’ variant 
monitoring is indicated (eg, perhaps all five- point VUSs).

iii. Differential evidence requirements in oncology between 
the therapeutic context and the context of familial risk 
prediction. It has been argued in oncology that evidence 
of therapeutic actionability for some somatic biomarkers 
in use may be significantly weaker than for others, for 
example, atypical BRAF variants as indication for vemu-
rafenib administration or an Allred score of 4 as indi-
cation for tamoxifen administration.12–14 Whilst it has 
been argued that germline variants of posterior proba-
bility of pathogenicity of 0.8-0.9 (80%–90%) could be 
equivalently eligible as therapeutic biomarkers (while 
not used for genetic risk prediction), any changes to 
current practice would require very careful considera-
tion of potential clinical pitfalls and detailed economic 
evaluation.

Key to implementation of the Bayesian metastructure (and 
indeed the 2015 ACMG framework) is recognition that the 
overall (posterior) probability of pathogenicity is dependent not 
just on the aggregate likelihood ratio of the contributory evidence 
elements but also on the prior probability of pathogenicity. The 
exponent sums presented correspond to the respective posterior 
probability thresholds only in the context of a specified prior 
probability of 0.1 (10%). This approximates to clinical analysis 
of a limited gene set in a proband with a suspected Mendelian 
disorder.10 15 In the context of a substantially lower prior prob-
ability (absence of phenotype and/or examination of a much 
larger gene set), additional evidence elements will be required 
to attain a specified posterior probability.16 17 Potential methods 
for estimating the prior probability of pathogenicity in different 

contexts are under development by several groups; integration 
into clinical variant interpretation frameworks is a priority for 
future work.

CanVIG-UK consensus recommendations
 ► The exponent scoring system (derived from the Tavtigian 

Bayesian metastructure) is a legitimate means of summing 
evidence elements from the 2015 ACMG framework.

 ► Where there is a prior probability of ~0.1 (10%), an expo-
nent sum of ≥6 equates to a classification class of likely 
pathogenic (ie, >0.9 (90%) posterior probability of patho-
genicity), ≥10 of pathogenic (>0.99 (99%) posterior prob-
ability of pathogenicity), ≤−1 of likely benign (<0.1 (10%) 
posterior probability of pathogenicity) and ≤−6 of benign 
(<0.001 (0.01%) posterior probability of pathogenicity).

 ► A higher exponent sum is required to attain the equivalent 
posterior probabilities of pathogenicity where the prior 
probability of an underlying Mendelian mechanism is signif-
icantly less than 0.1 (10%) eg, variants identified as ‘addi-
tional findings’ on sequencing for an alternative indication.

 ► Five- point (hot) VUSs in well- studied CSGs (BRCA1/BRCA2 
and mismatch repair (MMR) genes) should be discussed by 
a multidisciplinary team for potential inclusion on clin-
ical reports. There are rapid- paced international research 
endeavours relating to these genes through which upclassifi-
cation is quite possible.4 18

OBJECTIVE 2: TO EVALUATE THE MAXIMUM NUMBER OF 
EVIDENCE ITEMS ATTAINABLE VIA NEW ACMG-BASED 
SPECIFICATIONS
Background and approach
In the 2015 ACMG framework, 30 different evidence elements 
were specified (including three different evidence strength 
levels for PP1).3 However, evidence elements have been applied 
at additional and/or different strength levels in subsequent 
ACMG- based specifications. Thus, we reviewed the range and 
total number of evidence elements now attainable via the newer 
ACMG- based specifications currently used by CanVIG- UK for 
the interpretation of variants in CSGs (table 3 and online supple-
mental table 1).

Outcome
Discussion
For each of the ACMG- based specifications used for CSG variant 
interpretation, the number of potential evidence elements at each 
strength level was increased compared with the original 2015 
ACMG framework. Accordingly, a greater number of possible 
combinations of evidence elements will be attainable than was 
possible using the original 2015 ACMG framework.

