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Abstract

Apolipoprotein (apo) E3 and apoAI are exchangeable apolipoproteins that play a dominant

role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues) is composed of an

N-terminal (NT) domain bearing a 4-helix bundle and a C-terminal (CT) domain bearing a

series of amphipathic α-helices. ApoAI (243 residues) also comprises a highly helical NT

domain and a less structured CT tail. The objective of this study was to understand their

structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-

CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affin-

ity chromatography and their identity confirmed by immunoblotting and mass spectrometry.

Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT

retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively

unstructured state; its lipid binding ability improved dramatically compared to apoE3 indica-

tive of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interac-

tion and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was

comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern

and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/

apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated

cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an

enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant

role for apoE CT domain in mediating this function. Together, these results indicate that the

functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT

domain interactions significantly modulate their structure and function.
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Introduction

Apolipoprotein E3 (apoE3) and apolipoprotein AI (apoAI) are exchangeable apolipoproteins

that are key players in cardiovascular disease predominantly due to their abilities to maintain

and regulate plasma triglyceride and cholesterol homeostasis [1–4]. Both show broadly similar

functional characteristics with an ability to bind and transport lipids as large lipoprotein com-

plexes, which serve as a vehicle for other amphipathic and hydrophobic proteins, lipid and

nucleic acid moieties in an aqueous environment such as the plasma. Nonetheless, there are

critical differences between the two from a functional, molecular and physiological

perspective.

ApoE is considered anti-atherogenic predominantly due to its ability to interact with lipo-

proteins and serve as a ligand for the low density lipoprotein receptor (LDLr) family of pro-

teins, a process that leads to receptor mediated endocytosis and consequent lowering of

atherogenic lipoproteins and their clearance from plasma. There is a body of evidence that

established this view, with early studies demonstrating that apoE-null mice exhibit massive

accumulation of remnant lipoproteins and develop severe atherosclerosis [5]; conversely,

transgenic mice over expressing apoE manifest marked resistance to diet-induced hypercho-

lesterolemia [6]. In addition, apoE’s role gains prominence during atherosclerosis, when it par-

ticipates in reverse cholesterol transport with macrophages secreting large amounts of lipid-

free apoE [7], which in turn promotes cholesterol efflux and formation of high density lipopro-

teins (HDL) containing apoE. In the plasma, apoE resides predominantly on VLDL, chylomi-

cron remnants and a sub species of HDL; in the brain, it is one of the major apolipoproteins

that has been identified to play a crucial role in brain cholesterol metabolism, and is located on

HDL-like particles [8].

ApoAI is considered atheroprotective primarily due to its role in promoting cholesterol

efflux from macrophages and in modulating immune cell response [9]. In humans, apoAI defi-

ciency is associated with coronary heart disease [10], and like apoE, transgenic mice overex-

pressing apoAI are protected against atherogenesis [11]. It is the main protein component of

plasma HDL, the levels and functionality of which are associated with protection against ath-

erosclerosis. ApoAI plays a critical role in HDL metabolism participating in the process of par-

ticle maturation such as activation of lecithin cholesterol acyltransferase leading to formation

of cholesterylester core and in eventual delivery of cholesterylester via interaction with SR-BI

located on sites such as liver and adrenal tissue. As a high-affinity lipid binding protein, its

ability to promote ATP-binding cassette A1 (ABCA1)-mediated cholesterol and phospholipid

efflux is associated with the lipid-free or lipid-poor form of apoAI, which results in biogenesis

of the nascent HDL particle.

In humans the apoE gene is polymorphic with three major alleles: APOE ε2, APOE ε3, and

APOE ε4 coding for apoE2, apoE3, and apoE4 isoforms, respectively. These isoforms differ

only at the amino acid at positions 112 and 158 in the NT domain: apoE3 contains a Cys and

Arg, respectively at these locations, while apoE2 contains Cys, and apoE4 has Arg at both loca-

tions. While apoE3 is considered anti-atherogenic, apoE4 has been associated with cardiovas-

cular disease and is a major risk factor for Alzheimer’s disease [2, 12]. ApoE3 is a 34 kDa

protein (299 residues) that is organized as a 22 kDa N-terminal (NT) domain (residues 1–191)

with four amphipathic α-helices organized in an anti-parallel manner as a helix bundle, and, a

10 kDa C-terminal (CT) domain (residues 201–299) that also bears a series of amphipathic α-

helices; the 2 domains are linked by a flexible protease sensitive hinge. X-ray crystal analysis of

apoE3(1–191) reveal that the α-helices of the NT domain are arranged such that the hydropho-

bic residues of each helix are localized towards the interior, and the polar residues face the

exterior aqueous environment [13]. The helix bundle is stabilized by hydrophobic interactions
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(including aromatic stacking and leucine zippers) and intra- and inter-helix salt bridges.

Together, they impose tremendous stability on this domain with the free energy of unfolding

of 10–12 kcal/mol [14] and a mid-point of denaturation of ~ 2.5 M guanidine-HCl (GdnHCl)

[15]. When associated with a lipid surface, helix 4 of the NT domain, which has an abundance

of positively charged residues, serves as the high-affinity ligand for binding the LDLr along

with Arg 172 [16]. The NT domain retains its stability, lipid binding capability and ability to

interact with the LDLr in isolation. The helices of the CT domain have a high affinity for lipid

binding and promote apoE3 oligomerization [17]. Within its CT domain, apoE3 also bears a

potent ability to promote ABCA1-mediated cholesterol efflux, a feature that is under intense

scrutiny for development of cholesterol-lowering peptide mimetic agents [18–22]. NMR analy-

sis of a variant form of apoE3 bearing multiple mutations at the CT domain (F257A/W264R/

V269A/L279Q/V287E) [23] also reveal a 4-helix bundle in the NT domain; in addition, it

shows that the CT helices C1, C2 and C3 are wrapped around the helix bundle. While it is

possible that the apposition of the CT domain with the NT domain is a consequence of the

engineered mutations, it is not known if the interaction between the two domains alters the

functional behavior of the individual domains. To obtain further insight into this interaction, a

chimera was designed in the current study by swapping the CT tail with that from the structur-

ally closely related apoAI.

Having evolved from a common ancestral gene, both apoE and apoAI show similar struc-

tural characteristics, characterized by Pro-punctuated tandem repeats of 22-mers [24] that form

amphipathic α-helices [25, 26]. Although a high-resolution structure of apoAI is not available,

there are several lines of evidence from a variety of biophysical studies [9] which suggests that

the NT domain bears a 4-helix bundle, similar to apoE3. However, the NT domain of apoAI is

not as stable as that of apoE3, with a free energy of unfolding of 2–4 kcal/mol, and a mid point

of denaturation of ~ 1.0 M GdnHCl [14]. Further, truncation of residues 185–243 results in an

NT domain that appears to be a double belt [27], as noted by X-ray analysis. The notion that the

structure of the isolated NT domain may not resemble that in the context of the intact protein,

raises questions about the dependency of this domain on the CT end of the protein from a func-

tional perspective. Helices 1, 9 and 10 are believed to play a major role in high-affinity lipid

binding of apoAI, while helix 10 has been reported to be involved in ABCA1-mediated choles-

terol efflux capability of the protein. To gain further understanding of the interaction between

these two domains, a second chimera was designed by swapping the CT tail of apoAI with that

from apoE3. The objective of the current study was to examine the structure-function behavior

of apoE3 and apoAI, each NT domain bearing the CT tail of the other.

Materials and methods

Design and generation of chimeric DNA constructs

Two chimeric apolipoproteins were generated (Fig 1): one bearing the NT domain of apoE3

and the CT domain of apoAI, referred to as apoE3-NT/apoAI-CT, and the other bearing the

NT domain of apoAI and the small linker loop and the CT domain of apoE3, referred to as

apoAI-NT/apoE-CT (the CT domain of apoE is shown without the isoform designation since

the amino acid sequence is identical for the apoE isoforms in this domain). The two parent

wild type and two chimeric constructs were housed in a pET-20b(+) vector containing ampi-

cillin and chloramphenicol resistance genes for increased target expression and bear a hexa-

His tag at the N-terminal end to facilitate purification. The codon-optimized sequence of apo-

E3-NT/apoAI-CT was generated by the overlap extension polymerase chain reaction method

using overhang primers [28, 29] (details of the amplification step and ligation are provided in

(Fig A and Table I in S1 File).
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Overexpression and purification of chimeric and parent apolipoproteins

The pET-20b(+) plasmid bearing the coding sequence for apoE3, apoAI, apoE3-NT/apoAI-CT

or apoAI-NT/apoE-CT was used to transform E. coli BL21-Gold (DE3) pLys competent cells

(Agilent Technologies, Santa Clara, CA). The proteins were overexpressed, isolated and puri-

fied as described previously [30]. In select cases (apoAI and apoAI-NT/apoE-CT), the affinity–

purified proteins were subjected to gel filtration chromatography using Superdex 200 (Sigma-

Aldrich, St. Louis, MO) packed in an XK-26/70 column (GE Healthcare Life Sciences, Piscat-

away, NJ) at a flow rate of 0.7 ml/min.

The purified proteins were quantified by UV-Vis spectrometry using a NanoDrop 2000

UV-Vis spectrophotometer (Thermo Scientific, Wilmington, DE) using the following molar

extinction coefficient at 280 nm: apoE3-NT/apoAI-CT: 30,940; apoAI-NT/apoE-CT: 47,440;

apoE3: 45,950; and, apoAI: 33,920 M-1cm-1 or by the Dc protein assay kit (Bio-Rad Laborato-

ries Company, Hercules, CA). The purity of the samples was assessed by SDS-PAGE using

4–20% acrylamide gradient Tris-glycine gels (Invitrogen Life Technologies, Carlsbad, CA)

under reducing or non-reducing conditions. For Western blot analysis, HRP conjugated poly-

clonal goat anti-human apoAI or anti-human apoE antibody (Abcam Company, Cambridge,

MA) was employed at a 1:3000 or 1:4000 dilution, respectively. The bands were visualized

using Amersham ECL Plus Western Blotting Detection Reagent (GE Healthcare Life Sciences,

Piscataway, NJ).

Secondary structural analysis

The secondary structure of the chimeric proteins was assessed by far UV circular dichroism

(CD) spectroscopy. The details of the CD experiments are described in S1 File.

Fig 1. Schematic representation illustrating design and generation of apoE3-NT/apoAI-CT and

apoAI-CT/apoE-NT chimeras. The NT and CT domains of the parent apoE3 (black) and apoAI (light grey)

are shown; the boundaries for the individual domains represent consensus from various labs: apoE3 NT

domain (residues 1–191) and apoE CT domain (201–299), with residues 192–200 encompassing the

protease sensitive linker loop; apoAI NT domain (residues 1–185) and CT domain (residues 186–243). The

apoE3-NT/apoAI-CT chimera encompassed residues 1–191 from apoE3 and 181–243 from apoAI, while

apoAI-NT/apoE-CT chimera was composed of residues 1–180 from apoAI and 192–299 from apoE. The start

and stop sites of the coding region are indicated. A His-tag and protease cleavage sites (dark grey) were

placed immediately upstream of the first residue. For sake of convenience and clarity, residue numbering of

the parent proteins was retained for the chimeras.

https://doi.org/10.1371/journal.pone.0178346.g001
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Guanidine-HCl-induced unfolding

GdnHCl induced denaturation studies were performed to determine protein stability and

unfolding pattern, and the percent maximal change was calculated from the ellipticity value at

222 nm as described previously [31]. About 0.2 mg/ml protein was incubated for 16 h at 24˚C

in the presence of increasing concentration (0 to 6 M) of ultra-pure grade GdnHCl (MP Bio-

medicals, Solon, OH) and 5x molar excess of tris(2-carboxyethyl)phosphine (TCEP) in 10 mM

ammonium bicarbonate, pH 7.4. The midpoint of denaturation (the concentration of GdnHCl

required to cause a 50% decrease in the maximal change) [GdnHCl]1/2 was determined for

each construct.