OBJECTIVE 3: TO DEFINE WHICH SPECIFIC COMBINATIONS 
OF EVIDENCE ELEMENTS ARE PERMITTED
Background and approach
Within the 2015 ACMG framework and subsequent ACMG- 
based specifications, several of the evidence elements are 
(1) non- independent of each other and/or (2) incompat-
ible with regard to the specific variant types to which they 
can be applied. Accordingly, the combinations of evidence 
elements actually attainable in practice are restricted, and 
there is inconsistency regarding which evidence elements are 
used together. We identified pairs of evidence elements for 
which the legitimacy of combination is debatable and estab-
lished, within CanVIG- UK, consensus on the legitimacy of 

Table 2 Five strengths of variant of uncertain significance, 
annotated by potential evidence combinations, posterior probability of 
pathogenicity, ‘exponent sum’ and UK- ACGS Best Practice Guidelines 
for Variant Classification in Rare Disease descriptor4

Exponent score for evidence elements

Exponent 
sum

Overall (posterior) 
probability of 
pathogenicity (%)

UK- ACGS 
descriptor

Towards pathogenicity: 8 (very strong),
4 (strong), 2 (moderate), 1 (supporting)
towards benignity: −4 (strong), −1 
(supporting)

4+1 5 0.812 (81.2) Hot VUS

2+2+1

2+1+1+1

1+1+1+1+1

4 4 0.675 (67.5) Warm VUS

2+2

2+1+1

1+1+1+1

2+1 3 0.500 (50.0) Tepid VUS

1+1+1

2 2 0.325 (32.5) Cool VUS

1+1

1 1 0.188 (18.8) Ice- cold VUS

UK- ACGS, UK Association for Clinical Genomic Science; VUS, variant of uncertain significance.

https://dx.doi.org/10.1136/jmedgenet-2020-107248
https://dx.doi.org/10.1136/jmedgenet-2020-107248
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combination (table 4). We then applied these restrictions to 
calculate the final number of combinable evidence elements 
per variant type as described by Brnich et al19 (table 5).

Outcome
Discussion
Gene- specific ACMG- based specifications vary in the combi-
nations of evidence items they permit. It is unclear to what 
extent this variation reflects between- gene clinical–biolog-
ical heterogeneity versus differences in approaches between 
expert groups.

CanVIG-UK consensus recommendation
Pairs of evidence elements should be combined as per 
table 4. This will reduce overcounting of non- orthogonal 
evidence items derived from a common underlying source/

phenomenon, thus improving the validity of evidence combi-
nation and consistency of classifications between classifiers.

OBJECTIVE 4: TO DEFINE ALL NEW COMBINATIONS OF 
EVIDENCE ELEMENTS ATTAINABLE USING NEW ACMG-
BASED SPECIFICATIONS
Background and approach
In the 2015 ACMG framework, eight evidence combinations 
were provided for pathogenic, six for likely pathogenic, two 
for likely benign and two for benign. Using our updated counts 
of total possible numbers of evidence elements (table 6), using 
the exponent scoring system (derived from the Tavtigian 
Bayesian metastructure), we sought to identify whether addi-
tional combinations of numerically equivalent evidence might 
be possible.

Table 3 Total evidence elements included within current versions of ACMG- based specifications used by CanVIG- UK for CSG variant interpretation

Specification

Evidence for pathogenicity Evidence for benignity

TotalVery strong Strong Moderate Supporting Supporting Strong Stand- alone

ACMG framework 20153 1 5 7 5 7 4 1 30

UK- ACGS rare disease specification 20204 4 10 13 15 7 4 1 54

CanVIG- UK specification 20205 5 9 13 15 9 5 1 57

ClinGen CDH1 specification V28 4 7 7 5 5 4 2 34

ClinGen PTEN specification V27 4 6 7 5 8 4 1 35

ClinGen TP53 specification V16 3 7 10 7 5 4 1 37

ACMG, American College of Medical Genetics; CanVIG- UK, Cancer Variant Interpretation Group UK; CSG, cancer susceptibility gene; UK- ACGS, UK Association for Clinical 
Genomic Science.

Table 4 Permissible and non- permissible combinations of concordant evidence elements (CanVIG- UK consensus)

Theme Evidence elements
CanVIG 
consensus Notes, references

In silico + functional data PS3 (functional) and PP3 (in silico) ✔ X Co- usage permitted for assays of protein function
Co- usage not permitted for assays of splicing; in silico evidence incorporated into PS3 for assays of 
splicing (as per ACGS guidance)4 5 19 21 22BS3 (functional) and BP4 (in silico) ✔ X

PM1 (hot spot) and PP3 (in silico) ✔ Co- usage permitted; regional enrichment and in silico prediction largely different evidence types 
(and evidence from three tools generally incorporated)15

In silico + variant mechanism BP4 (in silico) and BP7 (silent variant) ✔ Co- usage permitted for synonymous and intronic variants (splicing effect must be excluded)