Fluorescence spectroscopy

The binding of 1-anilinonaphthalene-8-sulfonate (ANS) to the chimeric and parent proteins

was monitored by following the fluorescence emission spectra of 250 μM ANS in 10 mM

ammonium bicarbonate, pH 7.4 in the absence or presence of 5 μM protein at 24˚C. Fluores-

cence measurements were made in a Perkin-Elmer spectrofluorometer (model LS 50B). An

average of 3 scans were recorded for 3 freshly folded samples, at a scan speed of 100 nm/min.

The excitation wavelength was set at 395 nm, and the emission spectra were scanned between

400 and 600 nm (excitation and emission slit widths at 6 nm).

Lipid binding assay

The ability of the chimeric apolipoproteins to bind lipids and cause vesicle solubilization was

determined as described previously [32] using multilamellar vesicles (MLVs) of 1,2-Dimyris-

toyl-sn-glycero-3-phosphocholine (DMPC) (Avanti Polar Lipids, Alabaster, AL), with slight

modifications (details provided in S1 File). The time required for initial absorbance to decrease

by 50% (T1/2) and the rate constant (k, reciprocal of T1/2) were determined for the chimeras

and the parent proteins.

Preparation of DMPC- and DMPC/DiI-bound complexes of chimera or parent proteins is

described in S1 File.

LDLr binding assay

The ability of the lipid-associated chimeras to bind to the soluble LDLr with a c-Myc epitope

was assessed using a co-immunoprecipitation assay as described previously [32, 33] with 0 or

10 μg DMPC/chimera complexes, 10 μg of sLDLr, 2 mM Ca+2 in PBS. ApoE was detected by

Western blot using HRP-conjugated polyclonal apoE antibody. A replica experiment was con-

ducted wherein an anti-c-Myc antibody (9E10) was utilized.

Cellular uptake of DMPC/chimera particles by glioblastoma cells

Cellular uptake of DMPC-bound complexes of chimera was determined using human glioblas-

toma cell line A-172 [34] (details provided in S1 File). Human brain A-172 glioblastoma cells

were obtained from ATCC (Manassas, VA).

Cholesterol efflux assay

The ability of apolipoproteins to mediate cellular cholesterol efflux was assessed using J774

mouse macrophages. Cells were treated with and without a cAMP analog to modulate ABCA1

expression as described previously [19]; apolipoprotein acceptors were used in lipid-free form

(details provided in S1 File).
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Statistical analysis

Where appropriate, data were expressed as mean ± SD of at least three independent experi-

ments and statistical analyses performed using Student’s t-test.

Results

Design and characterization of chimeric apolipoproteins

To determine the structural basis of the functional differences between the NT and CT

domains of apoE3 and apoAI, chimeric apolipoproteins were generated by swapping the CT

domain of each other, Fig 1. The splice sites broadly aligned with the limits of the domain

organization of each apolipoprotein. The DNA construct of apoE3-NT/apoAI-CT codes for

residues 1–191 of apoE3 immediately followed by residues 181–243 of apoAI (Fig A and

details in S1 File), while that of apoAI-NT/apoE-CT codes for residues 1–180 of apoAI fol-

lowed by 192–299 of apoE3. In both cases the nucleotide sequence was verified to confirm the

presence of the desired segments of the parent proteins in the spliced DNA.

SDS-PAGE analysis of the chimeric and their parent proteins under reducing conditions,

Fig 2, Panel A, revealed molecular masses of ~32 and 35 kDa for apoE3-NT/apoAI-CT and

apoAI-NT/apoE-CT, respectively, (expected masses: 30,975 and 34,864 Da, respectively). This

suggests that the chimeras contain the designed individual components of the parent apolipo-

proteins. The molecular masses of apoE3 and apoAI were ~ 34 and 29 kDa, respectively. West-

ern blot analysis using mouse HRP-conjugated apoE polyclonal antibody, Fig 2, Panel B, Left,
yielded robust bands at ~32 and 35 kDa for apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT,

respectively, confirming the presence of apoE3 epitopes in both chimeras. The absence of a

band for apoAI confirms that the apoE polyclonal antibody does cross react with apoAI.

When mouse HRP-conjugated apoAI polyclonal antibody was used, Fig 2, Panel B, Right, a

strong band of ~ 35 kDa was noted for apoAI-NT/apoE-CT, confirming the presence of apoAI

epitope in this chimera. A band (albeit less robust) was noted for apoE3-NT/apoAI-CT, which

confirms the presence of the apoAI epitope in this chimera as well. Taken together, the nucleo-

tide sequence, SDS-PAGE and Western blot confirm the presence and correct splicing of the

desired swapped domain components in the two chimeras, and the purity of the preparations.

Fig 2. Characterization of chimeric apolipoproteins. Panel A. SDS-PAGE analysis of the chimeric

apolipoproteins. Electrophoresis of chimeric and parent proteins (20 μg protein) was carried out using a

4–20% acrylamide gradient Tris-glycine gel under reducing conditions in the presence of BME. Panel B.

Western blot analysis of chimeras (0.5 μg protein) using mouse HRP-conjugated apoE polyclonal antibody

(Left) or apoAI antibody (Right). Lane assignments are as follows: Lane 1, apoAI; Lanes 2, apoAI-NT/

apoE-CT; Lanes 3, apoE3; Lanes 4, apoE3-NT/apoAI-CT.

https://doi.org/10.1371/journal.pone.0178346.g002
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Secondary and tertiary structural analysis, GdnHCl-induced unfolding

and cross-linking studies

CD spectroscopy was carried out to assess the secondary structure of the chimeras. The ellip-

ticity of both chimeras was measured in the far UV range and compared with those of the par-

ent proteins (Fig B in S1 File); both reveal profiles with troughs at 208 and 222 nm, a signature

feature of an α-helix, similar to that noted for the parent proteins. The α-helical content for

both apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT was 45%, while that for apoE3 and apoAI

was ~ 40%, the differences noted were within the error limit of CD measurements and varia-

tions between preparations.

GdnHCl-induced denaturation was carried out to examine the effect of appending the CT

tail of one on the NT domain of the other apolipoprotein and to obtain an estimate of the over-

all protein stability, in comparison with that of the parent proteins under reducing conditions,

Fig 3, Panels A and B. ApoAI shows a single transition with a midpoint of denaturation (con-

centration of GdnHCl required to cause a 50% decrease in the maximal change, [GdnHCl]1/2)

of ~1.2 M. The unfolding behavior of the chimeric apoAI-NT/apoE-CT ([GdnHCl]1/2 of ~1.3

M) was broadly similar to that of apoAI. In contrast apoE3 shows a biphasic denaturation pro-

file [35, 36], with the first transition attributed to the unfolding of the CT domain ([GdnHCl]1/2

of ~0.75 M) followed by that of the NT domain ([GdnHCl]1/2 of ~2.50 M). The denaturation

profile of apoE3-NT/apoAI-CT showed a biphasic pattern as well; however, the initial transi-

tion showed a lower [GdnHCl]1/2 of ~ 0.1 M, reflective of a segment highly susceptible to dena-

turation, likely corresponding to the unfolding of apoAI CT tail; the second transition showed

a strong overlap corresponding to the unfolding of apoE3 NT domain ([GdnHCl]1/2 of ~ 2.6 M

GdnHCl). This suggests that the individual domains of the apoE3-NT/apoAI-CT chimera reca-

pitulate their fold in the context of their parent proteins. Under non-reducing conditions, the

unfolding behavior of both chimeras did not alter significantly from that noted under reducing

conditions (data not shown).

To determine if swapping the CT domains altered the overall fold or exposure of hydropho-

bic core segments of the protein, ANS fluorescence emission was monitored, Fig 3, Panel C.

ANS is an amphiphilic probe that fluoresces upon binding to hydrophobic pockets or cores in

proteins leading to changes in the wavelength of maximal fluorescence emission (λmax) and to

an enhancement in emission intensity [37]. In buffer, ANS was relatively non-fluorescent with

Fig 3. Unfolding and folding behavior of chimeras. Panels A and B. GdnHCl-induced denaturation profiles of apoAI-NT/apoE-CT (A)

and apoE3-NT/apoAI-CT (B). The samples (0.2 mg/ml) were incubated with increasing concentration of GdnHCl and 5x molar excess of

TCEP for 16 h at 24˚C. The ellipticity value at 222 nm was measured and protein unfolding plotted as % maximal change in which 100%

represents completely unfolded protein. ApoAI (filled circles); apoAI-NT/apoE-CT (open circles); apoE3 (closed inverted triangles); and

apoE3-NT/apoAI-CT (open inverted triangles). Panel C. ANS fluorescence emission spectra of chimeric and parent proteins. About 50 μg

of each protein sample was excited at 395 nm and the emission spectra were recorded at 100 nm/min from 400 to 600 nm. ApoAI

(_____); apoAI-NT/apoE-CT (�������); apoE3 (- - - - - - -); apoE3-NT/apoAI-CT (��-��-��) and ANS (__ __ __).

https://doi.org/10.1371/journal.pone.0178346.g003
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a λmax of 519 nm; in the presence of apoE3, a large increase in ANS fluorescence emission was

noted, with a λmax of ~467 nm, indicative of a folded state; swapping its CT domain with that

from apoAI resulted in a small increase in intensity by ~18%, with the λmax remaining at ~467

nm. In the case of apoAI as well, a large increase in intensity compared to ANS alone was

noted, which was accompanied by a blue shift to 468 nm; upon swapping the CT domain of

apoAI with that from apoE, the λmax remains at 466 nm while the intensity increased further

by almost 2-fold. The increase was likely due to the presence of the structured segment of apoE

CT tail (107 residues), although we cannot exclude the possibility of the contribution of the

larger surface area it offers compared to apoAI CT tail (62 residues).

Lipid binding characteristics

The lipid binding ability of the chimeras were compared to that of the parent proteins using

the DMPC vesicle solubilization assay [32]. This assay involves incubation of apolipoproteins

with MLVs prepared with DMPC at 1:1 ratio (w/w). At the transition temperature of DMPC

(23.9˚C), apolipoproteins typically convert the vesicular structures (~200 nm diameter) to

small discoidal complexes (10–20 nm diameter), which is observed as a decrease in absorbance

due to light scattering at 325 nm. Fig 4 shows a plot of change in absorbance at 325 nm as a

function of time. ApoAI elicits a rapid decrease in absorbance with a T1/2 of ~ 260 s and k value

3.6 x 10−3 s-1 in agreement with previous studies carried out under similar conditions [38]. In

contrast, apoE3 shows a very poor ability to solubilize the vesicles, with T1/2 of>1800 s. Such

behavior by apoE3 and apoAI is has been noted by us and other researchers previously [32,

38, 39]. Interestingly, the T1/2 and k value for apoE3-NT/apoAI-CT chimera were 298 ± 3 s and

Fig 4. Phospholipid vesicle solubilization capability of chimeras. About 125 μg of DMPC MLVs were

equilibrated in 400 μl of PBS in a cuvette at 23.7˚C in a Peltier-controlled spectrophotometer. Vesicle

solubilization was initiated by addition of 125 μg of apolipoprotein, mixed rapidly and the change in

absorbance at 325 nm measured for 30 min. Data were normalized to initial absorbance immediately following

addition of protein. ApoAI (_____); apoAI-NT/apoE-CT (�������); apoE3 (- - - - - - -); apoE3-NT/apoAI-CT (��-��-��);

and DMPC vesicles alone in the absence of apolipoproteins (__ __ __).

https://doi.org/10.1371/journal.pone.0178346.g004
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3.3 x 10−3 ± 3.2 x 10−5 s-1, respectively, which is comparable to that apoAI; and those for

apoAI-NT/apoE-CT are ~ 319 ± 90 s and 3.3 x 10−3 ± 1.1 x 10−3 s-1, respectively.