PVS1 (null variant) and PP3 (in silico) X Co- usage not permitted; in silico predictors often incorporate variant mechanism. The strongest 
legitimate evidence item should be selected for inclusion.23

PM4 (protein length changes) and PP3 (in silico) X

BP3 (in- frame del/ins) & BP4 (in silico) X

Use of population data PS4 (case control) and PM2 (absence in controls) ✔ Co- usage permitted, provided that a different source of population data is used for each (this can 
comprise two predefined partitions of gnomAD)5

Phenotypic specificity PS4 (case control) and PP4 (phenotype specificity) ✔ Co- usage permitted, provided that there is a schema predefining distinct data types used for each, 
thus preventing ‘double counting’ of phenotypic features (eg PP4 is applied for molecular/tumour 
assay data, indicating specificity at gene level); PS4 is applied at patient level, counting the strength 
of features in cases and the number of cases/families5

Scaled evidence items PS2 (de novo confirmed) and PM6 (de novo not 
confirmed)

X Co- usage not permitted; either PS2 or PM6 is used, depending on aggregate observations of de 
novo occurrence (ClinGen Sequence Variant Interpretation Working Group)24

Overlapping/ related evidence PS1 (same amino acid) and PM5 (same residue) X Co- usage not permitted; the strongest legitimate evidence item should be selected for inclusion

PM1 (hot spot) and PP2 (low missense rate) ✔ Co- usage permitted; there may be both a low rate of benign missense variation at a whole gene/
gene region level and a specific mutational hot spot/functional domain

PVS1 (null variant) and PM4 (protein length 
changes)

X Co- usage not permitted; this is double counting of two end points of deleterious effect23

PVS1 (null variant) and PS3 (functional) ✔ X Co- usage not permitted for canonical splice variants or non- canonical splice variants (experimental 
evidence cannot be scored using PS3 if PVS1 is used)23

Co- usage is permitted for assays of protein function where the evidence is not double- counted 
(eg, truncating variant in last exon of gene scored as PVS1_mod can be combined with PS3 for 
experimental evidence, demonstrating a significant effect on protein function)

PS1 (same amino acid) and PM1 (hot spot) ✔* Co- usage permitted; definition of a hot spot is predicated on multiple well- documented pre- existing 
pathogenic variants. This may include those at the same amino acidPM5 (same residue) and PM1 (hot spot) ✔*

Alternative explanation for 
phenotype

BP2 (observed with pathogenic variant) and BP5 
(alternative cause)

X Co- usage not permitted; These evidence elements both pertain to presence of an alternative genetic 
cause (BP2 in the same gene and BP5 in a different gene)

*PM1 should therefore be used at supporting level if used in combination with PS1 or PM5.15

ACGS, Association for Clinical Genomic Science; CanVIG- UK, Cancer Variant Interpretation Group UK.
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Outcome
As previously described by Tavtigian et al and the UK- ACGS 
Best Practice Guidelines for Variant Classification in Rare 
Disease 2020, we confirmed that two combinations in the 
2015 ACMG framework were incongruous with the expo-
nent scoring system, (1) one ascribed as pathogenic for which 
the exponent score is only eight and (2) one ascribed as likely 
pathogenic for which the exponent score is 10.4 10 Consistent 
with restrictions in combination due to non- permissibility 

(table 4) and/or incompatible variant types (table 5), we 
confirmed validity of nine new combinations for pathogenic 
and three for likely pathogenic.

Discussion
It was the overall consensus of the CanVIG- UK group to retain 
the requirement for at least two items of evidence to provide 
buffer against false- positive classification of a variant as likely 

Table 6 New and existing combinations of exponent scores potentially leading to overall CanVIG- UK variant classifications

2015 ACMG framework assignation 
of variant class

Exponent score of evidence elements

Exponent 
sum

CanVIG- UK assignation of 
variant class

Towards pathogenicity: 8 (very strong), 4 (strong), 2 (moderate), 1 (supporting); 
towards benignity: −4 (strong), −1 (supporting)

Pathogenic (ia) 8+4 12 Pathogenic (ia)

Pathogenic (ib) 8+2+2 12 Pathogenic (ib)

Pathogenic (ic) 8+2+1 11 Pathogenic (ic)

Pathogenic (id) 8+1+1 10 Pathogenic (id)

L/pathogenic (i) 8+2 10 Pathogenic (ie)

Pathogenic (iiia) 4+2+2+2 10 Pathogenic (iia)