It should be noted that prolonged overnight incubation of apoE3 with DMPC vesicles

under these conditions eventually causes transformation of vesicular to discoidal structures,

with the assumption that the entire apoE3 molecule interacts with phospholipids. These

DMPC-bound complexes are discoidal in shape and are referred to as reconstituted HDL; they

recapitulate all the functional features of native apoE3 in terms of their ability to bind and

interact with the LDLr and facilitate cellular uptake of lipoprotein particles. The lipid/protein

ratios, approximate molecular mass of the DMPC complexes, and estimated number of pro-

teins per particle are shown in Table 1. In general, non-denaturing PAGE analysis shows that

apoE3 forms larger reconstituted complexes compared to apoAI, Fig C in S1 File; complexes

bearing the NT domain of apoE3 resulted in two bands (200,000–300,00 Da band with 3–4

proteins/particle, and ~500,000 Da band with 6–8 proteins/particle. In contrast, those with

the NT domain of apoAI resulted in smaller bands of ~ 200,000 Da mass with 2–3 proteins/

particle.

LDLr binding ability and cellular uptake

Blacklow and colleagues devised a convenient method to assess the LDLr binding capability of

lipoproteins using a soluble extracellular segment of the receptor [33]. The soluble LDLr

(sLDLr) used in our study is composed of consecutive LA modules LA3-LA6 bearing a c-Myc

tag that displays all the functional features of receptor-ligand binding. We have used this con-

struct previously to capture the LDLr/rHDL complex [40, 41] and detect apoE via Western

blot analysis. We deployed the same approach to initially assess the functionality of the lipid-

associated forms of the chimeras in terms of their ability to recognize and bind the sLDLr.

Western blot analysis using anti-c-Myc antibody to detect the presence of LDLr showed a

band in all samples incubated with LDLr, Fig 5, confirming the presence of the receptor in all

incubations. The absence of a band for apoE3 incubated without LDLr confirmed no cross

reactivity between the anti-c-Myc-agarose antibody with apoE3. Of the two chimeras gener-

ated, only that which had the NT domain of apoE3 (apoE3-NT/apoAI-CT) displayed sLDLr-

binding ability, as expected. This observation indicated that the presence of the CT domain of

apoAI did not alter the ability of the apoE3 NT domain to bind lipid and attain the proper con-

formation to recognize and dock with the ligand binding module of the LDLr. It is known that

even isolated apoE3 NT domain is capable of binding the LDLr in its lipid-bound state. Our

findings further showed that the nature of the CT tail is irrelevant for the LDLr binding capa-

bility of apoE3. The apoAI-NT/apoE-CT chimera does not elicit any sLDLr binding ability.

Subsequently, the ability of the chimeras to be internalized by A-172 glioblastoma cells was

evaluated. Initial experiments were aligned with the sLDLr binding results above, wherein

apoE-facilitated cellular uptake was followed by immunofluorescence using 1D7 and 3H1

Table 1. Characterization of DMPC/chimera particle size and protein/lipid composition.

DMPC complex Lipid/protein ratio (m/m) Approximate Molecular mass (Da) # of proteins/particle

ApoAI 40:1 200,000 3

ApoAI-NT/apoE-CT 100:1 200,000 2

ApoE3 70:1 300,000 4

500,000 6

ApoE3-NT/apoAI-CT 50:1 200,000 3

500,000 8

https://doi.org/10.1371/journal.pone.0178346.t001
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monoclonal antibody, to detect the NT and CT domains of apoE, respectively, Fig 6A. DMPC/

apoE3-NT/apoAI-CT chimera was internalized in a robust manner, showing punctate peri-

nuclear endocytic vesicles. No visible uptake of DMPC/apoAI-NT/apoE-CT was observed, in

agreement with the lack of the NT domain of apoE3 that houses the LDLr and proteoglycan

binding sites. While this strongly suggested the involvement of the LDLr in the case of apo-

E3-NT containing particles, we cannot rule out the possibility of the involvement of HDL

receptors such as SR-B1 in the binding and uptake of lipids. Therefore, in a complementary

approach, we followed the uptake by labeling the lipid component of the lipoprotein com-

plexes by using DMPC/DiI/chimeras or DMPC/DiI/parents in the absence and presence of

SR-BI/SR-BII antibody, Fig 6B. DiI fluorescence was noted to a limited extent in cells treated

with lipid-associated apoAI or apoAI-NT/apoE-CT; in the presence of SR-B1/SR-BII antibody,

the intracellular DiI fluorescence was abolished. In contrast, cells treated with DMPC/DiI/

apoE3 and DMPC/DiI/apoE3-NT/apoAI-CT displayed significant intra-cellular DiI fluores-

cence. In the presence of SR-BI/SR-BII antibody, the DiI fluorescence appeared to have

decreased to a limited extent.

Cholesterol efflux

Lastly, the relative ability of the lipid-free chimeras to promote ABCA1-mediated cholesterol

efflux was examined. ABCA1 is a member of the ATP-binding cassette (ABC) family of trans-

membrane transporters, which mediates active transport of cholesterol. It bears phospholipid

translocase activity that leads to simultaneous efflux of phospholipid and cholesterol to lipid-

free or lipid-poor apoAI [42] leading to HDL biogenesis. In the current assay, cholesterol

loaded J774 cells were treated with or without cpt-cAMP to modulate expression of ABCA1,

followed by treatment with the lipid-free apolipoproteins. In general, both chimeras retained

the ability to mediate cholesterol efflux in an ABCA1 dependent manner, Fig 7, Panel A; the

presence of β-mercaptoethanol (BME) did not have a major influence on the efflux ability, Fig

7, Panel B. Interestingly, apoAI-NT/apoE-CT appeared to bear a greater capacity to mediate

efflux, compared to either apoE3-NT/apoAI-CT or both parent proteins. With both chimeras,

the efflux ability was dose dependent, Fig 7, Panel C, and increased as a function of time, Fig

7, Panel D. The Km values for apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT are 20 and

32 μg/mL, respectively, and the corresponding Vmax values are 17 and 19% / 4h. The Km values

of the chimeras are 6–7 fold higher compared to the parent proteins, while the Vmax is twice as

high compared to apoAI or apoE3 reported previously [19, 43]. This is indicative of a lower

Fig 5. LDLr binding ability of chimeras. DMPC/chimera complexes (10 μg protein) were incubated with

10 μg of sLDLr, followed by co-IP with anti-c-Myc-agarose. sLDLr-bound apoE was detected by Western blot

using HRP-conjugated polyclonal apoE antibody (Top); the lane assignments are: Lane 1, apoAI; lane 2,

apoAI-NT/apoE-CT; lane 3, apoE3; lane 4, apoE3-NT/apoAI-CT; lane 5, apoAI added in the absence of

sLDLr; lane 6, apoE3 added in the absence of LDLr; lane 7, LDLr alone in the absence of added proteins. A

replica experiment was conducted wherein an anti-c-Myc antibody (9E10) was utilized to identify the presence

of LDLr in each reaction (Bottom).

https://doi.org/10.1371/journal.pone.0178346.g005
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Fig 6. Uptake of rHDL/chimeras by glioblastoma cells. Panel A. Uptake of apoE component of rHDL/chimera

monitored by immunofluorescence. DMPC/chimera complexes (10 μg/ml) were incubated with glioblastoma cells for 2h at

37˚C. Cellular uptake of the lipoprotein particles was followed by immunofluorescence under a confocal laser scanning

microscope using monoclonal antibodies against apoE CT domain (3H1) or NT domain (1D7) and Alexa555-labeled secondary

antibody. Panel B. Uptake of lipid component of rHDL/DiI/chimera monitored by direct fluorescence. The chimeric and

parent proteins were reconstituted with DMPC and DiI as described under S1 File. DMPC/DiI/chimera or parent complexes

(0.5 μg/ml) were incubated with cells as above in the absence or presence of SR-B1/SR-BII antibody (1:500 dilution) and

cellular uptake of the lipoprotein particles followed by direct fluorescence at 559 nm. The cells were stained with DAPI to

visualize the nuclei. The scale bar represents 50 μm.

https://doi.org/10.1371/journal.pone.0178346.g006
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specificity for the chimeras, but suggest the potential to operate at higher concentrations at

which apoAI and apoE would have reached saturation.

Discussion

The strategy of generating chimeras has been adopted widely in protein engineering to examine

structure-function relationships and to define regions within a domain or at the subdomain

level in closely related proteins. In the case of the family of exchangeable apolipoproteins, the

presence of amphipathic α-helices is a defining feature among the members; from a structural

perspective the amphipathic α-helices offer the ability for these proteins to exist in a lipid-free

or lipid associated state by undergoing a reversible conformational change, for which lipids are

believed to be triggers. From a functional perspective, they serve a variety of functions such as

interaction with lipids, lipoproteins and lipoprotein receptors, facilitation of cholesterol efflux

promoted by membrane transporters and as enzyme activators. The focus of this study was on

apoE3 and apoAI, two key members of the exchangeable apolipoprotein family; the former

bears two defined NT and CT domains; the latter also has an NT and CT domain, though the

CT domain may remain relatively unstructured at low concentrations (lower than that used in

this study), thereby deviating from the conventional definition of a domain. Despite their

Fig 7. Chimeric apolipoproteins mediated cholesterol efflux from J774 macrophages. Panels A and B.

J774 macrophages were labeled with [3H]cholesterol, and treated in the absence (open bars) or presence

(closed bars) of cAMP. Lipid-free chimeras or parent apolipoproteins (10 μg/ml) were added to cells in serum-

free RPMI-1640 medium, and amount of cholesterol efflux determined at 4 h. Conditions of time and dose

were within a linear response range to allow for potential differences (if any) to be observed with and without

treatment of acceptors in the absence (Panel A) or presence (Panel B) of 5x molar excess of BME. Panel C.

Dependence of cholesterol efflux on chimera concentration. The cells were treated with the indicated

concentrations of the chimeras for 4 h. Panel D. Kinetics of chimera-mediated cholesterol efflux. Chimera-

mediated cholesterol efflux was followed at the indicated time points using 32 μg/μl of each protein. Values

are means ±SD from triplicate determinations within a single experiment representative of two. For Panel C

and Panel D, apoE3-NT/apoAI-CT (open inverted triangles); apoAI-NT/apoE-CT (open circles).

https://doi.org/10.1371/journal.pone.0178346.g007
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broad structural similarity, there are significant differences in functionality between the two

proteins: whereas apoE3 can bind and mediate cellular uptake of lipoproteins via the LDLr,

apoAI lacks this ability. Conversely, whereas apoAI mediates phospholipid vesicle solubiliza-

tion to yield discoidal particles very rapidly, apoE3 is relatively slow in its ability to cause this

transformation, though it would do so given time and under specified experimental conditions.

Both proteins show significant ability to promote ABCA1-mediated cholesterol efflux. Our

objective was to understand the interaction between and influence of the domains on each

other in the two proteins. To achieve this, the CT domain or tail of each protein was swapped

to generate apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT.

Design of chimeric apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT

The splice site for apoE3 was determined based on consensus from a series of biochemical

and biophysical studies involving susceptibility to protease cleavage, protein unfolding studies

using chemical and heat denaturation, kinetic and equilibrium studies of association-dissocia-

tion behavior of apoE [44] and, C-terminal truncation analysis [14, 45, 46]; in addition, it

was guided by the high resolution X-ray structure of residues 1–191 [13], NMR structure of

1–183 [47] and, to a limited extent from the NMR analysis of an engineered form of apoE3

(F257A/W264R/V269A/L279Q/V287E) [23] that was generated to obtain a monomeric pro-

tein for structural analysis. Taken together, apoE3 NT domain was defined to encompass resi-

dues 1–191, and the CT domain to encompass residues 201–299 and the protease sensitive

loop residues 192–200.