Pathogenic (iiib) 4+2+2+1+1 10 Pathogenic (iib)

Pathogenic (iiic) 4+2+1+1+1+1 10 Pathogenic (iic)

Not included 4+4+2 10 Pathogenic (iiia)

Not included 4+4+1+1 10 Pathogenic (iiib)

Not included 2+2+2+2+2 10 Pathogenic (iv)

Not included 2+2+2+2+1+1 10 Pathogenic (v)

Not included 2+2+2+1+1+1+1 10 Pathogenic (vi)

Not included 2+2+1+1+1+1+1+1 10 Pathogenic (vii)

Not included 2+1+1+1+1+1+1+1+1 10 Pathogenic (viii)

Not included 1+1+1+1+1+1+1+1+1+1 10 Pathogenic (viii)

Pathogenic (ii) 4+4 8 L/pathogenic (v)

L/pathogenic (ii) 4+2 6 L/pathogenic (i)

L/pathogenic (iii) 4+1+1 6 L/pathogenic (ii)

L/pathogenic (iv) 2+2+2 6 L/pathogenic (iii)

L/pathogenic (v) 2+2+1+1 6 L/pathogenic (iv)

L/pathogenic (vi) 2+1+1+1+1 6 L/pathogenic (vi)

Not included 8+1 9 L/pathogenic (vii)

Not included 8 8 N/A: single evidence element

Not included 1+1+1+1+1+1 6 L/pathogenic (viii)

L/benign (i) (−1)+(−4) -5 L/benign (i)

L/benign (ii) (−1)+(−1) -2 L/benign (ii)

Not included (−1) -1 N/A: single evidence element

Not included (−4) -4 N/A: single evidence element

Benign (i) (−4)+(−4) -8 Benign (i)

Classifications in dark grey are those present in the 2015 ACMG framework that are inconsistent with the Tavtigian Bayesian metastructure, and those in light grey are new 
combinations generated using the exponent scoring system.
ACGS, Association for Clinical Genomic Science; ACMG, American College of Medical Genetics; CanVIG- UK, Cancer Variant Interpretation Group UK; L, likely; N/A, not applicable.

Table 5 Maximum number of evidence elements attainable by variant type using the CanVIG- UK specification

Variant type

Maximum number of pieces of evidence at each strength

Pathogenicity Benignity

Very strong Strong Moderate Supporting Supporting Strong Standalone

Truncating 4 7 8 9 4 5 1

Missense 3 7 9 12 6 5 1

In- frame indel 3 6 9 10 5 5 1

Synonymous 3 6 7 9 6 5 1

PP5 and BP6 (reputable source) are permitted by the CanVIG- UK specification 2020 at supporting level and so are included in the totals above, despite not being permitted by 
Brnich et al19

CanVIG- UK, Cancer Variant Interpretation Group UK.
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benign/likely pathogenic via a spurious evidence item. Thus, 
although a sufficient exponent sum is attained with a single 
evidence item, classification out of VUS is not permitted in 
these instances: (1) likely pathogenic with a single very strong 
evidence element, (2) likely benign with a single supporting/
strong evidence element.

CanVIG-UK consensus recommendations
 ► The exponent sum threshold for a classification category can 

be attained via any combination of two or more concordant 
evidence elements.

 ► Variants should not be classified as pathogenic, likely patho-
genic, benign or likely benign on the basis of a single evidence 
item, except BA1 (‘stand- alone evidence’ for benignity).20

OBJECTIVE 5: TO ESTABLISH CONSISTENT PRACTICE 
IN CLASSIFICATION OF VARIANTS WITH DISCORDANT 
(CONFLICTING) EVIDENCE ELEMENTS
Background and approach
In the original 2015 ACMG framework, the recommendation 
was to classify as uncertain any variant for which there was 
discordancy in the evidence elements.3 We sought through appli-
cation of the exponent scoring system to undertake more direct 
numerical evaluation of scenarios of discordancy. We consid-
ered three potential approaches towards classification of vari-
ants with discordant evidence: (1) we could classify all variants 
with discordant evidence as VUSs, as per the original ACMG 
framework; (2) we could use agnostically the net exponent score 
generated from combination of evidence elements as laid out 
in the original Tavtigian et al paper, regardless of the extent of 
conflicting evidence; (3) we could use the net exponent score 
but with rules- based restriction regarding the maximum number 
of evidence elements ‘discordant’ with the final classification.10

Outcome
These three approaches were reviewed within CanVIG- UK 
through application to a number of exemplar variants. Consensus 
opinion was for option 3 as laid out in the following consensus 
recommendations and in table 7.