For apoAI, the splice site was determined broadly based on the boundaries defined by HDX

studies on lipid free apoAI carried out by other researchers [48] due to lack of availability of a

high resolution structure of the full length protein. X-ray analysis of apoAI truncated at the CT

end to yield 1–185 [49] or at the NT end to yield 44–243 [50] provided limited guidance, both

suggesting an organization resembling the lipid-associated conformation of the protein in a

discoidal complex with phospholipids. Further, truncation at both ends appears to yield a sta-

ble helix bundle conformation [51]. The rationale for using HDX data is that it was obtained

by non-invasive means and the studies were performed at relatively low concentrations (50–

60 μg /ml) wherein the protein was monomeric, comparable and relevant to that used in the

current study. At concentrations > 1mg/ml, apoAI self-associates and acquires increased sec-

ondary structure [52, 53], presumably due to adoption of helical structure by the CT domain.

Taken together, the NT domain was broadly defined to encompass residues 1–180, and the CT

domain residues 181–243.

Biophysical analysis of apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT

Secondary structural analysis revealed that the chimeras are predominantly α-helical, similar

to the parent proteins. In both cases, the NT domain appears to play a dominant role in driving

the overall fold of the protein. The NT domain of apoE3 bears a helix bundle that is unusually

stable among apolipoproteins, showing resistance to GdnHCl- induced unfolding, with a ΔG

of unfolding of ~10 kcal/mol [14]. Typically, apoAI and other exchangeable apolipoproteins,

including insect apolipophorins, unfold with a [GdnHCl]1/2 of ~ 1 M or less, and a ΔG of

unfolding of 1–4 kcal/mol. The single transition elicited by apoAI makes it difficult to dissect

out the differential folding of its NT and CT domains. By appending the CT tail of apoAI to

apoE3 NT domain, which has a much higher stability with a mid point of ~ 2.5 M, the unfold-

ing of apoAI CT tail could be dissected, revealing a less structured state with a low mid point

of denaturation (~0.1 M GdnHCl). At the concentration used for the unfolding studies (~0.2

mg/ml) it is possible that a small fraction of apoAI exists as a dimer, in which case, the low
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values could also represent dissociation of dimeric CT tail. ANS fluorescence analysis further

confirmed the presence of less structured CT tail; appending the CT domain of apoE3 to

apoAI NT domain, resulted in a much larger increase in ANS fluorescence emission (~100%)

compared to that seen when appending the CT tail of apoAI to apoE3 NT domain (~18%).

This suggests that the CT domain of apoE3 is far more structured than that of apoAI, a conclu-

sion also supported by the GdnHCl-induced unfolding that revealed a small shift towards a

more stable overall structure. The structural flexibility of apoAI CT domain bears direct rele-

vance to its tendency to seek stability with higher lipid-binding propensity compared to apoE3

as discussed later.

Currently available information about apoAI suggests that the CT tail of apoAI bears the

propensity to adopt an α-helical structure based on algorithms for secondary structural predic-

tions. This predisposition leads to reference of apoAI CT tail as an additional domain despite

its unfolding behavior, which shows a single transition, a characteristic feature of a one-

domain protein. The trigger for the transition from flexible to α-helical structure may include:

(i) increased protein concentration, which has been shown to lead to apoAI oligomerization,

increase in α-helical content and increased cross-linking [48, 52, 53]; (ii) the presence of lipids,

which induces helix formation, consistent with the inverse correlation between protein stabil-

ity and lipid binding ability: unstructured segments seek stability by interacting rapidly with

lipids [54]; (iii) truncation of apoAI at the N-terminal end by removing residues 1–43; this

resulted in the rest of the protein, including the CT tail, adopting an extended helical structure

as noted by X-ray analysis [50]. It is not known if this is due to the high protein concentrations

required for X-ray analysis or removal of residues 1–43 that caused the trigger; nonetheless, it

points to the facile ability of the CT tail to adopt an α-helical structure.

Insights obtained from functional analysis of apoE3-NT/apoAI-CT and

apoAI-NT/apoE-CT

We, and others, have shown that the isolated CT domain of apoE encompassing residues 201–

299, displays significant lipid binding ability [38], whereas the lipid binding behavior of iso-

lated apoE3-NT domain (residues 1–191) resembles that of intact apoE3, showing a poor abil-

ity to cause DMPC vesicle solubilization [15]. It is possible that an interaction exists between

apoE3 NT and CT domains, wherein the CT domain likely wraps around the NT domain in

intact apoE3; such an interaction would either prevent the NT domain helix bundle from

opening and interacting with lipids, and/or mask the sites involved in initiating lipid interac-

tion. This conclusion also derives support from the NMR structure of monomeric apoE3,

which reveals 3 helices: C1 (W210-S223); C2 (V236-E266); and, C3 (D271-W276) [55, 56].

Nevertheless, if this inference is true, then deleting the CT domain should release the ‘inhibi-

tory’ attenuating effect of the CT domain on the NT domain. The observation that the isolated

NT domain displays a poor ability to solubilize DMPC vesicles under these conditions [15]

suggests that there are other mechanisms involved in triggering the opening of the NT domain

helix bundle.

The apoE3-NT/apoAI-CT chimera offered further insight into the above issue; prior studies

from other labs have suggested that residues 44–65 and 220–241 of apoAI bear high lipid bind-

ing affinity [3, 57]. Indeed, appending the CT tail of apoAI conferred tremendous lipid binding

ability to apoE3 as inferred from the efficiency with which apoE3-NT/apoAI-CT solubilized

lipid vesicles, attaining rate constants resembling that of intact apoAI. This indicates that

apoAI CT domain plays a role not only in initiating lipid interaction but also in triggering the

opening of an otherwise stable apoE3 NT helix bundle. Interestingly, the apoAI-NT/apoE-CT

chimera displays robust vesicle solubilization ability comparable to that of intact apoAI. This
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may be attributed to the contributory role of helix 1 in apoAI, supporting early studies that

indicate that the high hydrophobicity is linked to its high lipid binding affinity [57, 58]. Also,

the presence of several aromatic and hydrophobic residues towards the N-terminal end of

apoAI may contribute towards initiating lipid-binding interaction. Alternately, the CT domain

of apoE may offer more surface area in terms of binding of more phospholipid molecules,

which would aid in solvation of more free cholesterol, a phenomenon suggested to explain the

larger discoidal particles formed by apoE3 [42, 59].

Domain swapping also revealed interesting new information regarding the relative choles-

terol efflux abilities of apoAI and apoE3; both have the ability to carry out this function [42],

albeit to different extents: apoAI shows significantly higher ability to promote efflux compared

to apoE3, with several studies pointing to the critical role of the CT tail, especially helix 10, of

apoAI in promoting ABCA1-mediated cholesterol efflux [60, 61]. Appending the apoAI CT

tail to apoE3 NT domain however did not result in a significant increase in efflux capability

compared to apoE3. Conversely, appending apoE CT tail to apoAI conferred superior choles-

terol efflux ability to apoAI; this is indicative of a significant role of apoE3 CT domain in cho-

lesterol efflux reaction, corroborating previous studies that demonstrate that the entire CT

domain of apoE was able to efflux with the same efficiency as intact apoAI and apoE3 [43, 62].

Indeed, this was the rationale for the development and design of an apoE3 mimetic peptide

that used residues 238–266 of apoE3 as a template with modifications to increase the hydro-

phobicity and acidic nature of the peptide [19, 22, 62]. These studies underscore the impor-

tance of apoE CT domain in promoting cholesterol efflux. Our current study further extends

its role by demonstrating the possibility of a synergistic effect between apoAI NT domain and

apoE-CT domain, since this chimera’s ability was better than either of the parent proteins.

Other studies used chimeric constructs of mouse and human apoAI with their NT domains

swapped to obtain insight into mechanism of cholesterol efflux ability [63]. They report that

swapping the NT domain of human apoAI with that of the NT domain of mouse apoAI

increased the efficiency of ABCA1-mediated cholesterol efflux ability of the former and

increased the uptake rate of cholesterol by the liver. They attributed the gain of function to the

lower stability of mouse NT domain. An independent study reported that a loss noted in the

efflux capacity of apoAI C-terminal deletion mutant (Δ190–243) was recovered when a pair of

helices from apoAII (1–77) was substituted to generate an apoAI/AII chimera [64]. Together,

these studies lend support to the suggestion that the tertiary structure and the organization of

helices, and not the amino acid sequence per se, is influential in cholesterol efflux.

It is well established that apoE-containing lipoproteins interact with both the LDLr and

related family members, and, HDL receptor SR-BI [65], in addition to cell surface proteogly-

cans such as heparan sulfate proteoglycans. This was reflected in the significantly high level

of intracellular immuno- and DiI fluorescence noted for lipid-associated apoE3 and apo-

E3-NT/apoAI-CT chimera. Since only a very small decrease was noted in DiI fluorescence

in the presence of SR-BI/SR-BII antibody, we believe that the LDLr family mediated path-

way is a major route for cellular uptake of lipid-associated apoE3 and apoE3-NT/apoAI-CT,

with the SR-BI/SR-BII mediated pathway playing a small role in uptake of DMPC/DiI asso-

ciated apoE3 and apoE3-NT/apoAI-CT. The presence of apoAI-CT tail does not signifi-

cantly alter intracellular DiI related fluorescence. Using LDLr-deficient CHO cells that were

stably transfected with SR-BI, previous reports have shown that the N-terminal region of

apoE3 encompassing residues 1–165 bears sufficient determinants for binding SR-BI recep-

tor in the lipid-associated state [66]. Our current studies indicate that the LDLr mediated

pathway is the preferred uptake route for apoE3 containing lipoprotein particles. In the case

of DMPC/DiI/apoAI and DMPC/DiI/apoAI-NT/apoE-CT, the intracellular DiI fluores-

cence was visible albeit to a significantly lesser extent compared to apoE3, which was
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abolished in the presence of SR-B1/SR-BII antibody. This suggests cellular uptake of

DMPC/DiI /apoAI and DMPC/DiI/apoAI-NT/apoE-CT via SR-BI/ SR-BII to a small extent.

These observations are consistent with previous reports that suggest that the C-terminal tail

(186–243) of apoAI does not appear to significantly affect the binding interaction with

SR-BI in the POPC-associated state [65, 67]. Taken together, the chimeric approach indi-

cates that the amphipathic helical motif in apoAI or apoE3 is sufficient for interaction with

SR-BI/SR-BII interaction, consistent with previous reports that employed truncated variants

[65].

The domain swapping data allows us to reflect on the structural and functional basis of the

physiological role of apoE3 and apoAI, two key exchangeable apolipoproteins that are both

considered as anti-atherogenic proteins. With its structural flexibility and inherently disor-

dered nature of the CT domain, apoAI is well adapted to bind cholesterol, form small lipopro-

tein complexes that can be rapidly removed from peripheral tissues. The limited ability of

apoE3 to bind small vesicles and cause vesicle solubilization under similar conditions is reflec-

tive of its inherent preference for binding large lipoprotein particles, with the high stability of

the NT domain helix bundle bearing a regulatory role in clearance of the large atherogenic

lipoproteins. The helix bundle opening, which confers LDLr binding competency to the parti-

cle, is likely triggered by changes in the particle lipid content, signaling its readiness for clear-

ance. More studies are needed to determine the clearance rate of lipoproteins in the plasma

following injection of the chimeric apolipoproteins and investigating the reverse cholesterol

transport pathways mediated by the chimeras.
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