Discussion
In variant classification, we seek to balance the clinical benefit 
of classification of a variant out of the ‘VUS’ category against 
the harms of erroneous misclassification. Variants classified as 
likely pathogenic have a 90%–99% likelihood of pathogenicity: 
this group should thus contain a ~5% (1%–10%) frequency 
of variants that are truly benign and have been misclassified 
as likely pathogenic. Variants classified as likely benign have a 

0.1%–10% likelihood of truly being pathogenic. Thus, while 
downclassification of variants in CSGs will and should occur 
periodically in practice, it is important to recognise the conse-
quent clinical disruption, particularly if multiple unaffected 
family members have undertaken risk- reducing surgery.

There would be a clear rationale for agnostic use of the net 
exponent score if all evidence was of unquestionable provenance 
and guaranteed to be wholly correct. In practice, in clinical 
observations, laboratory assays and/or published reports, there 
is always potential for error in evidence generation or communi-
cation. The presence of discordant evidence elements will occur 
by chance through statistical distribution of true results; it may 
also be an indicator towards error within one of the evidence 
items. Discordant results between clinical findings and labora-
tory results may also be an indicator of intermediate penetrance. 
Overall in CanVIG- UK, we adopted a strategy whereby classifi-
cation from VUS to another class was permitted, providing the 
conflicting evidence did not exceed a single supporting evidence 
element.

PM2 (absence in controls) provides evidence of rarity, rather 
than evidence against benignity and can thus be ignored when 
calculating the net exponent sum for benignity. Pathogenic vari-
ants will necessarily be rare (except occasional founders); the 
frequency of benign variants will vary from very common to 
very rare.

CanVIG-UK consensus recommendations
 ► Where there is discordant evidence, regardless of the net 

exponent score, the classification class cannot exceed 
likely pathogenic or likely benign. Variants with discordant 
evidence items should not be classified as pathogenic or 
benign.

 ► Conflicting evidence items should be combined to calcu-
late a net exponent sum using the ‘exponent score system’ 
(derived from the Tavtigian Bayesian metastructure). In 
the presence of discordant evidence, providing there is no 
more than one discordant evidence element at no more than 
supporting level, if the net exponent sum is >6, the variant 
can be assigned the variant class of ‘likely pathogenic’; if the 
net exponent sum is <−1, the variant can be assigned the 
variant class of ‘likely benign’.

 ► PM2 can be ignored when calculating the net exponent sum 
for benignity.

CONCLUSION
Clinical variant interpretation is a rapidly evolving field. The 
2015 ACMG framework has provided an invaluable common 
framework for which there has been wide international 

Table 7 Examples of potential combinations of conflicting evidence and the resultant CanVIG- UK classification that would be given

Evidence elements for pathogenicity Evidence elements for benignity

Net exponent 
score

CanVIG- UK assignation of 
variant class

Towards pathogenicity: 8 (very strong), 4 (strong), 2 (moderate), 1 (supporting);
towards benignity: −4 (strong), −1 (supporting)

8+4 (−1) 11 Likely pathogenic

8+4 (−1)+(−1) 10 VUS

8+4 (−4) 8 VUS

4+4 (−1) 7 Likely pathogenic

4+4+1 (−1)+(−1) 7 VUS

1 (−4) -3 Likely benign

1+1 (−4)+(−4) -6 VUS

CanVIG- UK, Cancer Variant Interpretation Group UK; VUS, Variant of Uncertain Significance.
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adoption and improved congruity of approach. ClinGen gene- 
specific ACMG- based specifications in cancer susceptibility are 
currently finalised for PTEN, TP53 and CDH1.6–8 CanVIG- UK 
is a national sub- specialty multi- disciplinary genomic network 
through which we have attained consensus and improved consis-
tency within the UK clinical- laboratory community around 
application of the 2015 ACMG framework for these and other 
CSGs. We here have presented CanVIG- UK consensus recom-
mendations for combining evidence elements for classification 
of variants in CSGs including (i) an exponent scoring system 
for quantitative combination of evidence elements (ii) permis-
sible and non- permissible evidence element combinations (iii) 
new combinations of evidence elements attaining classification 
categories of likely pathogenic and pathogenic’ and (iv) rules for 
combination of discordant (conflicting) evidence elements.
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